
CMPSCI 711: “Really Advanced Algorithms”
Lecture 4 – Lazy Select and Chernoff Bounds

Andrew McGregor

Last Compiled: February 5, 2009

Outline

Lazy Select

Chernoff Bounds

Set Balancing

Readings

Puzzle

Lazy Select
We have a set S of n = 2k distinct numbers and want to find the
k-th smallest element.

Algorithm

1. Let R be a set of n3/4 elements chosen uniformly at random
with replacement from S.

2. Sort R and find a and b such that

rankR(a) = kn−1/4 −
√

n and rankR(b) = kn−1/4 +
√

n

where rankX (x) = t if x is the t-th smallest element in X .

3. Compute rankS(a) and rankS(b): Output FAIL if

k < rankS(a) or k > rankS(b)

4. Let P = {i ∈ S : a ≤ y ≤ b}: Output FAIL if |P| ≥ 4n3/4

5. Return (k − rankS(a) + 1)-th smallest element from P

Lazy Select
We have a set S of n = 2k distinct numbers and want to find the
k-th smallest element.

Algorithm

1. Let R be a set of n3/4 elements chosen uniformly at random
with replacement from S.

2. Sort R and find a and b such that

rankR(a) = kn−1/4 −
√

n and rankR(b) = kn−1/4 +
√

n

where rankX (x) = t if x is the t-th smallest element in X .

3. Compute rankS(a) and rankS(b): Output FAIL if

k < rankS(a) or k > rankS(b)

4. Let P = {i ∈ S : a ≤ y ≤ b}: Output FAIL if |P| ≥ 4n3/4

5. Return (k − rankS(a) + 1)-th smallest element from P

Lazy Select
We have a set S of n = 2k distinct numbers and want to find the
k-th smallest element.

Algorithm

1. Let R be a set of n3/4 elements chosen uniformly at random
with replacement from S.

2. Sort R and find a and b such that

rankR(a) = kn−1/4 −
√

n and rankR(b) = kn−1/4 +
√

n

where rankX (x) = t if x is the t-th smallest element in X .

3. Compute rankS(a) and rankS(b): Output FAIL if

k < rankS(a) or k > rankS(b)

4. Let P = {i ∈ S : a ≤ y ≤ b}: Output FAIL if |P| ≥ 4n3/4

5. Return (k − rankS(a) + 1)-th smallest element from P

Lazy Select
We have a set S of n = 2k distinct numbers and want to find the
k-th smallest element.

Algorithm

1. Let R be a set of n3/4 elements chosen uniformly at random
with replacement from S.

2. Sort R and find a and b such that

rankR(a) = kn−1/4 −
√

n and rankR(b) = kn−1/4 +
√

n

where rankX (x) = t if x is the t-th smallest element in X .

3. Compute rankS(a) and rankS(b): Output FAIL if

k < rankS(a) or k > rankS(b)

4. Let P = {i ∈ S : a ≤ y ≤ b}: Output FAIL if |P| ≥ 4n3/4

5. Return (k − rankS(a) + 1)-th smallest element from P

Lazy Select
We have a set S of n = 2k distinct numbers and want to find the
k-th smallest element.

Algorithm

1. Let R be a set of n3/4 elements chosen uniformly at random
with replacement from S.

2. Sort R and find a and b such that

rankR(a) = kn−1/4 −
√

n and rankR(b) = kn−1/4 +
√

n

where rankX (x) = t if x is the t-th smallest element in X .

3. Compute rankS(a) and rankS(b): Output FAIL if

k < rankS(a) or k > rankS(b)

4. Let P = {i ∈ S : a ≤ y ≤ b}: Output FAIL if |P| ≥ 4n3/4

5. Return (k − rankS(a) + 1)-th smallest element from P

Lazy Select
We have a set S of n = 2k distinct numbers and want to find the
k-th smallest element.

