
Data Stream Algorithms for Vectors: Draft Chapter∗

October 27, 2013

In this chapter, we study one of the common forms in which modern data problems arise.
Traditional data problems consider data that is stored, say, the records of all employees in a
company, students in an University, and so on. These databases change, albeit slowly, and data
analyses often assume the data can be accessed repeatedly and it will not change during the
analyses. In contrast, modern data arises as streams of measurements or observations arriving over
time and describe an underlying signal in some high dimensional space. For example, the collection
of transactions at an ATM or the photos of cars passing a traffic intersection or the descriptions of
IP packets passing through a router are all examples of data streams. The underlying signals could
be the current balance of each bank account or the number of times each car goes through the
intersection or the number of bytes sent by each IP address, respectively. As is evident from these
examples, the dimension of these signals — the number of bank accounts or cars or IP addresses
— is potentially large. Also, for running the network of ATM or traffic system or the IP network,
one needs to monitor these signals and analyze them for potential security reasons, or optimizing
ones’ operations or reporting and so on. These considerations motivate the study of problems in
this chapter.

Formally, we consider a stream of m updates S = 〈a1, . . . , am〉 that determine a vector x ∈ Rn.
We assume that x = (x1, . . . , xn) is initially the zero vector. An update at = (it,∆t) ∈ [n] × R
encodes the update

xit ← xit + ∆t .

Note that after m updates we have xj =
∑

t∈[m]:j=it
∆it . For example, if n = 4 and m = 5, the

stream S = 〈(1, 2), (2,−0.5), (4, 1), (1,−1), (4, 2)〉 encodes the vector

x = (1,−0.5, 0, 3)

In motivation examples earlier, n is the dimension of the signals andm is the number of transactions,
both of which may be large in modern data application.

We will approach problems of analyzing such data streams, as is, typical, requiring that we use
very little space to represent the streams. In particular, for a given function g, the goal is to return
an approximation of g(x) using space that is sub-linear in m and n, typically, polylogarithmic in
these factors. A case has been made for such stringent space constraints in prior work over the
past decade, primarily because the streams arrive rapidly and high speed memory is expensive.
See [Mut06] for a detailed discussion.

∗Draft of a chapter from the forthcoming textbook “Data Stream Algorithms and Sketches” by Andrew Mc-
Gregor and S. Muthukrishnan. Do not distribute without permission of the authors. Latest version can be
found at http://people.cs.umass.edu/∼mcgregor/book/book.html. Please send comments and corrections to
mcgregor@cs.umass.edu.

1

We will focus on three basic problems with signal analysis. These basic problems will let
us introduce some of the powerful techniques invented in the past few decades. Ultimate, these
problems by themselves will be of interest in some applications. In applications where modern
data problems arise, like sparse signal recovery or entropy estimation or cascaded aggregates, these
techniques will prove useful. The problems of interest are:

1. Frequency Moments: Estimating Fk =
∑

i∈[n] |xi|k

2. Distinct Elements: Estimating F0 = |{i ∈ [n] : xi 6= 0}|

3. Heavy Hitters: Finding all i ∈ [n] with |xi| ≥ φ (Fk)
1/k for some φ ∈ (0, 1).

A special case is the increment-only model in which all ∆t are assumed to equal 1 and are
omitted from the stream. In this model xj is referred to the frequency of j in the stream.

1 Increment-Only Streams: Sampling and Counting

In this section we will describe several simple sampling and counting algorithms that already help
us solve interesting problems.

1.1 Misra-Gries Algorithm

We first consider a deterministic algorithm using k counters such that, when queried with i ∈ [n],
will return an estimate x̂i of xi such that

xi −
∑
j 6=i

xj
k − 1

≤ x̂i ≤ xi .

The algorithm maintains k counters c1, . . . , ck, initially zero, along with k elements e1, . . . , ek that
are currently being “monitored.” On the arrival of a new element e we do one of the following:

Case 1: If ej = e for some j: Increment cj

Case 2: If ej 6= e for all j ∈ [k] and ci = 0 for some i ∈ [k]: Set ci ← 1 and ei ← e

Case 3: If ej 6= e for all j ∈ [k] and ci > 0 for all i ∈ [k]: Decrement ci for all i ∈ [k]

Then, to estimate xi we return:

x̂i =

{
cj if ej = i for some j ∈ [k]

0 otherwise
.

Lemma 1. For all i, xi −
∑

j 6=i
xj
k−1 ≤ x̂i ≤ xi.

Proof. The second inequality is clear since a counter corresponding to i will only be incremented
when i appears in the stream. Define b to be the number of occurrences of Case 3 and note that
x̂i ≥ xi − b. To establish the first inequality, consider the quantity C =

∑
j∈[k]:ej 6=i cj . MUTHU:

Do we need j to be in [k]? Note that 0 ≤ C ≤ m − xi since C is incremented at most m − xi
times. Hence,

b ≤ m− xi
k − 1

because each application of Case 3 decrements C by k − 1.

2

1.2 Reservoir Sampling

A standard approach for estimating a function on a large data set is to sample from the data set
and make an inference from the set of samples. In this section, we show how to sample uniformly
at random from an increment-only stream even if we do not know the length of the data stream.
We will later show that more powerful forms of sampling are possible.

• Algorithm: Given stream 〈a1, a2, . . .〉.

– Initially s = a1

– On seeing the t-th element, set s← at with probability 1/t

For analysis, consider, what’s the probability that s = ai at some time t ≥ i? This is:

Pr [s = xi] =
1

i
×
(

1− 1

i+ 1

)
× . . .×

(
1− 1

t

)
=

1

t

To get k samples we use O(k log n) bits of space, and get a precisely uniform sample with MUTHU:
What is the precise claim here?

1.3 AMS Sampling

A more advanced sampling technique was introduced by Alon, Matias and Szegedy [AMS99]. It is
particularly useful when trying to estimate aggregates of the form

f(x) :=
∑
i∈[n]

f(xi)

where f is some function with the property f(0) = 0.
The basic idea is to generate a random variable R defined thus: Pick J ∈ [m] uniformly at

random and let R = |{j : aj = aJ , J ≤ j ≤ m}|. Let D be the distribution of R. Then we define
the random variable

X = m(f(R)− f(R− 1)) .

It can easily be shown that E [X] = f(A):

E [X] =
∑
j∈[n]

Pr [aJ = j]E [f(R)− f(R− 1)|aJ = j]

=
∑
j∈[n]

xj
m
·
(
m(f(xj)− f(xj − 1)) + . . .+m(f(1)− f(0))

xj

)
=

∑
j∈[n]

f(xj)

Hence, if the variance of X is low then by computing a “small” number of independent samples
from D we can get a good approximation for

∑
j∈n f(xj).

There are several details in applying this sampling method, for example, R has to be generated
using small space, and the variance of X has to be bounded, and so on. We demonstrate this via
applications to estimating frequency moments and entropy.

3

1.3.1 Application: Frequency Moments

Recall Fk =
∑

i x
k
i for k ∈ {1, 2, 3, . . .} and let F∞ = maxi |fi|. Use AMS estimator with X =

m(rk − (r − 1)k) and note that
E [X] = Fk

Exercise 2. Show that 0 ≤ X ≤ mk (F∞)k−1.

Suppose we generate t independent copies of X in parallel and let X̂ be the average value. By
an application of the Chernoff bound,

Pr
[
|X̂ − Fk| ≥ εFk

]
≤ 2 exp

(
− tFkε

2

3mkF k−1
∞

)
.

Hence, taking t =
3mk (F∞)k−1 log(2

δ
)

ε2Fk
ensures that

Pr
[
|X̂ − Fk| ≥ εFk

]
≤ δ .

We next need to bound t in terms of n, ε, and δ.

Lemma 3. For all k ≥ 1,
m(F∞)k−1

Fk
≤ n1−1/k.

Proof. We consider two cases depending on the relative size of F k∞ and n(m/n)k. First suppose
F k∞ ≥ n(m/n)k. Then,

m(F∞)k−1

Fk
≤ m(F∞)k−1

F k∞
=

m

F∞
≤ m

n1/k(m/n)
= n1−1/k

Alternatively suppose that F k∞ ≤ n(m/n)k. Then,

mF k−1
∞
Fk

≤ mn1−1/k(m/n)k−1

n(m/n)k
= n1−1/k

where the first inequality follows since Fk ≥ n(m/n)k by appealing to the convexity of g(x) =
xk.

Therefore, we have proved the following result.

Theorem 4. We obtain an ε approximation to computing Fk which uses space O(
kn1−1/k log 1

δ
ε2

) and
succeeds with probability at least 1− δ.

In particular, for k = 2, this gives an algorithm that uses O(
√
n) space unto polylogarithmic

terms, and this is already sub linear in the dimension n of the underlying signal. We will obtain
better bounds for this problem later.

4

1.3.2 Application: Entropy

Given a probability distribution p over [n] the Shannon entropy is defined as

H(p) := −
∑
i∈[n]

pi log2 pi

It is a quantity that arises in numerous settings including monitoring network traffic. For our
purposes, we consider p to be empirically defined by the data stream. In particular, we define
pi = xi/m, i.e., we consider pi to be the relative frequency of i in the stream.

The algorithm we present consists of two sub-algorithms which are run in parallel. The answer
returned by the first algorithm is correct if p` ≤ 7/8 where ` = argmaxi∈[n] pi. The answer returned
by the second algorithm is correct if p` ≥ 3/4.

Case 1: p` ≤ 7/8: Use the AMS estimator with X = (−r log2
r
m + (r − 1) log2

r−1
m).

E [X] = H(p) .

