CMPSCI 711: "Really Advanced Algorithms" Lecture 4 – Lazy Select and Chernoff Bounds

Andrew McGregor

Last Compiled: February 5, 2009

Outline

Lazy Select

Chernoff Bounds

Set Balancing

Readings

Puzzle

We have a set S of n=2k distinct numbers and want to find the k-th smallest element.

We have a set S of n=2k distinct numbers and want to find the k-th smallest element.

Algorithm

1. Let R be a set of $n^{3/4}$ elements chosen uniformly at random with replacement from S.

We have a set S of n=2k distinct numbers and want to find the k-th smallest element.

Algorithm

- 1. Let R be a set of $n^{3/4}$ elements chosen uniformly at random with replacement from S.
- 2. Sort R and find a and b such that

$$\operatorname{rank}_R(a) = kn^{-1/4} - \sqrt{n}$$
 and $\operatorname{rank}_R(b) = kn^{-1/4} + \sqrt{n}$

where $\operatorname{rank}_X(x) = t$ if x is the t-th smallest element in X.

We have a set S of n=2k distinct numbers and want to find the k-th smallest element.

Algorithm

- 1. Let R be a set of $n^{3/4}$ elements chosen uniformly at random with replacement from S.
- 2. Sort R and find a and b such that

$$\operatorname{rank}_R(a) = kn^{-1/4} - \sqrt{n}$$
 and $\operatorname{rank}_R(b) = kn^{-1/4} + \sqrt{n}$

where $\operatorname{rank}_X(x) = t$ if x is the t-th smallest element in X.

3. Compute $rank_S(a)$ and $rank_S(b)$: Output FAIL if

$$k < \operatorname{rank}_{S}(a)$$
 or $k > \operatorname{rank}_{S}(b)$

We have a set S of n=2k distinct numbers and want to find the k-th smallest element.

Algorithm

- 1. Let R be a set of $n^{3/4}$ elements chosen uniformly at random with replacement from S.
- 2. Sort R and find a and b such that

$$\operatorname{rank}_R(a) = kn^{-1/4} - \sqrt{n}$$
 and $\operatorname{rank}_R(b) = kn^{-1/4} + \sqrt{n}$

where $\operatorname{rank}_X(x) = t$ if x is the t-th smallest element in X.

3. Compute $rank_S(a)$ and $rank_S(b)$: Output FAIL if

$$k < \operatorname{rank}_{S}(a)$$
 or $k > \operatorname{rank}_{S}(b)$

4. Let $P = \{i \in S : a \le y \le b\}$: Output FAIL if $|P| \ge 4n^{3/4}$

We have a set S of n = 2k distinct numbers and want to find the k-th smallest element.

Algorithm

- 1. Let R be a set of $n^{3/4}$ elements chosen uniformly at random with replacement from S.
- 2. Sort R and find a and b such that

$$\operatorname{rank}_R(a) = kn^{-1/4} - \sqrt{n}$$
 and $\operatorname{rank}_R(b) = kn^{-1/4} + \sqrt{n}$

where $\operatorname{rank}_X(x) = t$ if x is the t-th smallest element in X.

3. Compute $rank_S(a)$ and $rank_S(b)$: Output FAIL if

$$k < \operatorname{rank}_{S}(a)$$
 or $k > \operatorname{rank}_{S}(b)$

- 4. Let $P = \{i \in S : a \le y \le b\}$: Output FAIL if $|P| \ge 4n^{3/4}$
- 5. Return $(k rank_S(a) + 1)$ -th smallest element from P

Theorem

Running time of Lazy Select is O(n).

Theorem

Running time of Lazy Select is O(n).

Proof.

▶ $O(n^{3/4})$ steps to define R.

Theorem

Running time of Lazy Select is O(n).

- ▶ $O(n^{3/4})$ steps to define R.
- ▶ $O(n^{3/4} \log n)$ steps to sort R and find a and b.