Algorithm

1. Let R be a set of n3/4 elements chosen uniformly at random
with replacement from S.

2. Sort R and find a and b such that

rankR(a) = kn−1/4 −
√

n and rankR(b) = kn−1/4 +
√

n

where rankX (x) = t if x is the t-th smallest element in X .

3. Compute rankS(a) and rankS(b): Output FAIL if

k < rankS(a) or k > rankS(b)

4. Let P = {i ∈ S : a ≤ y ≤ b}: Output FAIL if |P| ≥ 4n3/4

5. Return (k − rankS(a) + 1)-th smallest element from P

Lazy Select: Running Time

Theorem
Running time of Lazy Select is O(n).

Proof.

I O(n3/4) steps to define R.

I O(n3/4 log n) steps to sort R and find a and b.

I O(n) steps to compute rankS(a) and rankS(b) in S .

I O(n3/4 log n) steps to sort P and select element.

Lazy Select: Running Time

Theorem
Running time of Lazy Select is O(n).

Proof.

I O(n3/4) steps to define R.

I O(n3/4 log n) steps to sort R and find a and b.

I O(n) steps to compute rankS(a) and rankS(b) in S .

I O(n3/4 log n) steps to sort P and select element.

Lazy Select: Running Time

Theorem
Running time of Lazy Select is O(n).

Proof.

I O(n3/4) steps to define R.

I O(n3/4 log n) steps to sort R and find a and b.

I O(n) steps to compute rankS(a) and rankS(b) in S .

I O(n3/4 log n) steps to sort P and select element.

Lazy Select: Running Time

Theorem
Running time of Lazy Select is O(n).

Proof.

I O(n3/4) steps to define R.

I O(n3/4 log n) steps to sort R and find a and b.

I O(n) steps to compute rankS(a) and rankS(b) in S .

I O(n3/4 log n) steps to sort P and select element.

Lazy Select: Running Time

Theorem
Running time of Lazy Select is O(n).

Proof.

I O(n3/4) steps to define R.

I O(n3/4 log n) steps to sort R and find a and b.

I O(n) steps to compute rankS(a) and rankS(b) in S .

I O(n3/4 log n) steps to sort P and select element.

Lazy Select: Probability of Being Correct (1/3)

Theorem
With probability 1− O(n−1/4), algorithm finds the median.

Proof.

I If we don’t output FAIL, then we get the answer correct.
I Only three ways in which we fail and we’ll show

1. P [k < rankS(a)] ≤ O(n−1/4)
2. P [k > rankS(b)] ≤ O(n−1/4)
3. P

[
|P| ≥ 4n3/4

]
≤ O(n−1/4)

Lazy Select: Probability of Being Correct (1/3)

Theorem
With probability 1− O(n−1/4), algorithm finds the median.

Proof.

I If we don’t output FAIL, then we get the answer correct.

I Only three ways in which we fail and we’ll show

1. P [k < rankS(a)] ≤ O(n−1/4)
2. P [k > rankS(b)] ≤ O(n−1/4)
3. P

[
|P| ≥ 4n3/4

]
≤ O(n−1/4)

Lazy Select: Probability of Being Correct (1/3)

Theorem
With probability 1− O(n−1/4), algorithm finds the median.

Proof.

I If we don’t output FAIL, then we get the answer correct.
I Only three ways in which we fail and we’ll show

1. P [k < rankS(a)] ≤ O(n−1/4)
2. P [k > rankS(b)] ≤ O(n−1/4)
3. P

[
|P| ≥ 4n3/4

]
≤ O(n−1/4)

Lazy Select: Probability of Being Correct (2/3)

Claim
P [k < rankS(a)] ≤ O(n−1/4)

Proof.

I Let u be the k-th smallest element in S

I Consider choosing R: Let Xi = 1 if i-th sample is ≤ u and
Xi = 0 otherwise. P [Xi = 1] = k/n and P [Xi = 0] = 1− k/n

I X =
∑

i∈[n3/4] Xi = number of elements in R that are at most
u.