Exercise 5. Prove that − log2 e ≤ X ≤ log2m and H(p) ≥ 1
8 log2

1
8 + 7

8 log2
7
8 = 0.543 if p` ≤ 7/8.

As we did for frequency moments, suppose we generate t independent copies of X in parallel
and let X̂ be the average value. Unfortunately, this time we can not apply the Chernoff bound
directly because X may be negative. However, the following simple lemma establishes that t need
not be too large via an indirect application.

Lemma 6. If t > cε−2 ln(2δ−1) for some sufficiently large constant c > 0 then

Pr
[
|X̂ −H(p)| ≥ εH(p)

]
≤ δ .

Proof. We apply the Chernoff bound to the estimate Y = X + log2 e where Ŷ = H(p) + log2 e.
Since 0 ≤ Y ≤ log2 em, we know

Pr
[
|Ŷ −H(p)− log2 e| ≥ γ(H(p) + log2 e)

]
≤ 2 exp

(
− t(H(p) + log2 e)γ

2

3 log2 em

)
Setting

γ =
0.543ε

0.543 + log2 e

ensures that

γ(H(p) + log2 e) ≤
εH(p)

H(p) + log2 e
· (H(p) + log2 e) = εH(p)

since H(p) ≥ 0.543. Therefore, if

t ≥ 3 ln(2/δ) log2 em

(0.543 + log2 e)γ
2

ensures
Pr
[
|X̂ −H(p)| ≥ εH(p)

]
≤ δ .

5

Case 2: p` ≥ 3/4: We can write H(p) as

H(p) = −p` log2 p` −
∑
i 6=`

pi log pi = −p` log2 p` − (1− p`)
∑
i 6=`

xi
m− x`

log pi

Using the Misra-Gries algorithm described in Section 1.1, in O(ε−1) space we can identify ` and
find an estimate p̂` such that

p` −
ε(1− p`)

4
≤ p̂` ≤ p` .

Exercise 7. Prove that 1−p`
1−p̂` = 1± ε

3 and p` log2 p`
p̂` log2 p̂`

= 1± ε
3 if p` ≥ 3

4 .

Hence, it remains to show how to find a (1 + ε
3) approximation of −

∑
i 6=`

xi
m−x` log pi. The

algorithm to do this is an extension of AMS where, rather than finding a single value R, we find
two random variables R1 and R2 defined as follows.

1. Pick J1 ∈R [m] and let R1 = |{j : aj = aJ1 , J1 ≤ j ≤ m}|.

2. Pick J2 ∈R {j ∈ [m] : aj 6= aJ1} and let R2 = |{j : aj = aJ2 , J2 ≤ j ≤ m}|.

Observe that computing J1, R1, J2, R2 in small space is easy if we have two passes over the data: in
the first pass we compute J1 and R1 and in the second pass, we compute J2 and R2. However, with a
bit of care it is possible to compute J1, R1, J2, R2 in small space given only a single pass. With each
stream element ai associate a random value ci ∈R [0, 1] and at time t, let J1,t = argmini∈[t] ci, J2,t =
argmini∈[t]:ai 6=aJ1

ci, R1,t = |{j : aj = aJ1 , J1 ≤ j ≤ t}|, R2,t = |{j : aj = aJ2 , J2 ≤ j ≤ t}|, a1,t =
aJ1,t , a2,t = aJ2,t , c1,t = cJ1,t , and c2,t = cJ2,t . Then, J1,t+1, J2,t+1, R1,t+1, R2,t+1, a1,t+1, a2,t+1, c1,t+1,
and c2,t+1 can be computed from at+1, ct+1, J1,t, J2,t, R1,t, R2,t, a1,t, a2,t, c1,t, and c2,t.

At the end of the stream, once `, R1,n, R2,n, a1,n, a2,n have been computed, let

R =

{
R1 if a1,n 6= `

R2 otherwise

and let

X = −R log2

R

m
+ (R− 1) log2

R− 1

m
.

Exercise 8. Prove that E [X] = −
∑

i 6=`
xi

m−x` log pi and 0 ≤ X ≤ log2m.

Therefore by averaging parallel repetitions of the AMS estimator and applying the Chernoff
bound we get a (ε, δ) estimator −

∑
i 6=`

xi
m−x` log pi. Putting together all the cases gives the following

theorem:

Theorem 9. The algorithm finds an ε approximation for H(p) using space O(
log 1

δ
logm

ε2
) and suc-

ceeds with probability at least 1− δ.

2 Basic Linear Sketches

In this section, we describe the linear sketching approach to stream computation. One can view
specific sketches as comprising two components.

6

• Projection: A (random) projection matrix A ∈ Rk×n is implicitly stored by the algorithm.
As the stream is processed we compute Ax. It is possible to do this without materializing
the length n vector x and instead only store the length k � n vector Ax. If the stream
increments the i-th coordinate of x by ∆ then we update Ax by:

Ax← Ax + ∆AeTi

where ei is the i-th standard basis vector. It is natural to think of x being embedded into a
smaller-dimensional space.

• Post-Process: The other component is an algorithm to post-process Ax and return an esti-
mate for the quantity of interest.

For this to be useful in streaming algorithms, the entries of A should be computable in small
space and time as x is updated by the stream. This is particularly important when the matrix
is random since if we must store Ω(nk) random bits to express A then we would be better off
materializing x. We can get around this in various ways, e.g., by using pseudo-random generators
or hash functions that are not fully independent.

2.1 Distinct Items

A large amount of work has been done on estimating F0 =
∑

i |xi|0, the number of distinct items in
a stream [BYJK+02,IW03]. This problem was originally considered by Flajolet and Martin [FM85]
in another of the “classic” streaming papers.

In order to (ε, δ) approximate F0 =
∑

i |xi|0, we first consider the following simpler problem:
For given threshold T > 0, with probability 1− δ distinguish between the cases:

1. F0 > (1 + ε)T

2. F0 < (1− ε)T

Note that if we can solve the simpler problem, can solve the original problem by testing the following
O(ε−1 log n) possible values for the threshold T in parallel:

T = 1, (1 + ε), (1 + ε)2, . . . , n

To solve the simpler problem we proceed as follows:

• Projection: Choose random sets S1, S2, . . . , Sk ⊂ [n] where Pr [i ∈ Sj] = 1/T . This defines a
projection matrix A where:

Ai,j =

{
1 if j ∈ Si
0 otherwise

Compute the projection Ax and let si =
∑

j∈Si xi = [Ax]i

• Post-Process: If at least k/e of the sj are zero, output F0 < (1− ε)T

Lemma 10. If T is sufficiently large and ε < 1/2:

1. If F0 > (1 + ε)T , Pr [sj = 0] < 1/e− ε/3

7

2. If F0 < (1− ε)T , Pr [sj = 0] > 1/e+ ε/3

Proof. Note that sj = 0 iff i 6∈ Sj for all the F0 values of i with xi > 0. Hence,

Pr [sj = 0] = (1− 1/T)F0 .

If F0 > (1 + ε)T ,
(1− 1/T)F0 ≤ e−(1+ε) < e−1 − ε/3 .

If F0 < (1− ε)T ,
(1− 1/T)F0 ≥ (1− 1/T)(1−ε)T > e−1 + ε/3 .

where the second inequality follows for sufficiently large T .

Applying the Chernoff bound with k = O(ε−2 log δ−1) ensures correctness with probability 1−δ.

2.2 Self-Joins

In this section we consider the problem of finding an (ε, δ) approximation for F2 =
∑

i x
2
i , also

known as a self-join.

• Projection: Let A ∈ {−1, 1}k×n where entries of each row are 4-wise independent and rows
are independent. Compute Ax.

• Post-Process: Group entries of the sketch into a = O(log δ−1) groups of b = 12ε−2. Let
Y1, Y2, . . . , Ya be the average of squared entries in each group. Return median(Y1, . . . , Ya).

Lemma 11. For a fixed `, let z be the `-th row of A and let s = z · x be the `-th row of Ax. Then
E
[
s2
]

= F2 and V
[
s2
]
≤ 4F 2

2 .

Proof. Since E [zizj] = 0 unless i = j,

E
[
s2
]

= E

 ∑
i,j∈[n]

zizjxixj

 =
∑
i,j∈[n]

xixjE [zizj] =
∑
i∈[n]

x2
i

For the variance bound, first note that E [zizjzkzl] = 0 unless (i, k) = (j, l), (i, j) = (k, l) or
(i, j) = (l, k). Then

V
[
s2
]

= E
[
s4
]
− E

[
s2
]2

=
∑
i

x4
i + 6

∑
i<j

x2
ix

2
j − (

∑
i∈[n]

x2
i)

2 = 4
∑
i<j

x2
ix

2
j ≤ 4F 2

2 .

It follows that V [Yi] = F2 and V [Yi] = V
[
s2
]
/b = ε2F 2

2 /3. The Chebyshev bound implies that

Pr [|Yi − F2| > εF2] ≤ ε2F 2
2 /3

ε2F 2
2

= 1/3 .

By an application of the Chernoff bound, median(Y1, . . . , Ya) is an (ε, δ) approximation of F2.

8

2.2.1 Extension: Johnson-Lindenstrauss and p-stable Distributions

An interesting class of such sketches were defined by Indyk [Ind06], where each entry A was i.i.d.
samples from a p-stable distribution. In particular, we consider Aij ∼ Dp where the distribution Dp
has the property that for any constants a, b ∈ R and X,Y ∼ Dp,

aX + bY ∼ (|a|p + |b|p)1/pZ where Z ∼ Dp .