Theorem

Running time of Lazy Select is O(n).

- ▶ $O(n^{3/4})$ steps to define R.
- ▶ $O(n^{3/4} \log n)$ steps to sort R and find a and b.
- ▶ O(n) steps to compute rank_S(a) and rank_S(b) in S.

Theorem

Running time of Lazy Select is O(n).

- ▶ $O(n^{3/4})$ steps to define R.
- ▶ $O(n^{3/4} \log n)$ steps to sort R and find a and b.
- ▶ O(n) steps to compute rank_S(a) and rank_S(b) in S.
- ▶ $O(n^{3/4} \log n)$ steps to sort P and select element.

Theorem

With probability $1 - O(n^{-1/4})$, algorithm finds the median.

Theorem

With probability $1 - O(n^{-1/4})$, algorithm finds the median.

Proof.

▶ If we don't output FAIL, then we get the answer correct.

Theorem

With probability $1 - O(n^{-1/4})$, algorithm finds the median.

- ▶ If we don't output FAIL, then we get the answer correct.
- ▶ Only three ways in which we fail and we'll show
 - 1. $\mathbb{P}[k < \text{rank}_{S}(a)] \leq O(n^{-1/4})$
 - 2. $\mathbb{P}[k > \operatorname{rank}_{S}(b)] \leq O(n^{-1/4})$
 - 3. $\mathbb{P}\left[|P| \geq 4n^{3/4}\right] \leq O(n^{-1/4})$

Claim

 $\mathbb{P}\left[k < \operatorname{rank}_{S}(a)\right] \leq O(n^{-1/4})$

Claim

 $\mathbb{P}\left[k < \mathsf{rank}_{\mathcal{S}}(a)\right] \leq O(n^{-1/4})$

Proof.

▶ Let u be the k-th smallest element in S

Claim

 $\mathbb{P}\left[k < \operatorname{rank}_{S}(a)\right] \leq O(n^{-1/4})$

- ▶ Let *u* be the *k*-th smallest element in *S*
- ▶ Consider choosing R: Let $X_i = 1$ if i-th sample is $\leq u$ and $X_i = 0$ otherwise. $\mathbb{P}[X_i = 1] = k/n$ and $\mathbb{P}[X_i = 0] = 1 k/n$

Claim

 $\mathbb{P}\left[k < \operatorname{rank}_{S}(a)\right] \leq O(n^{-1/4})$

- ▶ Let *u* be the *k*-th smallest element in *S*
- Consider choosing R: Let $X_i = 1$ if i-th sample is $\leq u$ and $X_i = 0$ otherwise. $\mathbb{P}[X_i = 1] = k/n$ and $\mathbb{P}[X_i = 0] = 1 k/n$
- ▶ $X = \sum_{i \in [n^{3/4}]} X_i$ = number of elements in R that are at most u.

Claim

```
\mathbb{P}\left[k < \operatorname{rank}_{S}(a)\right] \leq O(n^{-1/4})
```

- ▶ Let *u* be the *k*-th smallest element in *S*
- Consider choosing R: Let $X_i = 1$ if i-th sample is $\leq u$ and $X_i = 0$ otherwise. $\mathbb{P}[X_i = 1] = k/n$ and $\mathbb{P}[X_i = 0] = 1 k/n$
- ▶ $X = \sum_{i \in [n^{3/4}]} X_i$ = number of elements in R that are at most u.
- $k < \operatorname{rank}_{S}(a)$ implies $X < kn^{-1/4} \sqrt{n}$