I k < rankS(a) implies X < kn−1/4 −
√

n

I X has binomial distribution:

E [X] = kn−1/4 and V [X] = n3/4(k/n)(1− k/n) = n3/4/4

I Apply Chebyshev bound: P
[
X < kn−1/4 −

√
n
]

is at most

P
[
|X − E [X] | <

√
n
]
≤ P

[
|X − E [X] | < 2n1/8σX

]
= O(n−1/4)

Lazy Select: Probability of Being Correct (2/3)

Claim
P [k < rankS(a)] ≤ O(n−1/4)

Proof.

I Let u be the k-th smallest element in S

I Consider choosing R: Let Xi = 1 if i-th sample is ≤ u and
Xi = 0 otherwise. P [Xi = 1] = k/n and P [Xi = 0] = 1− k/n

I X =
∑

i∈[n3/4] Xi = number of elements in R that are at most
u.

I k < rankS(a) implies X < kn−1/4 −
√

n

I X has binomial distribution:

E [X] = kn−1/4 and V [X] = n3/4(k/n)(1− k/n) = n3/4/4

I Apply Chebyshev bound: P
[
X < kn−1/4 −

√
n
]

is at most

P
[
|X − E [X] | <

√
n
]
≤ P

[
|X − E [X] | < 2n1/8σX

]
= O(n−1/4)

Lazy Select: Probability of Being Correct (2/3)

Claim
P [k < rankS(a)] ≤ O(n−1/4)

Proof.

I Let u be the k-th smallest element in S

I Consider choosing R: Let Xi = 1 if i-th sample is ≤ u and
Xi = 0 otherwise. P [Xi = 1] = k/n and P [Xi = 0] = 1− k/n

I X =
∑

i∈[n3/4] Xi = number of elements in R that are at most
u.

I k < rankS(a) implies X < kn−1/4 −
√

n

I X has binomial distribution:

E [X] = kn−1/4 and V [X] = n3/4(k/n)(1− k/n) = n3/4/4

I Apply Chebyshev bound: P
[
X < kn−1/4 −

√
n
]

is at most

P
[
|X − E [X] | <

√
n
]
≤ P

[
|X − E [X] | < 2n1/8σX

]
= O(n−1/4)

Lazy Select: Probability of Being Correct (2/3)

Claim
P [k < rankS(a)] ≤ O(n−1/4)

Proof.

I Let u be the k-th smallest element in S

I Consider choosing R: Let Xi = 1 if i-th sample is ≤ u and
Xi = 0 otherwise. P [Xi = 1] = k/n and P [Xi = 0] = 1− k/n

I X =
∑

i∈[n3/4] Xi = number of elements in R that are at most
u.

I k < rankS(a) implies X < kn−1/4 −
√

n

I X has binomial distribution:

E [X] = kn−1/4 and V [X] = n3/4(k/n)(1− k/n) = n3/4/4

I Apply Chebyshev bound: P
[
X < kn−1/4 −

√
n
]

is at most

P
[
|X − E [X] | <

√
n
]
≤ P

[
|X − E [X] | < 2n1/8σX

]
= O(n−1/4)

Lazy Select: Probability of Being Correct (2/3)

Claim
P [k < rankS(a)] ≤ O(n−1/4)

Proof.

I Let u be the k-th smallest element in S

I Consider choosing R: Let Xi = 1 if i-th sample is ≤ u and
Xi = 0 otherwise. P [Xi = 1] = k/n and P [Xi = 0] = 1− k/n

I X =
∑

i∈[n3/4] Xi = number of elements in R that are at most
u.

I k < rankS(a) implies X < kn−1/4 −
√

n

I X has binomial distribution:

E [X] = kn−1/4 and V [X] = n3/4(k/n)(1− k/n) = n3/4/4

I Apply Chebyshev bound: P
[
X < kn−1/4 −

√
n
]

is at most

P
[
|X − E [X] | <

√
n
]
≤ P

[
|X − E [X] | < 2n1/8σX

]
= O(n−1/4)

Lazy Select: Probability of Being Correct (2/3)

Claim
P [k < rankS(a)] ≤ O(n−1/4)

Proof.