Such a distribution Dp exists for p ∈ (0, 2].
Consider the problem of estimating p-frequency moments Fp of x using these projections, where

Fp =
∑

i |xi|p. For p = 2, a normal distribution is 2-stable and using the arithmetic mean as
estimator, we can get 1 ± ε approximation to F2 within streaming resource bounds. For p = 1,
Cauchy random variables are 1-stable. Then, using median as an estimator, [Ind06] obtained 1± ε
streaming approximation for F1. Since this pivotal work, other estimators such as sample quantiles,
geometric mean and other estimators have been used and analyzed (e.g., [Li08, Li09]), and these
have also found other applications such as in estimating Hamming norms [CDIM03] or in privacy-
preserving functional estimation of Fp’s [MM09], or pan-private streaming [DMW10].

2.2.2 Extension: Measuring Independence

Consider a stream 〈a1, . . . , am〉 where ak ∈ [n]2 and define random variables X and Y on [n] by

Pr [X = i, Y = j] = |{k : ak = (i, j)}|/m

Pr [X = i] = |{k : ak = (i, ·)}|/m

Pr [Y = j] = |{k : ak = (·, j)}|/m.

We say X and Y are empirically independent if Pr [X = i, Y = j] = Pr [X = i] Pr [Y = j] for all
i, j ∈ [n]. Various authors [IM08, BO10, BCL+10] have considered the problem of checking this
condition, and more generally estimating how close the condition is to being true. There are
numerous ways of quantifying this notion of closeness. For example, one could consider the `1,
`2, or KL difference between the joint distribution and the product distribution. If any of these
quantities are 0 then X and Y are empirically independent. Note that KL divergence between
the joint distribution and product distribution is commonly referred to as the mutual information
between X and Y :

I(X;Y) =
∑
i,j

Pr [X = i, Y = j] lg
Pr [X = i, Y = j]

Pr [X = i] Pr [Y = j]

and this can also be expressed as H(X) +H(Y)−H(X,Y). Hence, an additive approximation is
possible using the entropy estimation algorithms from the previous section.

In this section we present the algorithm for estimating the `2 difference between the joint and
product distributions. The algorithm is based on the earlier self-join algorithm of Alon, Matias,
and Szegedy [AMS99]. Using the same analysis it can be shown that numerous 4-wise independent
vectors z ∈ {−1, 1}n2

could be used to estimate the `2 difference between two distributions on
[n]2. However, for this the elements of z will be the elements of the outer product of two vectors

9

x, y ∈ {−1, 1}n which are 4-wise independent. As such, they can be shown to 3-wise independent
but not 4-wise independent, e.g.,

z1,1z2,2 = (x1
1x

2
1)(x1

2x
2
2) = (x1

1x
2
2)(x1

2x
2
1) = z1,2z2,1 .

However, by exploiting the geometry of the dependencies, the next lemma establishes that the
elements of z are still sufficiently independent.

Exercise 12. Consider x1, x2 ∈ {−1, 1}n where each vector is 4-wise independent. Let v ∈ Rn2

and zi = x1
i1
x2
i2

. Define Υ = (
∑

i∈[n]2 zivi)
2. Then E [Υ] =

∑
i∈[n]2 v

2
i and V [Υ] ≤ 9 (E [Υ])2 .

Constructing
∑

i,j∈[n] xiyjri,j is simple since the pairs (i, j) arrive together. It turns out the
constructing

∑
i,j∈[n] xiyjpiqj is also simple because a sketch of a product of distribution is the

product of sketches of the distributions:
∑

i,j∈[n] xiyjpiqj = (x.p)(y.q).
The proof of correctness is given in the next theorem.

Theorem 13. There exists a single-pass, Õ(ε−2 log δ−1)-space (ε, δ) approximation for ‖r − s‖2.

Proof. By appealing to Lemma 12, E [Υ] =
∑

i,j∈[n](ri,j−piqj)2. By Lemma 12 and the Chebyshev

bound, averaging O(ε−2) independent Υ returns a (ε, 1/4)-approximation. Taking the median of
O(log δ−1) averages returns an (ε, δ)-approximation as desired. It remains to be argued that the
space requirement is as stated. This follows because there are only O(ε−2 log δ−1) independent
estimators and each only requires O(logm+ log n) space.

3 Count-Min and Count-Sketch

In this section we present Count-Min and Count-Sketch. The basic functionality of these sketches
to support point-queries, e.g., returning an estimate x̃i for xi when queries with i ∈ [n]. But as
we shall see, it is possible to build upon this basic functionality and solve a much larger range of
problems.

3.1 Count-Min

Pick d = log(δ−1) hash functions hj : [n]→ [w] where w = e/ε chosen uniformly at random from a
family of pair-wise independent hash functions. We think of hj(i) as a bucket for i corresponding
to the jth hash function. We keep a counter for each bucket, cj,i. Initially all buckets are empty,
or equivalently, all counters are set to 0. When there is an update (i,∆), we update cj,i by ∆ for
all j.

In terms of projection matrices, this is equivalent to A ∈ {0, 1}wd×n where for i ∈ [w], j ∈ [d]:

Ai+w(j−1),k =

{
1 if hj(k) = i

0 otherwise

This data structure can be used to estimate xi for any point query i. The result is an estimate
for xi, denoted by x̃i, where

x̃i = min
j
cj,hj(i).

Claim 14. For simplicity, assume xi ≥ 0 for all i ∈ [n].

10

1. x̃i ≥ xi, always.

2. x̃i ≤ xi + ε(F1 − xi) with probability at least 1− δ.

Proof. Let E = (F1 − xi). The first part is clear since all xi ≥ 0. For the second part, denote by
Xji the contribution of items other than i to the (j, hj(i))th bucket. Clearly,

E [Xji] =
ε

e
E.

Then by Markov’s inequality,

Pr [x̃i > xi + εE] = Pr [∀j xi +Xji > xi + εE] = Pr [∀j Xji > eE [Xji]] ≤ 2− log 1/δ = δ .

Thus, we conclude that we can estimate xi within an error of ε(F1 − xi) with probability at
least 1− δ using O(ε−1 log δ−1) space.

3.2 Count-Sketch

Count-Sketch is similar to Count-Min but in addition to hj : [n] → [w], we also use the hash
functions rj : [n]→ {−1, 1}. As before, we compute the following counts

cj,k =
∑

i:hj(i)=k

rj(i)xi

for j ∈ [d], k ∈ [w]. To estimate xi we return:

x̂i = median(r1(i)c1,h1(i), . . . , rd(i)cd,h1(i))

Lemma 15. For any j, E
[
rj(i)cj,hj(i)

]
= xi and V

[
rj(x)cj,hj(i)

]
≤ F2/w

Proof. Pick an arbitrary i ∈ [n] and j ∈ [d]. Let Xk = I[hj(i) = hj(k)] and so

rj(i)cj,hj(i) =
∑
k

rj(i)rj(k)xkXk

Using the fact that E [rj(i)rj(k)] = 0 for i 6= k, we can bound the expectation as:

E
[
rj(i)cj,hj(i)

]
= E

xi +
∑
k 6=i

rj(i)rj(k)xkXk

 = xi

V
[
rj(i)cj,hj(i)

]
≤ E

[
(
∑
k

rj(i)rj(k)xkXk)
2

]

= E

∑
k

x2
kX

2
k +

∑
k 6=`

xkx`rj(k)rk(`)XkX`

= F2/w

11

By an application of the Chebyshev bound, for w = 3/ε2:

Pr
[
|xi − rj(i)cj,hj(i)| ≥ ε

√
F2

]
≤ F2

ε2wF2
= 1/3 .

Therefore by an application of the Chernoff bound, with d = O(log δ−1) hash functions,

Pr
[
|xi − x̂i| ≥ ε

√
F2

]
≤ 1− δ .

3.3 A Deterministic Variant: CR-Precis

The sketches we have considered so far are randomized. However, we can also consider deterministic
sketches. Using a deterministic collection of primes [Mut06,GM07a] devised a data structure called
CR-Precis which we now describe. Again, assume xi ≥ 0.

For t that will be picked later, let q1, . . . , qt be the first t primes. Hence, qt ≈ t ln t. The
algorithm is almost identical to Count-Min except that instead of a random hash function we
define:

hj(i) = (i mod qj) + 1 .

As before, we compute cj,k =
∑

i:hj(i)=k
xk and to estimate xk we use

x̃i = min
j∈[t]

cj,hj(i) .

Theorem 16. For any i ∈ [n],

xi ≤ x̃i ≤ xi +
log2 n

t
(F1 − xi)

Proof. The first inequality is trivial. For the second one note that for any k ∈ [n], k 6= i, k
mod qj = i mod qj for at most log2 n different j’s. This is implied by Chinese Remainder Theorem.
Hence, at most log2 n counters corresponding to i may get incremented as a result of an arrival of
k. Since this is true for all k 6= i, the counters corresponding to i may get over-counted by at most
log2 n ·

∑
k∈[n]:k 6=i xk in total. On average they get over-counted by at most log2 n

t

∑
k∈[n]:k 6=i xk, so

there must be at least one of the counters corresponding to x that gets over-counted by no more
than this number.

We choose t = ε−1 log2 n. This implies that we will use space O(t2 log t) = O(log2 n
ε2

log logn),
where we measure the space in counters of size O(log(

∑
i xi)).

Open Problem 17. Design o(1/ε2) space deterministic streaming algorithm for point queries or
show a matching lower bound of Ω(1/ε2).

There are interesting recent approaches to streaming via expanders [Gan08] or codes [PIR10],
which while they do not immediately address the problem above, might provide insights.

12

3.4 Applications: Quantiles, Heavy Hitters, Range Queries

One particularly useful property of linear sketches is the ability to combine them with other linear
maps. For example, we can combine a projection matrix A with another matrix B and compute
ABx. Now, when we see update (i,∆) we update

ABx← ABx + ∆ABei .

