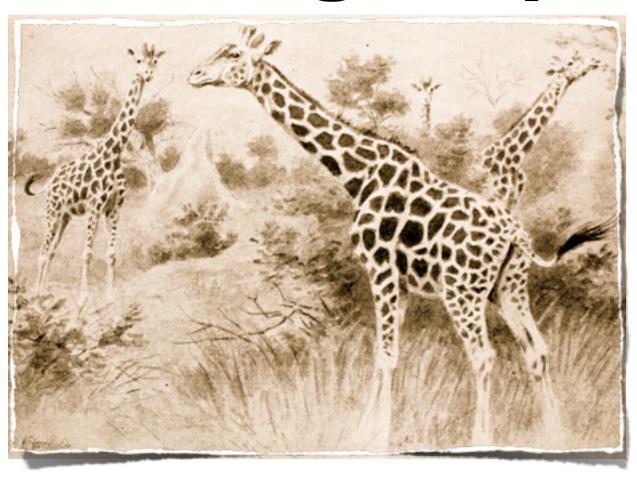
Sketching Graphs



Linear Sketches

• Random linear projection M: $R^n \rightarrow R^k$ that preserves properties of any $v \in R^n$ with high probability where $k \ll n$.

$$\begin{pmatrix} M & \end{pmatrix} \begin{pmatrix} V \\ V \end{pmatrix} = \begin{pmatrix} MV \end{pmatrix} \longrightarrow \text{answer}$$

- Many Results: Estimating norms, entropy, support size, quantiles, heavy hitters, fitting histograms and polynomials, ...
- <u>Rich Theory:</u> Related to compressed sensing and sparse recovery, dimensionality reduction and metric embeddings, ...

Sketching Graphs?

Question: Are there sketches for structured objects like graphs?

$$\begin{pmatrix} & & & \\ &$$

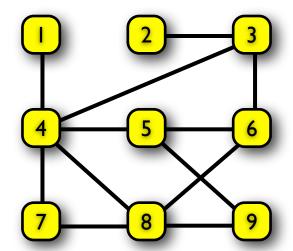
- Example: Project $O(n^2)$ -dimensional adjacency matrix A_G to $\tilde{O}(n)$ dimensions and still determine if graph is bipartite?
- No cheating! Assume M is finite precision etc.

Why? Graph Streams

• In semi-streaming, want to process graph defined by edges $e_1, ..., e_m$ with $\tilde{O}(n)$ memory and reading sequence in order.

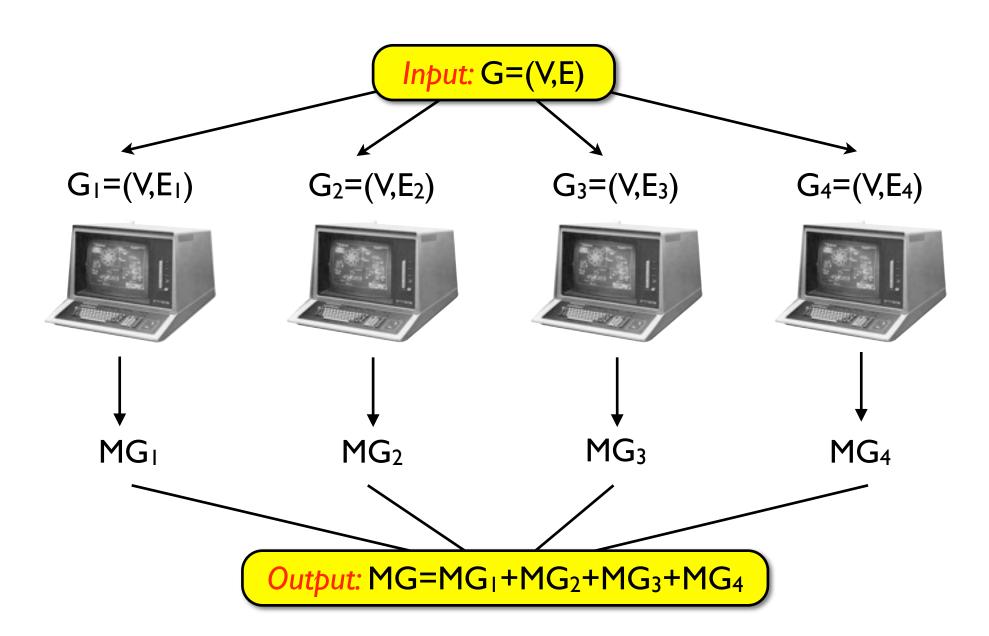
[Muthukrishnan 05; Feigenbaum, Kannan, McGregor, Suri, Zhang 05]

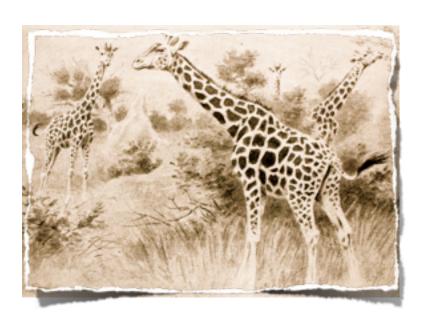
- <u>Dynamic Graphs:</u> Work on graph streams doesn't support edge deletions! Work on dynamic graphs stores entire graph!
- <u>Example</u>: Connectivity is easy if edges are only inserted...