I Let u be the k-th smallest element in S

I Consider choosing R: Let Xi = 1 if i-th sample is ≤ u and
Xi = 0 otherwise. P [Xi = 1] = k/n and P [Xi = 0] = 1− k/n

I X =
∑

i∈[n3/4] Xi = number of elements in R that are at most
u.

I k < rankS(a) implies X < kn−1/4 −
√

n

I X has binomial distribution:

E [X] = kn−1/4 and V [X] = n3/4(k/n)(1− k/n) = n3/4/4

I Apply Chebyshev bound: P
[
X < kn−1/4 −

√
n
]

is at most

P
[
|X − E [X] | <

√
n
]
≤ P

[
|X − E [X] | < 2n1/8σX

]
= O(n−1/4)

Lazy Select: Probability of Being Correct (2/3)

Claim
P [k < rankS(a)] ≤ O(n−1/4)

Proof.

I Let u be the k-th smallest element in S

I Consider choosing R: Let Xi = 1 if i-th sample is ≤ u and
Xi = 0 otherwise. P [Xi = 1] = k/n and P [Xi = 0] = 1− k/n

I X =
∑

i∈[n3/4] Xi = number of elements in R that are at most
u.

I k < rankS(a) implies X < kn−1/4 −
√

n

I X has binomial distribution:

E [X] = kn−1/4 and V [X] = n3/4(k/n)(1− k/n) = n3/4/4

I Apply Chebyshev bound: P
[
X < kn−1/4 −

√
n
]

is at most

P
[
|X − E [X] | <

√
n
]
≤ P

[
|X − E [X] | < 2n1/8σX

]
= O(n−1/4)

Lazy Select: Probability of Being Correct (3/3)

Claim
P
[
|P| ≥ 4n3/4

]
≤ O(n−1/4)

Proof.

I If |P| ≥ 4n3/4 then either

rankS(a) ≤ k − 2n3/4 or rankS(b) ≥ k + 2n3/4 − 1

I To bound

P
[
rankS(a) ≤ k − 2n3/4

]
and P

[
rankS(b) ≥ k + 2n3/4 − 1

]
define Xi and use Chebyshev along the same lines as the
previous claim.

I Apply union bound.

Lazy Select: Probability of Being Correct (3/3)

Claim
P
[
|P| ≥ 4n3/4

]
≤ O(n−1/4)

Proof.

I If |P| ≥ 4n3/4 then either

rankS(a) ≤ k − 2n3/4 or rankS(b) ≥ k + 2n3/4 − 1

I To bound

P
[
rankS(a) ≤ k − 2n3/4

]
and P

[
rankS(b) ≥ k + 2n3/4 − 1

]
define Xi and use Chebyshev along the same lines as the
previous claim.

I Apply union bound.

Lazy Select: Probability of Being Correct (3/3)

Claim
P
[
|P| ≥ 4n3/4

]
≤ O(n−1/4)

Proof.

I If |P| ≥ 4n3/4 then either

rankS(a) ≤ k − 2n3/4 or rankS(b) ≥ k + 2n3/4 − 1

I To bound

P
[
rankS(a) ≤ k − 2n3/4

]
and P

[
rankS(b) ≥ k + 2n3/4 − 1

]
define Xi and use Chebyshev along the same lines as the
previous claim.

I Apply union bound.

Lazy Select: Probability of Being Correct (3/3)

Claim
P
[
|P| ≥ 4n3/4

]
≤ O(n−1/4)

Proof.

I If |P| ≥ 4n3/4 then either

rankS(a) ≤ k − 2n3/4 or rankS(b) ≥ k + 2n3/4 − 1

I To bound

P
[
rankS(a) ≤ k − 2n3/4

]
and P

[
rankS(b) ≥ k + 2n3/4 − 1

]
define Xi and use Chebyshev along the same lines as the
previous claim.

I Apply union bound.