In this section, we show how to chose B such that, given a sketch matrix A for point-queries, we
can support the following queries:

• Range Queries: Range queries are a generalization of point-queries. Given query i, j ∈ [n]
we want to estimate:

x[i,j] = xi + xi+1 + . . .+ xj .

• Quantiles: Given φ, ε ∈ (0, 1), the problem of determining the quantiles is finding 1/φ items
i0 = 0 ≤ i1 ≤ . . . ≤ i1/φ = n such that

x[1,ij−1] < (jφ+ ε)‖x‖1 and x[ij+1,n] < (1− jφ+ ε)‖x‖1 .

Note that when ε = 0 and each xi ∈ {0, 1} this condition implies x[1,ij] = jφ‖x‖1.

• Heavy Hitters: Define Sτ = {i ∈ [n] : xi ≥ τ}. Then given φ, ε ∈ (0, 1), the (φ, ε) Heavy
Hitter problem is to find a set S of indices such that:

Sφ ⊆ S ⊆ Sφ−ε .

In Section 3.6, we will consider B to be a change of basis matrix such that we can perform point-
queries in an alternative basis, e.g., estimating Fourier coefficients or wavelet coefficients.

The above three problems are closely related. Firstly, given the ability to estimate x[i,j], because
x[1,·] is monotonic we can perform a binary search on find t such that for a given j ∈ [1/φ]

x[1,t−1] < (jφ+ ε)‖x‖1 and x[t+1,n] < (1− jφ+ ε)‖x‖1 .

Secondly, as described in [Mut06], the problems of quantiles and heavy hitters are also closely
related. The set of items with relative frequency at least ε is a subset of the set of ε-quantiles.
But more precisely, there is a reduction both ways between the two problems up to log n factors in
space and time [Mut06, Page 22].

Therefore, we will focus on presenting a solution to support range queries. The main idea is to
consider dyadic ranges.

Definition 18. We say a range {i+1, i+2, i+3, . . . , i+j} is a dyadic range if for some k ∈ [log2 n],
j = 2k−1 and 2k−1 | i.

For example, if n = 4 the dyadic ranges are

{1}, {2}, {3}, {4}, {1, 2}, {3, 4}, and {1, 2, 3, 4} .

An important property of dyadic ranges is that an arbitrary range can be decomposed into a small
number of dyadic ranges.

13

x[1,8]

x[1,4]

x[5,8]

x[1,2]

x[3,4]

x[5,6]

x[7,8]

x[1,1]

x[2,2]

x[3,3]

x[4,4]

x[5,5]

x[6,6]

x[7,7]

x[8,8]

=

1 1 1 1 1 1 1 1
1 1 1 1 0 0 0 0
0 0 0 0 1 1 1 1
1 1 0 0 0 0 0 0
0 0 1 1 0 0 0 0
0 0 0 0 1 1 0 0
0 0 0 0 0 0 1 1
1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

x1

x2

x3

x4

x5

x6

x7

x8

Figure 1: Example of Dyadic-Range Mapping that maps a length-n signal to a length-(2n − 1)
signal.

Exercise 19. Show that every range {i, i + 1, i + 2, . . . , j} can be exactly partitioned into 2 log2 n
dyadic ranges.

Since each dyadic range is a linear combination of some xi, it is straightforward to define a
vector, xD ∈ R2n−1, whose entries correspond to all dyadic ranges as a linear map of x:

xD = Bx .

See Figure 1 for an example when n = 8.
Combining B with a sketch-matrix A ∈ Rk×(2n−1) for point queries allows us to estimate each

dyadic range xDi . For example, with A being a Count-Min sketch and k = O(ε−1 log δ−1) we can
find an estimate x̃[i,j] such that with probability 1− δ,

xDi ≤ x̃Di ≤ xDi + ε‖xD‖1 .

Note that ‖xD‖1 = (log2 n) ·‖x‖1. Therefore, by decomposing an arbitrary interval [i, j] into dyadic
intervals, and estimating the corresponding entry of xD we get that with probability 1−δ(2 log2 n),

x[i,j] ≤ x̃[i,j] ≤ x[i,j] + ε · (log2 n) · ‖x‖1 .

Rescaling ε and δ gives the following:

Theorem 20. There is an O(ε−1 polylog n log δ−1) dimensional sketch that for any i ≤ j ∈ [n] will
return an approximation x̃[i,j] of x[i,j] such that with probability 1− δ,

x[i,j] ≤ x̃[i,j] ≤ x[i,j] + ε · (log2 n) · ‖x‖1 .

The sketch also solves (φ, ε) Heavy Hitters and (φ, ε) Quantiles.

14

3.5 Application: Sparse Recovery

The goal of sparse recovery is to find z such that ‖z‖0 ≤ k and ‖x − z‖p is as small as possible.
Define errkp(x) = minz:‖z‖0≤k ‖x− z‖p. It is simple to show that

errkp(x) =

∑
i 6∈S
|xi|p

1/p

where S is the set of indices with the k largest xi.
We consider the case of p = 2 and start by revisiting the Count-Sketch analysis. Previously we

showed that with Count-Sketch of width w = 3/ε2 and depth O(log n), we can return estimates x̂i
for each xi such that with high probability:

∀i ∈ [n], |x̂i − xi| ≤ ε
√
F2 = ε err0

2(x)

We can generalize this as follows:

Lemma 21. Count-Sketch of width w = 3k
ε and depth d = O(log n) suffices to ensure:

∀i ∈ [n], |x̂i − xi| ≤
ε√
k

errk2(x)

Proof. Fix a row j of the Count-Sketch data structure. For i ∈ [n], let x̃i = cj,hj(i) for some row
j ∈ [d]. Let S = {i1, . . . , ik} be the indices with maximum frequencies. Let Ai be the event that
there exists k ∈ S \ i, with hj(i) = hj(k). Then for i ∈ [n],

Pr

[
|xi − x̃i| ≥

ε√
k

errk(x)

]
= Pr [Ai]× Pr

[
|xi − x̃i| ≥

ε√
k

errk(x)|Ai
]

+ Pr [¬Ai]× Pr

[
|xi − x̃i| ≥

ε√
k

errk(x)|¬Ai
]

≤ Pr [Ai] + Pr

[
|xi − x̃i| ≥

ε√
k

errk(x)|¬Ai
]

≤ k/w + 1/3 < 1/2

Hence, by taking the median estimate over O(log n) rows we ensure error high probability, all
xi are approximated up to error ε√

k
errk(x) with high probability.

The sparse recovery result follows because the guarantee in the above lemma is actually stronger
than

‖x− z‖2 ≤ (1 + 5ε) errk2(x)

Lemma 22. Let x,y ∈ Rn satisfy

‖x− y‖∞ ≤
ε√
k

errk2(x) .

Then, if T is the set of indices corresponding to the k largest indices of y,

‖x− z‖2 ≤ (1 + 5ε) errk2(x)

where z = yT , i.e., the vector whose elements are zi = yi if i ∈ T and zi = 0 otherwise.

15

Proof. For ease of notation, let E = errk2(x) and let S be the set of indices corresponding to the k
largest elements of x. Then

‖x− z‖22 = ‖(x− z)T ‖22 + ‖xS\T ‖22 + ‖x[n]\(S∪T)‖22

since zi = 0 for i 6∈ T . To bound the first term we use the fact that |T | = k and ‖x− y‖2∞ ≤ ε2

k E
2

and so:

‖(x− z)T ‖22 ≤ k
ε2

k
E2 = ε2E2 .

The second term is the most challenging. First note that for i ∈ S \ T and j ∈ T \ S we can write

|xi| − |xj | ≤ |yi| − |yj |+ 2

√
ε2

k
E ≤ 2

√
ε2

k
E

where |yi| − |yj | ≤ 0 follows since j ∈ T and i 6∈ T . Therefore, if a = maxi∈S\T |xi| and b =

minj∈S\T |xj | we have a ≤ b+ 2
√

ε2

k E. Consequently,

‖xS\T ‖22 ≤ a2|S\T | ≤

(
b+ 2

√
ε2

k
E

)2

|S\T | ≤

(
‖xT\S‖2√
|S \ T |

+ 2

√
ε2

k
E

)2

|S\T | ≤ (‖xT\S‖2+2εE)2

where the second last inequality follows since ‖xT\S‖2 ≥ b
√
|T \ S| = b

√
|S \ T |. Furthermore,

‖xS\T ‖22 ≤ (‖xT\S‖2 + 2εE)2

= ‖xT\S‖22 + 4εE‖xT\S‖2 + 4ε2E2

≤ ‖xT\S‖22 + 4εE2 + 4ε2E2

≤ ‖xT\S‖22 + 8εE2

Hence,

‖xS\T ‖22 + ‖x[n]\(S∪T)‖22 ≤ ‖xT\S‖22 + 8εE2 + ‖x[n]\(S∪T)‖22 = 8εE2 + ‖x[n]\S‖22 = (1 + 8ε)E2 .

The result follows since (1 + 9ε)1/2 ≤ 1 + 5ε.

We therefore deduce the following theorem.

Theorem 23. There is a O(kε−1 polylog n) dimensional sketch that returns z such that ‖z‖0 ≤ k
and

‖x− z‖2 ≤ (1 + ε) errk2(x) .

3.6 Application: Wavelet Decompositions

In the previous section the goal was to find a “simple” approximation for a vector x ∈ Rn where
the notion of simple corresponded to having a few non-zero entries. A more general notion of
simplicity is the x can be expressed as the linear combination of only a few basis vectors in some
basis. Different bases are relevant in different applications. In this section we consider the Haar
wavelets [Haa10] basis although the general algorithmic ideas will apply to arbitrary bases.