Claim

$$\mathbb{P}\left[k < \mathsf{rank}_{S}(a)\right] \leq O(n^{-1/4})$$

- ▶ Let *u* be the *k*-th smallest element in *S*
- ▶ Consider choosing R: Let $X_i = 1$ if i-th sample is $\leq u$ and $X_i = 0$ otherwise. $\mathbb{P}[X_i = 1] = k/n$ and $\mathbb{P}[X_i = 0] = 1 k/n$
- ▶ $X = \sum_{i \in [n^{3/4}]} X_i$ = number of elements in R that are at most u.
- ▶ $k < \operatorname{rank}_S(a)$ implies $X < kn^{-1/4} \sqrt{n}$
- ► X has binomial distribution:

$$\mathbb{E}[X] = kn^{-1/4}$$
 and $\mathbb{V}[X] = n^{3/4}(k/n)(1-k/n) = n^{3/4}/4$

Claim

 $\mathbb{P}\left[k < \operatorname{rank}_{S}(a)\right] \leq O(n^{-1/4})$

Proof.

- \blacktriangleright Let u be the k-th smallest element in S
- ▶ Consider choosing R: Let $X_i = 1$ if i-th sample is $\leq u$ and $X_i = 0$ otherwise. $\mathbb{P}[X_i = 1] = k/n$ and $\mathbb{P}[X_i = 0] = 1 k/n$
 - ▶ $X = \sum_{i \in [n^{3/4}]} X_i$ = number of elements in R that are at most
- $\blacktriangleright k < \operatorname{rank}_S(a) \text{ implies } X < kn^{-1/4} \sqrt{n}$
- ► X has binomial distribution:

$$\mathbb{E}[X] = kn^{-1/4}$$
 and $\mathbb{V}[X] = n^{3/4}(k/n)(1 - k/n) = n^{3/4}/4$

▶ Apply Chebyshev bound: $\mathbb{P}\left[X < kn^{-1/4} - \sqrt{n}\right]$ is at most

$$\mathbb{P}\left[\left|X - \mathbb{E}\left[X\right]\right| < \sqrt{n}\right] \leq \mathbb{P}\left[\left|X - \mathbb{E}\left[X\right]\right| < 2n^{1/8}\sigma_X\right] = O(n^{-1/4})$$

Claim

 $\mathbb{P}\left[|P| \geq 4n^{3/4}\right] \leq O(n^{-1/4})$

Claim

$$\mathbb{P}\left[|P| \geq 4n^{3/4}\right] \leq O(n^{-1/4})$$

Proof.

▶ If $|P| \ge 4n^{3/4}$ then either

$$\operatorname{rank}_{S}(a) \leq k - 2n^{3/4} \text{ or } \operatorname{rank}_{S}(b) \geq k + 2n^{3/4} - 1$$

Claim

$$\mathbb{P}\left[|P| \geq 4n^{3/4}\right] \leq O(n^{-1/4})$$

Proof.

▶ If $|P| \ge 4n^{3/4}$ then either

$${\sf rank}_{\cal S}(a) \le k - 2n^{3/4} \ \ {\sf or} \ \ {\sf rank}_{\cal S}(b) \ge k + 2n^{3/4} - 1$$

To bound

$$\mathbb{P}\left[\mathsf{rank}_{\mathcal{S}}(a) \leq k - 2n^{3/4}\right] \ \ \mathsf{and} \ \ \mathbb{P}\left[\mathsf{rank}_{\mathcal{S}}(b) \geq k + 2n^{3/4} - 1\right]$$

define X_i and use Chebyshev along the same lines as the previous claim.

Claim

$$\mathbb{P}\left[|P| \geq 4n^{3/4}\right] \leq O(n^{-1/4})$$

Proof.

▶ If $|P| \ge 4n^{3/4}$ then either

$$\operatorname{rank}_{S}(a) \le k - 2n^{3/4} \text{ or } \operatorname{rank}_{S}(b) \ge k + 2n^{3/4} - 1$$

To bound

$$\mathbb{P}\left[\mathsf{rank}_{\mathcal{S}}(a) \leq k - 2n^{3/4}\right] \ \ \mathsf{and} \ \ \mathbb{P}\left[\mathsf{rank}_{\mathcal{S}}(b) \geq k + 2n^{3/4} - 1\right]$$

define X_i and use Chebyshev along the same lines as the previous claim.

