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Lazy Select

We have a set S of n = 2k distinct numbers and want to find the
k-th smallest element.

Algorithm

1. Let R be a set of n3/* elements chosen uniformly at random
with replacement from S.

2. Sort R and find a and b such that
rankg(a) = kn~/* — \/n and rankg(b) = kn~Y* + /n

where rankx(x) = t if x is the t-th smallest element in X.
3. Compute ranks(a) and ranks(b): Output FAIL if

k < ranks(a) or k > ranks(b)

4. Llet P={i€ S:a<y<b}: Output FAIL if|P| > 4n3/*
5. Return (k — ranks(a) + 1)-th smallest element from P
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Lazy Select: Running Time

Theorem
Running time of Lazy Select is O(n).

Proof.
> O(n®*) steps to define R.
» O(n®*log n) steps to sort R and find a and b.
» O(n) steps to compute ranks(a) and ranks(b) in S.

» O(n3*log n) steps to sort P and select element.
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Theorem
With probability 1 — O(n~1/#), algorithm finds the median.

Proof.

» If we don’t output FAIL, then we get the answer correct.

» Only three ways in which we fail and we'll show
1. P[k < ranks(a)] < O(n=/%)
2. P[k > ranks(b)] < O(n~1/%)
3. P[|P| > 4n®*] < O(n~1/%)
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Lazy Select: Probability of Being Correct (2/3)

Claim
P[k < ranks(a)] < O(n=1/%)

Proof.

Let u be the k-th smallest element in S

v

v

Consider choosing R: Let X; = 1 if i-th sample is < v and

Xi = 0 otherwise. P[X; =1] = k/nand P[X; =0] =1—k/n
X = ie[ne/4) Xi = number of elements in R that are at most
u.

k < ranks(a) implies X < kn~Y/4 — /n

X has binomial distribution:

v

v

v

E[X] = kn "/ and V[X] = n*/*(k/n)(1 — k/n) = n*/*/4

v

Apply Chebyshev bound: PP [X < kn~1/% — \/n] is at most

P[IX —E[X]| <+vn] <P [|x “E[X]| < 2n1/8ax] = O(n~ /%
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Lazy Select: Probability of Being Correct (3/3)

Claim
P UP\ > 4n3/4] < O(n’1/4)

Proof.
> If [P| > 4n%/* then either

ranks(a) < k —2n%* or ranks(b) > k +2n%/* -1
» To bound
P [ranks(a) < k — 2n3/4] and P [ranks(b) > k+2n3% -1

define X; and use Chebyshev along the same lines as the
previous claim.

» Apply union bound.
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Chernoff Bound: Upper Tail (1/3)

Theorem
Let Xi,...,X, be independent boolean random variables such that
P[Xi = 1] = p;. Then, for X =3 Xi, p =E[X], and 6 > 0,

) 0
P[X > (1+90)pu] < [WS]
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Chernoff Bound: Upper Tail (2/3)
Proof.

> Forany t > 0: P[X > (1+0)u] =P [eX > et(1+0H]
» Apply Markov inequality:

P [etX S et(1+6)u} >E [etXi|/et(1+6)M

» By independence:

E [etx} =FE {etzl'x'} =FE

ISR

» We will prove [[;E [etxf] < el¢" =Dk in a sec.
» For t = In(1+0):
1

m
E [etx} Jet0Fm < el =D ot — [(1 +€5)1+J
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Chernoff Bound: Upper Tail (3/3)

Lemma
[TE [e%] < el

Proof.

» Using 1 + x < e*:
E [etx’} = pie' + (1 —pi) = 1+ pi(e — 1) < exp(pi(e’ — 1))
> Using p =E[}; Xi] =3, pic

[T exe(pi(e = 1)) = exp(D_ pile’ — 1)) = exp((e" — )n)

O
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Chernoff Bound: Upper Tail Simplification

Theorem
Let Xi,...,X, be independent boolean random variables such that
P[X;=1] =p;i. Let X =), X; and p = E[X].

> Ifd>2e—1,

PX > (1+06)u] < 27 (+om
> If0<d<2e-—1,

PIX > (1+6)u] < e r/4



Chernoff Bound: Lower Tail (1/2)

Theorem
Let Xi,...,X, be independent boolean random variables such that
P[Xi = 1] = p;. Then, for X =% . Xi, p=E[X], and1 > >0,

P[X < (1—6)u] < exp(—pd®/2)
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Chernoff Bound: Lower Tail (2/2)

Proof.
» Forany t > 0: P[X < (1—-9)u] =P [e‘tx N e—t(l—&)ﬂ]
» Apply Markov inequality:

P [e—tX > e t(1=0)u } [ —tx} Je~ta=du

» Similarly to before: E [e7™] = [, E [e] < ele =1
» For t = —In(1 —9):

—t e—5 H®
E |:e—tX:| /e—f(l—é)ﬂ < e(e —l)u/e—t(l—é),u _ |:(1_5)1_5:|



Chernoff Bound: Lower Tail (2/2)

Proof.

> Forany t > 0: P[X < (1—0)u] =P [e”X > e t(1-0]
Apply Markov inequality:

v

P [e‘tx > e_t(l_‘s)”} >E [e_fx} Je tA-0u

v

Similarly to before: E [e™X] = [, E [e~*] < G
For t = —In(1 —9):

v

—t 6_6 "

v

Simplify using (1 — 6)*~° > exp(—6 + §2/2) since 6 € (0,1).
L]
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Set Balancing

Let Ay,..., A, be subsets of [n] such that |A;| = n/2. We want to
partition [n] into B and C such that

max ||A; N B| — |A;n C||
is minimized.

Hint: Use P[|X — E[X]| < du] < 2exp(—E[X]52/4).
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For next time, please make sure you've read:

» Chapter 3: Moments and Deviations (20 pages)
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(Too) Easy Puzzle

» There are 3 coins in a bag: the first coin has two heads, the
second coin has two tails, and the third coin has one head and
one tail.

» You draw a coin at random without looking and toss it in the
air. It lands heads up.

» What's the probability that the other side of the coin is heads?
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