16

y1

y2

y3

y4

y5

y6

y7

y8

=

1/
√

8 1/
√

8 1/
√

8 1/
√

8 1/
√

8 1/
√

8 1/
√

8 1/
√

8

1/
√

8 1/
√

8 1/
√

8 1/
√

8 −1/
√

8 −1/
√

8 −1/
√

8 −1/
√

8

1/
√

4 1/
√

4 −1/
√

4 −1/
√

4 0 0 0 0

0 0 0 0 1/
√

4 1/
√

4 −1/
√

4 −1/
√

4

1/
√

2 −1/
√

2 0 0 0 0 0 0

0 0 1/
√

2 −1/
√

2 0 0 0 0

0 0 0 0 1/
√

2 −1/
√

2 0 0

0 0 0 0 0 0 1/
√

2 −1/
√

2

x1

x2

x3

x4

x5

x6

x7

x8

Figure 2: Example of Change of Basis Mapping that maps a n signal to a length n signal.

Definition 24. Let n be a power of 2. The Haar basis consists of the vector (1/
√
n, 1/

√
n, . . . , 1/

√
n)

and for any k ∈ {1, 2, 4, 8, . . . , n/2}, j ∈ {1, 2, 3, . . . , n/(2k)} the vector ψ with entries:

ψi =

1/
√

2k if 2k(j − 1) < i ≤ 2k(j − 1) + k

−1/
√

2k if 2k(j − 1) + k < i ≤ 2kj

0 otherwise

Denote the Haar basis vectors as ψ1, ψ2, . . . , ψn.

Exercise 25. Verify that the above definition gives rise to a set of n orthonormal basis.

Wavelets can be used to represent signals. Any signal x is exactly recoverable using the wavelet
basis, i.e.,

x =
∑
i

〈x, ψi〉ψi.

We call yi = 〈x, ψi〉 the wavelet coefficients and define B to be the change of basis matrix such that
y = Bx. See Figure 2 for an example when n = 8.

Typically, we are not interested in recovering the signal exactly using all the n wavelet coeffi-
cients; instead, we want to represent the signal using no more than k wavelet coefficients for some
k � n. Say Λ is a set of wavelets of size at most k. Signal x can be represented as x̃ using these
coefficients as follows:

x̃ =
∑
i∈Λ

〈x, ψi〉ψi .

Clearly x̃ can only be an approximation of x in general. The best k-term representation (aka
wavelet synopsis) of x is the choice of Λ that minimizes the error the sum-squared-error ‖x− x̃‖2.
Define errkp,Haar(x) = minz:‖Bz‖0≤k ‖x− z‖p. Because B is a unitary transformation,

min
z:‖Bz‖0≤k

‖x− z‖22 = min
z:‖Bz‖0≤k

‖Bx−Bz‖22 = min
z:‖z‖0≤k

‖y − z‖22 .

and therefore,

errk2,Haar(x) =

∑
i 6∈S
|yi|2

1/2

17

where S is the set of indices with the k largest yi = 〈x, ψi〉 values. Therefore the problem can be
solved via sparse-recovery.

Theorem 26. There is a O(kε−1 polylog n) dimensional sketch that returns z such that ‖z‖0 ≤ k
and

‖x− z‖2 ≤ (1 + ε) errk2,Haar(x) .

4 Sampling via Linear Sketches

In this section we introduce `p sampling. Here the goal is to return a random tuple (I,R) ∈ [n]×R
such that:

Pr [I = i] = (1± ε) |xi|
p

Fp(x)

and R = (1± ε)xi.

4.1 `0 Sampling

An algorithm for `0 sampling proceeds as follows:

• Maintain F̃0, an (1± 0.1)-approximation to F0.

• Hash items using hj : [n]→ [0, 2j] for j ∈ [log n].

• For each j, maintain:

– Dj = (1± 0.1)|{t|hj(t) = 0}|
– Sj =

∑
t,hj(t)=0 xtit

– Cj =
∑

t,hj(t)=0 xt

• Let ` = 2 +
⌈
log F̃0

⌉
. If D` < 2 then return element i = S`/C` with frequency estimate C`.

Lemma 27. At level ` there is an unique element in the stream that maps to 0 with constant
probability.

Proof. First observe that
2F0 < 4F̂0 ≤ 2` ≤ 8F̂0 < 12F0

and that for any i, Pr [h`(i) = 0] = 1/2`. The probability there exists a unique i such that h`(i) = 0,∑
i:xi>0

Pr [h`(i) = 0 and ∀k 6= i, h`(k) 6= 0] =
∑
i:xi>0

Pr [hj(i) = 0] Pr [∀k 6= i, h`(k) 6= 0|h`(i) = 0]

≥
∑
i:xi>0

Pr [h`(i) = 0] (1−
∑
k 6=i

Pr [h`(k) = 0|h`(i) = 0])

=
∑
i:xi>0

Pr [h`(i) = 0] (1−
∑
k 6=i

Pr [h`(k) = 0])

≥
∑
i:xi>0

1

2`
(1− F0

2`
) =

F0

2`
(1− F0

2`
) ≥ 1

24

18

By repeating the algorithm O(polylog n) times in parallel we show the following result.

Theorem 28. There exists an O(polylog n)-dimensional sketch for `0 sampling where δ = 1/ poly(n).

4.2 `2 Sampling

The idea behind `2 sampling is as follows. We weight xi by γi =
√

1/ui where ui ∈R [0, 1] to form
vector y:

x = (x1, x2, . . . , xn)

y = (y1, y2, . . . , yn) where yi = γixi

Suppose we return (i, xi) if there is a unique i such that y2
i ≥ t := F2(x)/ε. Then note that

Pr
[
y2
i ≥ t and ∀j 6= i : y2

j < t
]

= Pr
[
y2
i ≥ t

]∏
j 6=i

Pr
[
y2
j < t

]
= Pr

[
ui ≤ x2

i /t
]∏
j 6=i

Pr
[
uj > x2

j/t
]

= x2
i /t
∏
j 6=i

(1− x2
j/t)

which is approximately x2
i /t because 1 ≥

∏
j 6=i(1 − x2

j/t) ≥ 1 −
∑

j 6=i x
2
j/t ≥ 1 − ε. Hence,

the probability of yi being larger than the threshold is approximately proportional to x2
i and

furthermore, the probability that a unique yi passes the threshold is Ω(ε). Hence, repeating the
process 1/ε times ensures that we returns a sample with constant probability.

Of course, it is impossible to calculate all yi exactly. Instead we will use a Count-Sketch of size
O(w log n) to estimate each yi such that with high probability, for all i,

ỹ2
i = y2

i ± F2(y)/w .

While intuition is that while the guarantees of Count-Sketch are in terms of additive error, we
also have multiplicative guarantees for the large coordinates that pass the threshold. We will also
compute multiplicative estimate of F2(y) such that F2(y) ≤ F̃2(y) ≤ 2F2(y). For simplicity, we
shall assume that we know the exact value of F2(x). Then we return (i, ỹi/γi) if

1. ỹ2
i ≥ t and ỹ2

j < t for j 6= i

2. F̃2(y) ≤ kF2(x) where k = 12ε−1 lnn+ ε−2.

Note that the second condition ensures that F2(y) ≤ kF2(x) and hence if w = k, we have y2
i =

ỹ2
i ± F2(x). And therefore satisfying the first case implies y2

i = (1± ε)ỹ2
i .

We start with a preliminary lemma that we will use to bound the probability the F2(y) is not
significantly larger than F2(x).

Lemma 29. With probability at least 1− ε, F2(y) ≤ 6ε−1 lnnF2(x).

19

Proof. For any fixed j, Pr
[
uj ≤ 1/n2

]
= 1/n2 and hence by the union bound we deduce that the

event L = {∀j ∈ [n] : uj ≥ 1/n2} has probability at least 1− 1/n. Therefore

E [F2(y)|L] =
∑
i

x2
iE [1/ui|L] =

∑
i

x2
i

1

1− 1/n2

∫ 1

1/n2

1

u
du = F2(x)

2 lnn

1− 1/n2
≤ 3 lnnF2(x) .

Hence, by an application of the Markov inequality, Pr
[
F2(y) ≤ 6ε−1 lnnF2(x)|L

]
≥ 1 − ε/2, and

therefore Pr
[
F2(y) ≤ 6ε−1 lnnF2(x)

]
≥ (1− ε) · Pr [L] ≥ (1− ε).

Theorem 30. Let Ui be the event that there exists a unique i such that ỹ2
i ≥ t and that F̃2(y) ≤

k/2F2(x). Then, Pr [Ui] = (1±O(ε))x2
i /t.

Proof. Define t′ = t/2 and consider the following events:

Ai = {y2
i ≥ t′ and y2

j < t′ for j 6= i}
Ai,j = {y2

i ≥ t′ and y2
j ≥ t′}

B = {F2(y) ≤ k/2 · F2(x)}

Appealing to the accuracy guarantees of count-sketch, event B implies that F̃2(y) ≤ kF2(x).
Furthermore, event B and y2

j ≤ t/2 implies ỹ2
j ≤ t. Hence, Pr

[
Ui|BC

]
= 0, Pr

[
Ui|y2

i ≤ t′, B
]

= 0
and

Pr [Ui|Ai ∩B] = Pr
[
ỹ2
i ≥ t|y2

i ≥ t′
]

=
1

2(1± ε)
.