Apply union bound.

Outline

Lazy Select

Chernoff Bounds

Set Balancing

Readings

Puzzle

Theorem

Let $X_1, ..., X_n$ be independent boolean random variables such that $\mathbb{P}[X_i = 1] = p_i$. Then, for $X = \sum_i X_i$, $\mu = \mathbb{E}[X]$, and $\delta > 0$,

$$\mathbb{P}\left[X>(1+\delta)\mu
ight]<\left[rac{e^{\delta}}{(1+\delta)^{1+\delta}}
ight]^{\mu}$$

Proof.

▶ For any t > 0: $\mathbb{P}\left[X > (1+\delta)\mu\right] = \mathbb{P}\left[e^{tX} > e^{t(1+\delta)\mu}\right]$

- ▶ For any t>0: $\mathbb{P}\left[X>(1+\delta)\mu\right]=\mathbb{P}\left[e^{tX}>e^{t(1+\delta)\mu}\right]$
- Apply Markov inequality:

$$\mathbb{P}\left[\mathsf{e}^{tX}>\mathsf{e}^{t(1+\delta)\mu}\right]\geq \mathbb{E}\left[\mathsf{e}^{tX}\right]/\mathsf{e}^{t(1+\delta)\mu}$$

Proof.

- ▶ For any t > 0: $\mathbb{P}\left[X > (1+\delta)\mu\right] = \mathbb{P}\left[e^{tX} > e^{t(1+\delta)\mu}\right]$
- Apply Markov inequality:

$$\mathbb{P}\left[e^{tX} > e^{t(1+\delta)\mu}\right] \geq \mathbb{E}\left[e^{tX}\right]/e^{t(1+\delta)\mu}$$

▶ By independence:

$$\mathbb{E}\left[e^{tX}\right] = \mathbb{E}\left[e^{t\sum_{i}X_{i}}\right] = \mathbb{E}\left|\prod_{i}e^{tX_{i}}\right| = \prod_{i}\mathbb{E}\left[e^{tX_{i}}\right]$$

Proof.

- lacksquare For any t>0: $\mathbb{P}\left[X>(1+\delta)\mu
 ight]=\mathbb{P}\left[e^{tX}>e^{t(1+\delta)\mu}
 ight]$
- Apply Markov inequality:

$$\mathbb{P}\left[e^{tX} > e^{t(1+\delta)\mu}\right] \geq \mathbb{E}\left[e^{tX}\right]/e^{t(1+\delta)\mu}$$

By independence:

$$\mathbb{E}\left[e^{tX}\right] = \mathbb{E}\left[e^{t\sum_{i}X_{i}}\right] = \mathbb{E}\left|\prod_{i}e^{tX_{i}}\right| = \prod_{i}\mathbb{E}\left[e^{tX_{i}}\right]$$

▶ We will prove $\prod_i \mathbb{E}\left[e^{tX_i}\right] \leq e^{(e^t-1)\mu}$ in a sec.

Proof.

- ▶ For any t > 0: $\mathbb{P}[X > (1+\delta)\mu] = \mathbb{P}\left[e^{tX} > e^{t(1+\delta)\mu}\right]$
- Apply Markov inequality:

$$\mathbb{P}\left[e^{tX} > e^{t(1+\delta)\mu}\right] \geq \mathbb{E}\left[e^{tX}\right]/e^{t(1+\delta)\mu}$$

By independence:

$$\mathbb{E}\left[e^{tX}\right] = \mathbb{E}\left[e^{t\sum_{i}X_{i}}\right] = \mathbb{E}\left[\prod_{i}e^{tX_{i}}\right] = \prod_{i}\mathbb{E}\left[e^{tX_{i}}\right]$$

- ▶ We will prove $\prod_i \mathbb{E}\left[e^{tX_i}\right] \leq e^{(e^t-1)\mu}$ in a sec.
- ▶ For $t = \ln(1 + \delta)$:

$$\mathbb{E}\left[e^{tX}\right]/e^{t(1+\delta)\mu} \leq e^{(e^t-1)\mu}/e^{t(1+\delta)\mu} = \left[\frac{e^{\delta}}{(1+\delta)^{1+\delta}}\right]^{\mu}$$

Lemma

$$\prod_{i} \mathbb{E}\left[e^{tX_{i}}\right] \leq e^{(e^{t}-1)\mu}$$

Proof.