Outline

Lazy Select

Chernoff Bounds

Set Balancing

Readings

Puzzle

Chernoff Bound: Upper Tail (1/3)

Theorem
Let X1, . . . ,Xn be independent boolean random variables such that
P [Xi = 1] = pi . Then, for X =

∑
i Xi , µ = E [X], and δ > 0,

P [X > (1 + δ)µ] <

[
eδ

(1 + δ)1+δ

]µ

Chernoff Bound: Upper Tail (2/3)

Proof.

I For any t > 0: P [X > (1 + δ)µ] = P
[
etX > et(1+δ)µ

]

I Apply Markov inequality:

P
[
etX > et(1+δ)µ

]
≥ E

[
etX
]
/et(1+δ)µ

I By independence:

E
[
etX
]

= E
[
et

P
i Xi

]
= E

[∏
i

etXi

]
=
∏
i

E
[
etXi

]
I We will prove

∏
i E
[
etXi

]
≤ e(et−1)µ in a sec.

I For t = ln(1 + δ):

E
[
etX
]
/et(1+δ)µ ≤ e(et−1)µ/et(1+δ)µ =

[
eδ

(1 + δ)1+δ

]µ

Chernoff Bound: Upper Tail (2/3)

Proof.

I For any t > 0: P [X > (1 + δ)µ] = P
[
etX > et(1+δ)µ

]
I Apply Markov inequality:

P
[
etX > et(1+δ)µ

]
≥ E

[
etX
]
/et(1+δ)µ

I By independence:

E
[
etX
]

= E
[
et

P
i Xi

]
= E

[∏
i

etXi

]
=
∏
i

E
[
etXi

]
I We will prove

∏
i E
[
etXi

]
≤ e(et−1)µ in a sec.

I For t = ln(1 + δ):

E
[
etX
]
/et(1+δ)µ ≤ e(et−1)µ/et(1+δ)µ =

[
eδ

(1 + δ)1+δ

]µ

Chernoff Bound: Upper Tail (2/3)

Proof.

I For any t > 0: P [X > (1 + δ)µ] = P
[
etX > et(1+δ)µ

]
I Apply Markov inequality:

P
[
etX > et(1+δ)µ

]
≥ E

[
etX
]
/et(1+δ)µ

I By independence:

E
[
etX
]

= E
[
et

P
i Xi

]
= E

[∏
i

etXi

]
=
∏
i

E
[
etXi

]

I We will prove
∏

i E
[
etXi

]
≤ e(et−1)µ in a sec.

I For t = ln(1 + δ):

E
[
etX
]
/et(1+δ)µ ≤ e(et−1)µ/et(1+δ)µ =

[
eδ

(1 + δ)1+δ

]µ

Chernoff Bound: Upper Tail (2/3)

Proof.

I For any t > 0: P [X > (1 + δ)µ] = P
[
etX > et(1+δ)µ

]
I Apply Markov inequality:

P
[
etX > et(1+δ)µ

]
≥ E

[
etX
]
/et(1+δ)µ

I By independence:

E
[
etX
]

= E
[
et

P
i Xi

]
= E

[∏
i

etXi

]
=
∏
i

E
[
etXi

]
I We will prove

∏
i E
[
etXi

]
≤ e(et−1)µ in a sec.

I For t = ln(1 + δ):

E
[
etX
]
/et(1+δ)µ ≤ e(et−1)µ/et(1+δ)µ =

[
eδ

(1 + δ)1+δ

]µ

Chernoff Bound: Upper Tail (2/3)

Proof.

I For any t > 0: P [X > (1 + δ)µ] = P
[
etX > et(1+δ)µ

]
I Apply Markov inequality:

P
[
etX > et(1+δ)µ

]
≥ E

[
etX
]
/et(1+δ)µ

I By independence:

E
[
etX
]

= E
[
et

P
i Xi

]
= E

[∏
i

etXi

]
=
∏
i

E
[
etXi

]
I We will prove

∏
i E
[
etXi

]
≤ e(et−1)µ in a sec.