Therefore, Pr [Ui] = Pr[Ai∩B]
2(1±ε) + Pr [Ui ∩B ∩ (∪j 6=iAi,j)]. We next show Pr [Ai ∩B] ≈ x2

i /t
′ as

follows:
Pr [Ai ∩B] ≤ Pr

[
y2
i ≥ t′

]
≤ x2

i /t
′

and

Pr [Ai ∩B] ≥ Pr

 t′
ε
≥ y2

i ≥ t′ and y2
j < t′ for j 6= i and

∑
j 6=i

y2
j <

kF2(x)

2
− t′

ε

≥ Pr

[
t′

ε
≥ y2

i ≥ t′
]

Pr

y2
j < t′ for j 6= i and

∑
j 6=i

y2
j <

kF2(x)

2
− t′

ε

≥ (1− ε)2x2

i

t′

where the last line follows because

Pr

y2
j < t′ for j 6= i and

∑
j 6=i

y2
j <

kF2(x)

2
− t′

ε

 ≥ Pr

∑
j 6=i

y2
j < 6ε−1 lnnF2(x)

∏
j 6=i

(
1− Pr

[
y2
j > t′

])
≥ (1− ε)2

by appealing to Lemma 29. Finally,

0 ≤ Pr [Ui ∩B ∩ (∪j 6=iAi,j)] ≤ Pr [∪j 6=iAi,j] ≤ Pr
[
y2
i ≥ t′

]∑
j 6=i

Pr
[
y2
j ≥ t′

]
≤ x2

i

t′

∑
j

x2
j

t′
=

2εx2
i

t′

20

where the last line follows because
∑

j x
2
j = εt. Hence, we conclude that

(1− ε)2

2(1 + ε)

x2
i

t′
≤ Pr [Ui] ≤

1

2(1− ε)
x2
i

t′
+

2εx2
i

t′
,

and therefore Pr [Ui] = (1±O(ε))
x2i
t as claimed.

Probability some value is returned is Ω(
∑

i x
2
i /t) = Ω(ε) so repeating O(ε−1 log δ−1) ensures a

value is returned with probability 1 − δ. The total space used by the algorithm is O(ε−3 log δ−1)
but this can be improved using a more careful analysis.

4.2.1 Example: Frequency Moments

Earlier we used Õ(n1−1/k) space to (ε, δ) approximate Fk =
∑

i |xi|k via AMS sampling. However,
`2-sampling gives a simple way to achieve a near-optimal space use.

Algorithm: Let (I,R) be an `2 sample. Return

T = F̂2R
k−2 where F̂2 is an e±ε estimate of F2

Lemma 31. E [T] = e±εkFk and 0 ≤ T ≤ Fkn1−2/k.

Proof.

E [T] = F̂2

∑
Pr [I = i] (e±εxi)

k−2 = e±εkF2

∑
i∈[n]

x2
i

F2
xk−2
i = e±εkFk

For the second part note that T ≤ F2F
k−2
∞ . It remains to prove that F2F

k−2
∞ /Fk ≤ n1−2/k for

k ≥ 2. Without loss of generality we may assume F∞ = 1 since F2F
k−2
∞ /Fk is invariant to scaling.

By an application of Holder’s inequality F2 ≤ F 2/k
k n1−2/k and hence

F2F
k−2
∞ /Fk ≤ F

2/k−1
k n1−2/k ≤ n1−2/k

where the last line follows because Fk ≥ F k∞ = 1.

Therefore, by an application of the Chernoff bound it suffices to average the results ofO(n1−2/kε−2 log δ−1)
copies of the basic estimator.

Theorem 32. There is a Õ(n1−2/kε−4)-dimensional sketch for estimating Fk where k ≥ 2.

5 Historical Notes and Further Topics

5.1 Historical Notes

Cormode et al. [CGHJ12] provide a good overview of sketches for signals. Gilbert and Indyk [GI10]
cover topics in sparse recovery.

Quantiles. The problem of estimating the median of these values, or more generally, the quantiles
has enjoyed significant attention particularly in the database community [MRL98, MRL99, GK01,
GKMS02, GM06]. Estimating biased quantiles, e.g., the 99-th or 99.9-th percentile, has also been
considered [GZ03, CKMS06]. Appropriately enough, sorting and selection were the subject of one
of the first streaming papers [MP80].

21

Counter-Based Algorithms. Numerous counter-based algorithms exist other than Misra-Gries
[MG82,FS82]. Examples are Lossy Counting [MM02] and Space Saving [MAA05]. Various exten-
sions of Misra-Gries exist [DLOM02,KSP03,MAA05]. See [CH08] for an overview and a comparison.

Count-Min and Count-Sketch. Count-Min sketch gives similar accuracy guarantees and small
space usage for a number of other problems including estimating `2 norms (in this case, it is similar
to Count Sketch [CCFC04] and more efficient than AMS sketch [AMS99]), inner products, heavy
hitters, quantiles, histograms, compressed sensing, matrix approximation, and so on. See [CM10]
for a wiki of its many extensions and applications. Also, see [CM05b] for an improved analysis
for skewed data. The Count-Min sketch is closely related to Bloom filters and a similar sketching
technique was proposed by [EV03].

Frequency Moments, Entropy, and `p Norms. The problem of estimating `p norms and
frequency moments has been extensively studied [AMS99, Woo04, IW05, BGKS06] and was one of
the canonical data stream problems that motivated the development of many important techniques.
`∞ is the frequency of the most frequent item and is discussed above. `0 is the Hamming norm.
Estimation of F1, the length of the stream, using sub-logarithmic space was considered by Morris
[Mor78]. There has also been work done on estimating the `p distance between two streams [Ind06,
FS01, FKSV02]. Given the importance of estimating distances between streams, other distance
measures have been considered, including the Hamming distance [CDIM03].

Motivated by networking applications [GMT05,WP05,XZB05], there are also numerous results
for estimating the empirical entropy of a sequence of m items in sublinear space [CDM06,GMV06,
LSO+06,BG06,CCM07,HNO08] including sketch-based algorithms that naturally handle deletions.
For example, Harvey et al. [HNO08] reduced the problem to `p estimation. First they used the
relationship between Shannon entropy and other forms of entropy

Renyi entropy: Hα = log ‖x‖αα
1−α (1)

Tsallis entropy: Tα = 1−‖x‖αα
α−1 (2)

and used the fact that H = limα→1Hα = limα→1 Tα. The approach in [HNO08] is to evaluate Tα
at a few values of α and extrapolate from it to estimate that at α = 1.

5.2 Cascaded Aggregates

There is a rich class of difficult problems that arise from “cascading” the computation of one
aggregate say Pg for the set of items in a group g, and computing a different aggregate say Q over
the results Pg’s for different g’s.

Example 33 (Multigraph Moments). Say the stream consists of edges of a multigraph and hence,
multiple edges between a pair of vertices will occur several times over the stream. Define the degree
di of node i to be number of distinct neighbors i, that is, not counting the multiplicity of edges
between a pair of vertices. Then, the multigraph moment M2 =

∑
i d

2
i . M2 estimation can be

thought of as a cascaded computation F2(F0) where F0 is applied to each node i and F2 is applied
on the resulting sums.

22

Q P Upper Bound Lower bound

Fk F0 O(ε−4n1−1/k log n) [CM05a] Ω(n1−1/k) [JW09]
`p, 0 ≤ p ≤ 1 `p, 0 ≤ p ≤ 2 O(1/ε2) [?]

`k `p, k ≥ p ≥ 2 O(n1−2/kd1−2/p) [JW09]
Heavy hitters
quantiles F0 poly(1/ε, log n) [CM05a]
F1 Fk poly(1/ε, log(1/δ)) [CGK+09] ±ε w.p 1− δ
Fk, k ≥ 1 Fp, p ∈ [0, 2] Ω(n1−1/k) [MW10]

Table 1: Cascaded Aggregates

Of interest are arbitrary cascaded computations P (Q) for different norms P and Q; several
open problems remain in understanding the full complexity of P (Q) cascaded computations. Let
domain of P be of size n and domain of Q be of size d.

Study of cascaded aggregates was initiated in [CM05a], but now we know a lot about various
special cases. We summarize what is known (in terms of space used, some polylog n, 1/ε terms
omitted) and open problems via this table.

5.3 Information Divergences

Given two probability distributions p = (p1, p2, ..., pn) and q = (q1, q2, ..., qn) there are many notions
of the “distance” between p and q other than the `p norm of p−q. In particular, in many applications
the relative change of the mass at a coordinate is

1. Hellinger(p, q) =
∑

i(
√
pi −

√
qi)

2

2. ∆(p, q) =
∑

i
(pi−qi)2
pi+qi

3. JS(p, q) = KL(p, (p+ q)/2) +KL(q, (p+ q)/2) =
∑

i

(
pi ln 2pi

pi+qi
+ qi ln 2pi

pi+qi

)
These all come from the f -divergence family

∑
i pif(qi/pi) where f is convex and f(1) = 0. We

assume that the precision of each pi and qi is polynomial in n
We consider the following models:

1. Aggregate Model: Alice knows p and Bob knows q.

2. Update Model: Alice has 2n non-negative values (pa1, p
a
2, ..., p

a
n, q

a
1 , q

a
2 , ..., q

a
n) and Bob has 2n

non-negative values (pb1, p
b
2, ..., p

b
n, q

b
1, q

b
2, ..., q

b
n) such that pi = pai + pbi and qi = qai + qbi .

Note that the aggregate model is a special case of the update model.
It is known that constant factor approximation to the Hellinger divergence, ∆, or JS requires

Ω(n) communication in the (multi-round) update model Guha et al. [GIM07]. The Hellinger di-
vergence can be (1 + ε)-approximated in the aggregate model with poly(log n, log δ−1, ε−1) com-
munication because of its relationship to `2. Because ∆ and JS are constant factor related to the
Hellinger divergence, there exists constant factor approximations for them in the aggregate model
using poly(log n, log δ−1) communication.