<u>Sketches</u>: To delete e from G: update MA_G→MA_G-MA_e=MA_{G-e}

Why? Distributed Processing

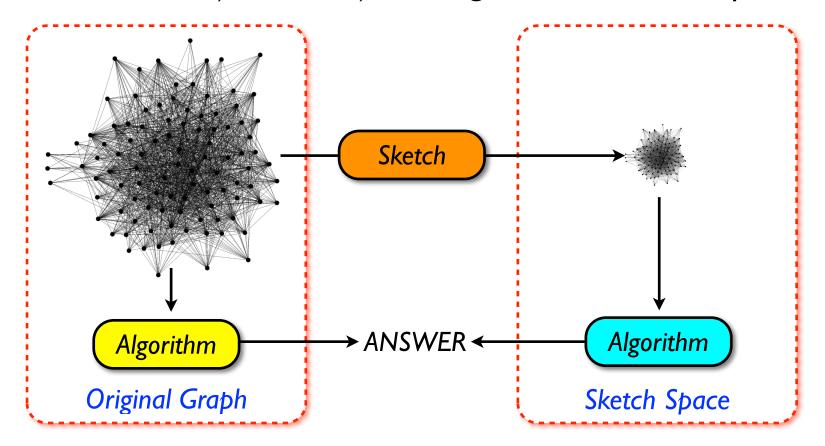




a) Connectivityb) Applications

Connectivity

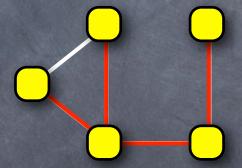
- Thm: Can check connectivity with O(nlog³ n)-size sketch.
- Main Idea: a) Sketch! b) Run Algorithm in Sketch Space



<u>Catch</u>: Sketch must be homomorphic for algorithm operations.

Ingredient 1: Basic Connectivity Algorithm

- Algorithm (Spanning Forest):
 - 1. For each node, select an incident edge
 - 2. Contract selected edges. Repeat until no edges.



Lemma: Takes O(log n) steps and selected edges include spanning forest.

Ingredient 2: Graph Representation

- For node i, let a_i be vector indexed by node pairs. Non-zero entries: $a_i[i,j]=1$ if j>i and $a_i[i,j]=-1$ if j<i.
- Example:

Lemma: For any subset of nodes S⊂V,

support
$$\left(\sum_{i\in S} \mathbf{a}_i\right) = E(S, V\setminus S)$$

Ingredient 3: lo-Sampling

Lemma: Exists random C∈R^{dxm} with d=O(log² m) such that for any $a ∈ R^m$

 $Ca \longrightarrow e \in support(a)$

with probability 9/10.

[Cormode, Muthukrishnan, Rozenbaum 05; Jowhari, Saglam, Tardos 11]

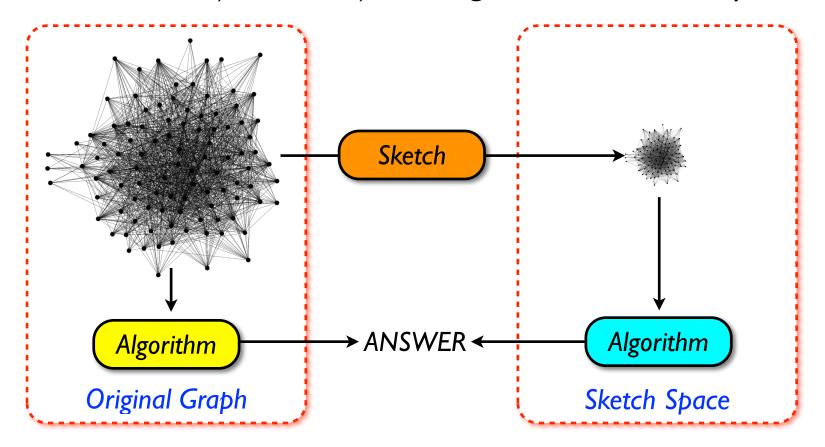
Recipe: Sketch & Compute on Sketches

- Sketch: Apply log n sketches C_i to each a_j
- Run Algorithm in Sketch Space:
 - Use C₁a_j to get incident edge on each node j
 - For i=2 to t:
 - To get incident edge on supernode S⊂V use:

$$\sum_{j\in S} C_i \mathbf{a}_j = C_i \left(\sum_{j\in S} \mathbf{a}_j\right) \longrightarrow e \in \operatorname{support}(\sum_{j\in S} \mathbf{a}_j) = E(S, V\setminus S)$$

Connectivity

- Thm: Can check connectivity with O(nlog³ n)-size sketch.
- Main Idea: a) Sketch! b) Run Algorithm in Sketch-Space

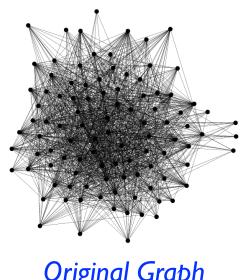


• Catch: Sketch must be homomorphic for algorithm operations.