I For t = ln(1 + δ):

E
[
etX
]
/et(1+δ)µ ≤ e(et−1)µ/et(1+δ)µ =

[
eδ

(1 + δ)1+δ

]µ

Chernoff Bound: Upper Tail (3/3)

Lemma∏
i E
[
etXi

]
≤ e(et−1)µ

Proof.

I Using 1 + x ≤ ex :

E
[
etXi

]
= pie

t + (1− pi) = 1 + pi (et − 1) ≤ exp(pi (et − 1))

I Using µ = E [
∑

i Xi] =
∑

i pi :∏
i

exp(pi (et − 1)) = exp(
∑

i

pi (et − 1)) = exp((et − 1)µ)

Chernoff Bound: Upper Tail (3/3)

Lemma∏
i E
[
etXi

]
≤ e(et−1)µ

Proof.

I Using 1 + x ≤ ex :

E
[
etXi

]
= pie

t + (1− pi) = 1 + pi (et − 1) ≤ exp(pi (et − 1))

I Using µ = E [
∑

i Xi] =
∑

i pi :∏
i

exp(pi (et − 1)) = exp(
∑

i

pi (et − 1)) = exp((et − 1)µ)

Chernoff Bound: Upper Tail Simplification

Theorem
Let X1, . . . ,Xn be independent boolean random variables such that
P [Xi = 1] = pi . Let X =

∑
i Xi and µ = E [X].

I If δ > 2e − 1,

P [X > (1 + δ)µ] < 2−(1+δ)µ

I If 0 < δ ≤ 2e − 1,

P [X > (1 + δ)µ] < e−µδ
2/4

Chernoff Bound: Upper Tail Simplification

Theorem
Let X1, . . . ,Xn be independent boolean random variables such that
P [Xi = 1] = pi . Let X =

∑
i Xi and µ = E [X].

I If δ > 2e − 1,

P [X > (1 + δ)µ] < 2−(1+δ)µ

I If 0 < δ ≤ 2e − 1,

P [X > (1 + δ)µ] < e−µδ
2/4

Chernoff Bound: Upper Tail Simplification

Theorem
Let X1, . . . ,Xn be independent boolean random variables such that
P [Xi = 1] = pi . Let X =

∑
i Xi and µ = E [X].

I If δ > 2e − 1,

P [X > (1 + δ)µ] < 2−(1+δ)µ

I If 0 < δ ≤ 2e − 1,

P [X > (1 + δ)µ] < e−µδ
2/4

Chernoff Bound: Lower Tail (1/2)

Theorem
Let X1, . . . ,Xn be independent boolean random variables such that
P [Xi = 1] = pi . Then, for X =

∑
i Xi , µ = E [X], and 1 > δ > 0,

P [X < (1− δ)µ] < exp(−µδ2/2)

Chernoff Bound: Lower Tail (2/2)

Proof.

I For any t > 0: P [X < (1− δ)µ] = P
[
e−tX > e−t(1−δ)µ]

I Apply Markov inequality:

P
[
e−tX > e−t(1−δ)µ

]
≥ E

[
e−tX

]
/e−t(1−δ)µ

I Similarly to before: E
[
e−tX

]
=
∏

i E
[
e−tXi

]
≤ e(e−t−1)µ

I For t = − ln(1− δ):

E
[
e−tX

]
/e−t(1−δ)µ ≤ e(e−t−1)µ/e−t(1−δ)µ =

[
e−δ

(1− δ)1−δ

]µ
I Simplify using (1− δ)1−δ > exp(−δ + δ2/2) since δ ∈ (0, 1).

Chernoff Bound: Lower Tail (2/2)

Proof.