▶ Using $1 + x \le e^x$:

$$\mathbb{E}\left[e^{tX_{i}}\right] = p_{i}e^{t} + (1 - p_{i}) = 1 + p_{i}(e^{t} - 1) \leq \exp(p_{i}(e^{t} - 1))$$

Lemma

$$\prod_{i} \mathbb{E} \left[e^{tX_{i}} \right] \leq e^{(e^{t}-1)\mu}$$

Proof.

▶ Using $1 + x \le e^x$:

$$\mathbb{E}\left[e^{tX_{i}}\right] = p_{i}e^{t} + (1 - p_{i}) = 1 + p_{i}(e^{t} - 1) \leq \exp(p_{i}(e^{t} - 1))$$

▶ Using $\mu = \mathbb{E}\left[\sum_i X_i\right] = \sum_i p_i$:

$$\prod_{i} \exp(p_{i}(e^{t}-1)) = \exp(\sum_{i} p_{i}(e^{t}-1)) = \exp((e^{t}-1)\mu)$$

Chernoff Bound: Upper Tail Simplification

Theorem

Let X_1, \ldots, X_n be independent boolean random variables such that $\mathbb{P}[X_i = 1] = p_i$. Let $X = \sum_i X_i$ and $\mu = \mathbb{E}[X]$.

Chernoff Bound: Upper Tail Simplification

Theorem

Let X_1, \ldots, X_n be independent boolean random variables such that $\mathbb{P}[X_i = 1] = p_i$. Let $X = \sum_i X_i$ and $\mu = \mathbb{E}[X]$.

▶ *If* $\delta > 2e - 1$,

$$\mathbb{P}[X > (1+\delta)\mu] < 2^{-(1+\delta)\mu}$$

Chernoff Bound: Upper Tail Simplification

Theorem

Let $X_1, ..., X_n$ be independent boolean random variables such that $\mathbb{P}[X_i = 1] = p_i$. Let $X = \sum_i X_i$ and $\mu = \mathbb{E}[X]$.

▶ *If* $\delta > 2e - 1$,

$$\mathbb{P}[X > (1+\delta)\mu] < 2^{-(1+\delta)\mu}$$

▶ *If* $0 < \delta \le 2e - 1$,

$$\mathbb{P}\left[X > (1+\delta)\mu\right] < e^{-\mu\delta^2/4}$$

Theorem

Let $X_1, ..., X_n$ be independent boolean random variables such that $\mathbb{P}[X_i = 1] = p_i$. Then, for $X = \sum_i X_i$, $\mu = \mathbb{E}[X]$, and $1 > \delta > 0$,

$$\mathbb{P}\left[X<(1-\delta)\mu\right]<\exp(-\mu\delta^2/2)$$

Proof.

▶ For any t>0: $\mathbb{P}\left[X<(1-\delta)\mu\right]=\mathbb{P}\left[e^{-tX}>e^{-t(1-\delta)\mu}\right]$

Proof.

- ▶ For any t>0: $\mathbb{P}\left[X<(1-\delta)\mu\right]=\mathbb{P}\left[e^{-tX}>e^{-t(1-\delta)\mu}\right]$
- Apply Markov inequality:

$$\mathbb{P}\left[e^{-tX}>e^{-t(1-\delta)\mu}\right]\geq \mathbb{E}\left[e^{-tX}\right]/e^{-t(1-\delta)\mu}$$

Proof.