23

5.4 Other Representations

There are a number of variations of wavelet representations of interest. For example, one may wish
to minimize not `2 but `1 and other errors. Certain approximation algorithms are shown for this
problem in [GH06]. Sometimes there is a weight associated with each i ∈ [1, n], and one wishes to
minimize weighted norms. Some approximations are in [Mut05].

Open Problem 34. Design streaming algorithms in presence of increments and decrements for
approximate wavelet representation for `p or weighted `p errors.

Other research on histograms and wavelet decompositions include [GKMS01,GGI+02,GIMS02,
CGL+05, GKS06, GH06]. A slightly different problem is to learn the probability density function
from independent samples given that the probability density function of a k-bucket histogram. This
was considered in [CK06,GM07b]. Problems related to finding succinct representation of matrices
have been tackled. These are mainly based on sampling rows and columns, an idea first explored
in [FKV04] where the goal was to compute the best low-rank approximation of a matrix. A related
multiple-pass algorithm was given by [DRVW06]. Other papers use similar ideas to compute a
single value decomposition of a matrix [DFK+04], approximation matrix multiplication [DKM06a],
succinct representations [DKM06b] and approximate linear programming [DKM06c].

24

6 Problems

Question 1. In `2-sampling the goal is to return a random value I ∈R [n] such that Pr [I = i] =
(1 ± ε)f2

i /F2. Design an simple, small-space stream algorithm for `2-sampling that takes O(log n)
passes over the data stream. Hint: You can use an F2 approximation algorithm as a subroutine.

Question 2. Prove that for any 1 ≤ i ≤ j ≤ n, the interval [i, i+ 1, . . . , j] can be partitioned into
at most 2 log2 n intervals of the form [1 + k2l, 2 + k2l, . . . , (k + 1)2l] where k, l ∈ N0. You may
assume n is a power of 2.

Question 3. Suppose you may assume that there are at most k values of i such that fi > 0. Adapt
the CR-Precis sketch to find all (i, xi) pairs where xi > 0. Extension to tail.

Question 4. How would you adapt to the Count-Min sketch when frequencies can be negative?

Question 5. Show how to emulate Count-Sketch sketch with a Count-Min Sketch if you use 4-wise
independent hash functions.

Question 6. How would you extend reservoir sampling to achieve `1 sampling on the assumption
that every ∆ > 0.

Question 7. Consider a stream of n+1 numbers where each number is in the set [n]. Design a small
space algorithm that returns an element that occurs twice in the stream. Hint: Use `1 sampling
and consider the vector y = (x1 − 1, x2 − 1, . . . , xn − 1) where xi is the number of occurrences of i.

Question 8. Consider a stream that consists of the m (distinct) edges of a graph on n nodes. Let
T be the number of triangles in the graph. Design a small space algorithm that approximate T up
to additive error εmn. Hint: Use `0 sampling on some vector g of length

(
n
3

)
.

Question 9. Design an algorithm for estimating F2(x) based on Count-Sketch. Hint: Consider
summing the squares of the entries of a row of the Count-Sketch table. What’s the expectation and
variance?

Question 10. Prove that the Cauchy distribution is 1-stable. Something about sampling from a
p-stable distribution.

Question 11. Design a sketch-based algorithm for estimating entropy by combining `1 sampling
with the algorithm from Section 1.3.2.

Question 12. Let A be a stream algorithm that returns the median of a sorted list of m values
in the range [n] with probability 9/10. If m is not known in advance, prove that A must use Ω(n)
memory.

Question 13. Modify the F0 algorithm given in class such that instead of estimating the number
of non-zero entries, it estimates the number of odd frequencies.

25

References

[AMS99] Noga Alon, Yossi Matias, and Mario Szegedy. The space complexity of approximating the
frequency moments. Journal of Computer and System Sciences, 58(1):137–147, 1999.

[BCL+10] Vladimir Braverman, Kai-Min Chung, Zhenming Liu, Michael Mitzenmacher, and Rafail Os-
trovsky. Ams without 4-wise independence on product domains. In Symposium on Theoretical
Aspects of Computer Science (STACS), pages 119–130, 2010.

[BG06] Lakshminath Bhuvanagiri and Sumit Ganguly. Estimating entropy over data streams. In ESA,
pages 148–159, 2006.

[BGKS06] Lakshminath Bhuvanagiri, Sumit Ganguly, Deepanjan Kesh, and Chandan Saha. Simpler al-
gorithm for estimating frequency moments of data streams. In ACM-SIAM Symposium on
Discrete Algorithms, pages 708–713, 2006.

[BO10] Vladimir Braverman and Rafail Ostrovsky. Measuring independence of datasets. In ACM
Symposium on Theory of Computing, pages 271–280, 2010.

[BYJK+02] Ziv Bar-Yossef, T.S. Jayram, Ravi Kumar, D. Sivakumar, and Luca Trevisan. Counting dis-
tinct elements in a data stream. In Proc. 6th International Workshop on Randomization and
Approximation Techniques in Computer Science, pages 1–10, 2002.

[CCFC04] Moses Charikar, Kevin Chen, and Martin Farach-Colton. Finding frequent items in data
streams. Theor. Comput. Sci., 312(1):3–15, 2004.

[CCM07] Amit Chakrabarti, Graham Cormode, and Andrew McGregor. A near-optimal algorithm for
computing the entropy of a stream. In ACM-SIAM Symposium on Discrete Algorithms, pages
328–335, 2007.

[CDIM03] Graham Cormode, Mayur Datar, Piotr Indyk, and S. Muthukrishnan. Comparing data streams
using hamming norms (how to zero in). IEEE Trans. Knowl. Data Eng., 15(3):529–540, 2003.

[CDM06] Amit Chakrabarti, Khanh Do Ba, and S. Muthukrishnan. Estimating entropy and entropy norm
on data streams. In STACS, pages 196–205, 2006.

[CGHJ12] Graham Cormode, Minos N. Garofalakis, Peter J. Haas, and Chris Jermaine. Synopses for
massive data: Samples, histograms, wavelets, sketches. Foundations and Trends in Databases,
4(1-3):1–294, 2012.

[CGK+09] Graham Cormode, Lukasz Golab, Flip Korn, Andrew McGregor, Divesh Srivastava, and
Xi Zhang. Estimating the confidence of conditional functional dependencies. In ACM In-
ternational Conference on Management of Data, pages 469–482, 2009.

[CGL+05] A. Robert Calderbank, Anna C. Gilbert, Kirill Levchenko, S. Muthukrishnan, and Martin
Strauss. Improved range-summable random variable construction algorithms. In ACM-SIAM
Symposium on Discrete Algorithms, pages 840–849, 2005.

[CH08] Graham Cormode and Marios Hadjieleftheriou. Finding frequent items in data streams. PVLDB,
1(2):1530–1541, 2008.

[CK06] Kevin L. Chang and Ravi Kannan. The space complexity of pass-efficient algorithms for clus-
tering. In ACM-SIAM Symposium on Discrete Algorithms, pages 1157–1166, 2006.

[CKMS06] Graham Cormode, Flip Korn, S. Muthukrishnan, and Divesh Srivastava. Space- and time-
efficient deterministic algorithms for biased quantiles over data streams. In ACM Symposium
on Principles of Database Systems, pages 263–272, 2006.

[CM05a] Graham Cormode and S. Muthukrishnan. Space efficient mining of multigraph streams. In
ACM Symposium on Principles of Database Systems, pages 271–282, 2005.

26

[CM05b] Graham Cormode and S. Muthukrishnan. Summarizing and mining skewed data streams. In
SDM, 2005.

[CM10] G. Cormode and S. Muthukrishnan. Count-min sketch. https: // sites. google. com/ site/
countminsketch/ home , 2010.

[DFK+04] Petros Drineas, Alan M. Frieze, Ravi Kannan, Santosh Vempala, and V. Vinay. Clustering large
graphs via the singular value decomposition. Machine Learning, 56(1-3):9–33, 2004.

[DKM06a] Petros Drineas, Ravi Kannan, and Michael W. Mahoney. Fast monte carlo algorithms for
matrices i: Approximating matrix multiplication. SIAM J. Comput., 36(1):132–157, 2006.

[DKM06b] Petros Drineas, Ravi Kannan, and Michael W. Mahoney. Fast monte carlo algorithms for
matrices ii: Computing a low-rank approximation to a matrix. SIAM J. Comput., 36(1):158–
183, 2006.

[DKM06c] Petros Drineas, Ravi Kannan, and Michael W. Mahoney. Fast monte carlo algorithms for
matrices iii: Computing a compressed approximate matrix decomposition. SIAM J. Comput.,
36(1):184–206, 2006.

[DLOM02] Erik D. Demaine, Alejandro López-Ortiz, and J. Ian Munro. Frequency estimation of internet
packet streams with limited space. In European Symposium on Algorithms, pages 348–360, 2002.

[DMW10] A Nikolov D. Mir, S. Muthukrishnan and R. Wright. Pan-private algorithms: when memory
does not help. Unpublished manuscript, 2010.

[DRVW06] Amit Deshpande, Luis Rademacher, Santosh Vempala, and Grant Wang. Matrix approximation
and projective clustering via volume sampling. ACM-SIAM Symposium on Discrete Algorithms,
pages 1117–1126, 2006.

[EV03] Cristian Estan and George Varghese. New directions in traffic measurement and accounting:
Focusing on the elephants, ignoring the mice. ACM Trans. Comput. Syst., 21(3):270–313, 2003.

[FKSV02] Joan Feigenbaum, Sampath Kannan, Martin Strauss, and Mahesh Viswanathan. An approxi-
mate L1 difference algorithm for massive data streams. SIAM Journal on Computing, 32(1):131–
151, 2002.