I For any t > 0: P [X < (1− δ)µ] = P
[
e−tX > e−t(1−δ)µ]

I Apply Markov inequality:

P
[
e−tX > e−t(1−δ)µ

]
≥ E

[
e−tX

]
/e−t(1−δ)µ

I Similarly to before: E
[
e−tX

]
=
∏

i E
[
e−tXi

]
≤ e(e−t−1)µ

I For t = − ln(1− δ):

E
[
e−tX

]
/e−t(1−δ)µ ≤ e(e−t−1)µ/e−t(1−δ)µ =

[
e−δ

(1− δ)1−δ

]µ
I Simplify using (1− δ)1−δ > exp(−δ + δ2/2) since δ ∈ (0, 1).

Chernoff Bound: Lower Tail (2/2)

Proof.

I For any t > 0: P [X < (1− δ)µ] = P
[
e−tX > e−t(1−δ)µ]

I Apply Markov inequality:

P
[
e−tX > e−t(1−δ)µ

]
≥ E

[
e−tX

]
/e−t(1−δ)µ

I Similarly to before: E
[
e−tX

]
=
∏

i E
[
e−tXi

]
≤ e(e−t−1)µ

I For t = − ln(1− δ):

E
[
e−tX

]
/e−t(1−δ)µ ≤ e(e−t−1)µ/e−t(1−δ)µ =

[
e−δ

(1− δ)1−δ

]µ
I Simplify using (1− δ)1−δ > exp(−δ + δ2/2) since δ ∈ (0, 1).

Chernoff Bound: Lower Tail (2/2)

Proof.

I For any t > 0: P [X < (1− δ)µ] = P
[
e−tX > e−t(1−δ)µ]

I Apply Markov inequality:

P
[
e−tX > e−t(1−δ)µ

]
≥ E

[
e−tX

]
/e−t(1−δ)µ

I Similarly to before: E
[
e−tX

]
=
∏

i E
[
e−tXi

]
≤ e(e−t−1)µ

I For t = − ln(1− δ):

E
[
e−tX

]
/e−t(1−δ)µ ≤ e(e−t−1)µ/e−t(1−δ)µ =

[
e−δ

(1− δ)1−δ

]µ

I Simplify using (1− δ)1−δ > exp(−δ + δ2/2) since δ ∈ (0, 1).

Chernoff Bound: Lower Tail (2/2)

Proof.

I For any t > 0: P [X < (1− δ)µ] = P
[
e−tX > e−t(1−δ)µ]

I Apply Markov inequality:

P
[
e−tX > e−t(1−δ)µ

]
≥ E

[
e−tX

]
/e−t(1−δ)µ

I Similarly to before: E
[
e−tX

]
=
∏

i E
[
e−tXi

]
≤ e(e−t−1)µ

I For t = − ln(1− δ):

E
[
e−tX

]
/e−t(1−δ)µ ≤ e(e−t−1)µ/e−t(1−δ)µ =

[
e−δ

(1− δ)1−δ

]µ
I Simplify using (1− δ)1−δ > exp(−δ + δ2/2) since δ ∈ (0, 1).

Outline

Lazy Select

Chernoff Bounds

Set Balancing

Readings

Puzzle

Set Balancing

Let A1, . . . ,An be subsets of [n] such that |Ai | = n/2. We want to
partition [n] into B and C such that

max
i

∣∣|Ai ∩ B| − |Ai ∩ C |
∣∣

is minimized.

Hint: Use P [|X − E [X] | < δµ] ≤ 2 exp(−E [X] δ2/4).

Outline

Lazy Select

Chernoff Bounds

Set Balancing

Readings

Puzzle

Readings

For next time, please make sure you’ve read:

I Chapter 3: Moments and Deviations (20 pages)

Outline

Lazy Select

Chernoff Bounds

Set Balancing

Readings

Puzzle

(Too) Easy Puzzle

I There are 3 coins in a bag: the first coin has two heads, the
second coin has two tails, and the third coin has one head and
one tail.

I You draw a coin at random without looking and toss it in the
air. It lands heads up.

I What’s the probability that the other side of the coin is heads?

	Lazy Select
	Chernoff Bounds
	Set Balancing
	Readings
	Puzzle