- ▶ For any t > 0: $\mathbb{P}\left[X < (1 \delta)\mu\right] = \mathbb{P}\left[e^{-tX} > e^{-t(1 \delta)\mu}\right]$
- Apply Markov inequality:

$$\mathbb{P}\left[e^{-tX}>e^{-t(1-\delta)\mu}\right]\geq \mathbb{E}\left[e^{-tX}\right]/e^{-t(1-\delta)\mu}$$

▶ Similarly to before: $\mathbb{E}\left[e^{-tX}\right] = \prod_{i} \mathbb{E}\left[e^{-tX_{i}}\right] \leq e^{(e^{-t}-1)\mu}$

Proof.

- ▶ For any t > 0: $\mathbb{P}\left[X < (1 \delta)\mu\right] = \mathbb{P}\left[e^{-tX} > e^{-t(1 \delta)\mu}\right]$
- Apply Markov inequality:

$$\mathbb{P}\left[e^{-tX}>e^{-t(1-\delta)\mu}\right]\geq \mathbb{E}\left[e^{-tX}\right]/e^{-t(1-\delta)\mu}$$

- ▶ Similarly to before: $\mathbb{E}\left[e^{-tX}\right] = \prod_{i} \mathbb{E}\left[e^{-tX_{i}}\right] \leq e^{(e^{-t}-1)\mu}$
- ▶ For $t = -\ln(1 \delta)$:

$$\mathbb{E}\left[e^{-tX}\right]/e^{-t(1-\delta)\mu} \leq e^{(e^{-t}-1)\mu}/e^{-t(1-\delta)\mu} = \left[\frac{e^{-\delta}}{(1-\delta)^{1-\delta}}\right]^{\mu}$$

Proof.

- ▶ For any t>0: $\mathbb{P}\left[X<(1-\delta)\mu\right]=\mathbb{P}\left[e^{-tX}>e^{-t(1-\delta)\mu}\right]$
- Apply Markov inequality:

$$\mathbb{P}\left[e^{-tX}>e^{-t(1-\delta)\mu}\right]\geq \mathbb{E}\left[e^{-tX}\right]/e^{-t(1-\delta)\mu}$$

- ▶ Similarly to before: $\mathbb{E}\left[e^{-tX}\right] = \prod_{i} \mathbb{E}\left[e^{-tX_{i}}\right] \leq e^{(e^{-t}-1)\mu}$
- ▶ For $t = -\ln(1 \delta)$:

$$\mathbb{E}\left[e^{-tX}\right]/e^{-t(1-\delta)\mu} \leq e^{(e^{-t}-1)\mu}/e^{-t(1-\delta)\mu} = \left[\frac{e^{-\delta}}{(1-\delta)^{1-\delta}}\right]^{\mu}$$

▶ Simplify using $(1 - \delta)^{1-\delta} > \exp(-\delta + \delta^2/2)$ since $\delta \in (0, 1)$.

Outline

Lazy Select

Chernoff Bounds

Set Balancing

Readings

Puzzle

Set Balancing

Let A_1, \ldots, A_n be subsets of [n] such that $|A_i| = n/2$. We want to partition [n] into B and C such that

$$\max_{i} ||A_i \cap B| - |A_i \cap C||$$

is minimized.

Hint: Use $\mathbb{P}[|X - \mathbb{E}[X]| < \delta \mu] \le 2 \exp(-\mathbb{E}[X] \delta^2/4)$.

Outline

Lazy Select

Chernoff Bounds

Set Balancing

Readings

Puzzle

Readings

For next time, please make sure you've read:

► Chapter 3: Moments and Deviations (20 pages)

Outline

Lazy Select

Chernoff Bounds

Set Balancing

Readings

Puzzle

(Too) Easy Puzzle

- ► There are 3 coins in a bag: the first coin has two heads, the second coin has two tails, and the third coin has one head and one tail.
- You draw a coin at random without looking and toss it in the air. It lands heads up.
- What's the probability that the other side of the coin is heads?