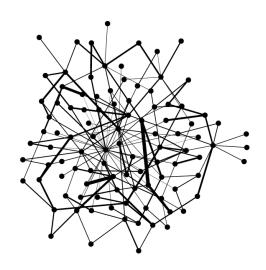
a) Connectivityb) Applications

k-Connectivity

- A graph is k-connected if every cut has size $\geq k$.
- <u>Thm</u>: Can check k-connectivity with O(nklog³ n)-size sketch.
- Extension: There exists a $O(\epsilon^{-2} n \log^5 n)$ -size sketch with which we can approximate all cuts up to a factor $(1+\epsilon)$.



Original Graph



Sparsifier Graph

Ingredient 1: Basic Algorithm

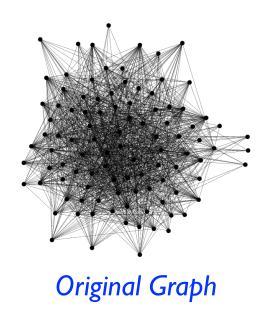
- Algorithm (k-Connectivity):
 - 1. Let F_1 be spanning forest of G(V,E)
 - 2. For i=2 to k:
 - 2.1. Let F_i be spanning forest of $G(V,E-F_1-...-F_{i-1})$
- \odot Lemma: $G(V,F_1+...+F_k)$ is k-connected iff G(V,E) is.

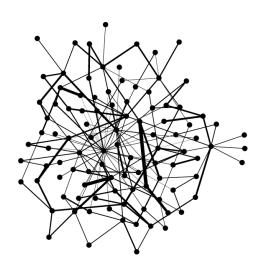
Ingredient 2: Connectivity Sketches

- Sketch: Simultaneously construct k independent sketches $\{M_1A_G, M_2A_G, ... M_kA_G\}$ for connectivity.
- Run Algorithm in Sketch Space:
 - Use M¹AG, to find a spanning forest F₁ of G
 - Use $M^2A_G M^2A_{F1} = M^2(A_G A_{F1}) = M^2(A_{G-F1})$ to find F_2
 - Use $M^3A_G-M^3A_{F1}-M^3A_{F2}=M^3(A_{G-F1-F2})$ to find F_3
 - ø etc.

k-Connectivity

- A graph is k-connected if every cut has size $\geq k$.
- Thm: Can check k-connectivity with O(nklog³ n)-size sketch.
- Extension: There exists a $O(\epsilon^{-2} n \log^4 n)$ -size sketch with which we can approximate all cuts up to a factor $(1+\epsilon)$.

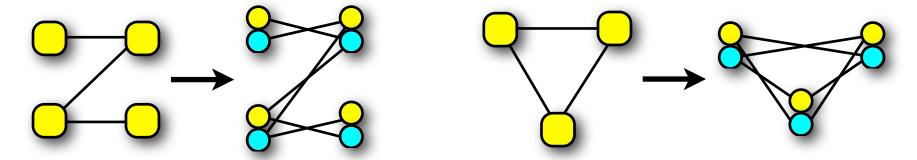




Sparsifier Graph

Bipartiteness

• <u>Idea</u>: Given G, define graph G' where a node v becomes v_1 and v_2 and edge (u,v) becomes (u_1,v_2) and (u_2,v_1) .



- <u>Lemma</u>: Number of connected components doubles iff G is bipartite. Can sketch G' implicitly.
- <u>Thm</u>: Can check bipartiteness with O(nlog³ n)-size sketch.

Minimum Spanning Tree

• <u>Idea</u>: If n_i is the number of connected components if we ignore edges with weight greater than $(1+\epsilon)^i$, then:

$$w(\text{MST}) \leq \sum_{i} \epsilon (1+\epsilon)^{i} n_{i} \leq (1+\epsilon) w(\text{MST})$$

- <u>Thm</u>: Can (1+ε) approximate MST in one-pass dynamic semi-streaming model.
- <u>Thm:</u> Can find exact MST in dynamic semi-streaming model using O(log n/log log n) passes.

Summary

- <u>Graph Sketches:</u> Initiates the study of linear projections that preserve structural properties of graphs. Application to dynamic-graph streams and are embarrassingly parallelizable.
- <u>Properties:</u> Connectivity, sparsifiers, spanners, bipartite, minimum spanning trees, small cliques, matchings, ...