[FKV04] Alan M. Frieze, Ravi Kannan, and Santosh Vempala. Fast monte-carlo algorithms for finding
low-rank approximations. J. ACM, 51(6):1025–1041, 2004.

[FM85] Philippe Flajolet and G. Nigel Martin. Probabilistic counting algorithms for data base applica-
tions. J. Comput. Syst. Sci., 31(2):182–209, 1985.

[FS82] M. Fischer and S. Salzberg. Finding a majority among n votes. Journal of Algorithms, 3(4):362–
380, 1982.

[FS01] Jessica H. Fong and Martin Strauss. An approximate Lp-difference algorithm for massive data
streams. Discrete Mathematics and Theoretical Computer Science, 4(2):301–322, 2001.

[Gan08] Sumit Ganguly. Data stream algorithms via expander graphs. In International Symposium on
Algorithms and Computation, pages 52–63, 2008.

[GGI+02] Anna C. Gilbert, Sudipto Guha, Piotr Indyk, Yannis Kotidis, S. Muthukrishnan, and Mar-
tin Strauss. Fast, small-space algorithms for approximate histogram maintenance. In ACM
Symposium on Theory of Computing, pages 389–398, 2002.

[GH06] Sudipto Guha and Boulos Harb. Approximation algorithms for wavelet transform coding of
data streams. In ACM-SIAM Symposium on Discrete Algorithms, pages 698–707, 2006.

[GI10] Anna Gilbert and Piotr Indyk. Sparse recovery using sparse matrices. Proceedings of the IEEE,
98(6):937–947, 2010.

27

https://sites.google.com/site/countminsketch/home
https://sites.google.com/site/countminsketch/home

[GIM07] Sudipto Guha, Piotr Indyk, and Andrew McGregor. Sketching information divergences. In
Conference on Learning Theory, pages 424–438, 2007.

[GIMS02] Sudipto Guha, Piotr Indyk, S. Muthukrishnan, and Martin Strauss. Histogramming data
streams with fast per-item processing. In International Colloquium on Automata, Languages
and Programming, pages 681–692, 2002.

[GK01] Michael Greenwald and Sanjeev Khanna. Efficient online computation of quantile summaries.
In ACM International Conference on Management of Data, pages 58–66, 2001.

[GKMS01] Anna C. Gilbert, Yannis Kotidis, S. Muthukrishnan, and Martin Strauss. Surfing wavelets on
streams: One-pass summaries for approximate aggregate queries. In International Conference
on Very Large Data Bases, pages 79–88, 2001.

[GKMS02] Anna C. Gilbert, Yannis Kotidis, S. Muthukrishnan, and Martin Strauss. How to summarize
the universe: Dynamic maintenance of quantiles. In International Conference on Very Large
Data Bases, pages 454–465, 2002.

[GKS06] Sudipto Guha, Nick Koudas, and Kyuseok Shim. Approximation and streaming algorithms for
histogram construction problems. ACM Trans. Database Syst., 31(1):396–438, 2006.

[GM06] Sudipto Guha and Andrew McGregor. Approximate quantiles and the order of the stream. In
ACM Symposium on Principles of Database Systems, pages 273–279, 2006.

[GM07a] Sumit Ganguly and Anirban Majumder. CR-precis: A deterministic summary structure for
update data streams. In ESCAPE, 2007.

[GM07b] Sudipto Guha and Andrew McGregor. Space-efficient sampling. In AISTATS, pages 169–176,
2007.

[GM09] Sudipto Guha and Andrew McGregor. Sketching information divergences in a distributed model.
In Manuscript, 2009.

[GMT05] Y. Gu, A. McCallum, and D. Towsley. Detecting anomalies in network traffic using maximum
entropy estimation. In Proc. Internet Measurement Conference, 2005.

[GMV06] Sudipto Guha, Andrew McGregor, and Suresh Venkatasubramanian. Streaming and sublinear
approximation of entropy and information distances. In ACM-SIAM Symposium on Discrete
Algorithms, pages 733–742, 2006.

[GZ03] Anupam Gupta and Francis Zane. Counting inversions in lists. ACM-SIAM Symposium on
Discrete Algorithms, pages 253–254, 2003.

[Haa10] A. Haar. Zur Theorie der orthogonalen Funktionensysteme. (Erste Mitteilung.) [On the theory
of orthogonal function systems (first communication)]. Math. Ann., 69:331–371, 1910.

[HNO08] Nicholas J. A. Harvey, Jelani Nelson, and Krzysztof Onak. Sketching and streaming entropy
via approximation theory. In IEEE Symposium on Foundations of Computer Science, pages
489–498, 2008.

[IM08] Piotr Indyk and Andrew McGregor. Declaring independence via the sketching of sketches. In
ACM-SIAM Symposium on Discrete Algorithms, 2008.

[Ind06] Piotr Indyk. Stable distributions, pseudorandom generators, embeddings, and data stream
computation. J. ACM, 53(3):307–323, 2006.

[IW03] Piotr Indyk and David P. Woodruff. Tight lower bounds for the distinct elements problem.
IEEE Symposium on Foundations of Computer Science, pages 283–288, 2003.

[IW05] Piotr Indyk and David P. Woodruff. Optimal approximations of the frequency moments of data
streams. In ACM Symposium on Theory of Computing, pages 202–208, 2005.

28

[JW09] T.S. Jayram and David Woodruff. Cascaded aggregates on data streams. In Manuscript, 2009.

[KSP03] Richard M. Karp, Scott Shenker, and Christos H. Papadimitriou. A simple algorithm for finding
frequent elements in streams and bags. ACM Trans. Database Syst., 28:51–55, 2003.

[Li08] Ping Li. Estimators and tail bounds for dimension reduction in α (0 < α ≤
2) using stable random projections. In ACM-SIAM Symposium on Discrete Algorithms, pages
10–19, 2008.

[Li09] Ping Li. Compressed counting. In ACM-SIAM Symposium on Discrete Algorithms, pages 412–
421, 2009.

[LSO+06] Ashwin Lall, Vyas Sekar, Mitsunori Ogihara, Jun Xu, and Hui Zhang. Data streaming algo-
rithms for estimating entropy of network traffic. In ACM SIGMETRICS, 2006.

[MAA05] Ahmed Metwally, Divyakant Agrawal, and Amr El Abbadi. Efficient computation of frequent
and top-k elements in data streams. In ICDT, pages 398–412, 2005.

[MG82] Jayadev Misra and David Gries. Finding repeated elements. Sci. Comput. Program., 2(2):143–
152, 1982.

[MM02] Gurmeet Singh Manku and Rajeev Motwani. Approximate frequency counts over data streams.
In International Conference on Very Large Data Bases, pages 346–357, 2002.

[MM09] Andre Madeira and S. Muthukrishnan. Functionally private approximations of negligibly-biased
estimators. In FSTTCS, pages 323–334, 2009.

[Mor78] Robert Morris. Counting large numbers of events in small registers. CACM, 21(10):840–842,
1978.

[MP80] J. Ian Munro and Mike Paterson. Selection and sorting with limited storage. Theor. Comput.
Sci., 12:315–323, 1980.

[MRL98] Gurmeet Singh Manku, Sridhar Rajagopalan, and Bruce G. Lindsay. Approximate medians and
other quantiles in one pass and with limited memory. In ACM International Conference on
Management of Data, pages 426–435, 1998.

[MRL99] Gurmeet Singh Manku, Sridhar Rajagopalan, and Bruce G. Lindsay. Random sampling tech-
niques for space efficient online computation of order statistics of large datasets. In ACM
International Conference on Management of Data, pages 251–262, 1999.

[Mut05] S. Muthukrishnan. Subquadratic algorithms for workload-aware haar wavelet synopses. In Proc.
FSTTCS, pages 285–296, 2005.

[Mut06] S. Muthukrishnan. Data streams: Algorithms and applications. Now Publishers, 2006.

[MW10] Morteza Monemizadeh and David P. Woodruff. 1-pass relative-error lp-sampling with applica-
tions. In ACM-SIAM Symposium on Discrete Algorithms, 2010.

[PIR10] Hung Q. Ngo Piotr Indyk and Atri Rudra. Efficiently decodable non-adaptive group testing. In
ACM-SIAM Symposium on Discrete Algorithms, pages 20–29, 2010.

[Woo04] David P. Woodruff. Optimal space lower bounds for all frequency moments. In ACM-SIAM
Symposium on Discrete Algorithms, pages 167–175, 2004.

[WP05] Arno Wagner and Bernhard Plattner. Entropy based worm and anomaly detection in fast IP
networks. In 14th IEEE International Workshops on Enabling Technologies: Infrastructures for
Collaborative Enterprises (WET ICE), pages 172–177, 2005.

[XZB05] Kuai Xu, Zhi-Li Zhang, and Supratik Bhattacharyya. Profiling internet backbone traffic: be-
havior models and applications. In SIGCOMM, pages 169–180, 2005.

29

	Increment-Only Streams: Sampling and Counting
	Misra-Gries Algorithm
	Reservoir Sampling
	AMS Sampling
	Application: Frequency Moments
	Application: Entropy

	Basic Linear Sketches
	Distinct Items
	Self-Joins
	Extension: Johnson-Lindenstrauss and p-stable Distributions
	Extension: Measuring Independence

	Count-Min and Count-Sketch
	Count-Min
	Count-Sketch
	A Deterministic Variant: CR-Precis
	Applications: Quantiles, Heavy Hitters, Range Queries
	Application: Sparse Recovery
	Application: Wavelet Decompositions

	Sampling via Linear Sketches
	0 Sampling
	2 Sampling
	Example: Frequency Moments

	Historical Notes and Further Topics
	Historical Notes
	Cascaded Aggregates
	Information Divergences
	Other Representations

	Problems

