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ABSTRACT
This paper presents an LDA-style topic model that captures
not only the low-dimensional structure of data, but also
how the structure changes over time. Unlike other recent
work that relies on Markov assumptions or discretization of
time, here each topic is associated with a continuous distri-
bution over timestamps, and for each generated document,
the mixture distribution over topics is influenced by both
word co-occurrences and the document’s timestamp. Thus,
the meaning of a particular topic can be relied upon as con-
stant, but the topics’ occurrence and correlations change
significantly over time. We present results on nine months
of personal email, 17 years of NIPS research papers and
over 200 years of presidential state-of-the-union addresses,
showing improved topics, better timestamp prediction, and
interpretable trends.

Categories and Subject Descriptors
I.2.6 [Artificial Intelligence]: Learning; H.2.8 [Database
Management]: Database Applications—data mining

General Terms
Algorithms, Experimentation

Keywords
Graphical Models, Temporal Analysis, Topic Modeling

1. INTRODUCTION
Research in statistical models of co-occurrence has led

to the development of a variety of useful topic models—
mechanisms for discovering low-dimensional, multi-faceted
summaries of documents or other discrete data. These in-
clude models of words alone, such as Latent Dirichlet Allo-
cation (LDA) [2, 5], of words and research paper citations
[4], of word sequences with Markov dependencies [6, 17], of
words and their authors [12], of words in a social network of
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senders and recipients [10], and of words and relations (such
as voting patterns) [18]. In each case, graphical model struc-
tures are carefully-designed to capture the relevant structure
and co-occurrence dependencies in the data.

Many of the large data sets to which these topic mod-
els are applied do not have static co-occurrence patterns;
they are instead dynamic. The data are often collected over
time, and generally patterns present in the early part of
the collection are not in effect later. Topics rise and fall in
prominence; they split apart; they merge to form new top-
ics; words change their correlations. For example, across 17
years of the Neural Information Processing Systems (NIPS)
conference, activity in “analog circuit design” has fallen off
somewhat, while research in “support vector machines” has
recently risen dramatically. The topic “dynamic systems”
used to co-occur with “neural networks,” but now co-occurs
with “graphical models.”

However none of the above mentioned topic models are
aware of these dependencies on document timestamps. Not
modeling time can confound co-occurrence patterns and re-
sult in unclear, sub-optimal topic discovery. For example,
in topic analysis of U.S. Presidential State-of-the-Union ad-
dresses, LDA confounds Mexican-American War (1846-1848)
with some aspects of World War I (1914-1918), because LDA
is unaware of the 70-year separation between the two events.
Some previous work has performed some post-hoc analysis—
discovering topics without the use of timestamps and then
projecting their occurrence counts into discretized time [5]—
but this misses the opportunity for time to improve topic
discovery.

This paper presents Topics over Time (TOT), a topic
model that explicitly models time jointly with word co-
occurrence patterns. Significantly, and unlike some recent
work with similar goals, our model does not discretize time,
and does not make Markov assumptions over state transi-
tions in time. Rather, TOT parameterizes a continuous dis-
tribution over time associated with each topic, and topics are
responsible for generating both observed timestamps as well
as words. Parameter estimation is thus driven to discover
topics that simultaneously capture word co-occurrences and

locality of those patterns in time.
When a strong word co-occurrence pattern appears for

a brief moment in time then disappears, TOT will create
a topic with a narrow time distribution. (Given enough
evidence, arbitrarily small spans can be represented, unlike
schemes based on discretizing time.) When a pattern of
word co-occurrence remains consistent across a long time
span, TOT will create a topic with a broad time distribution.



In current experiments, we use a Beta distribution over a
(normalized) time span covering all the data, and thus we
can also flexibly represent various skewed shapes of rising
and falling topic prominence.

The model’s generative storyline can be understood in two
different ways. We fit the model parameters according to a
generative model in which a per-document multinomial dis-
tribution over topics is sampled from a Dirichlet, then for
each word occurrence we sample a topic; next a per-topic
multinomial generates the word, and a per-topic Beta dis-
tribution generates the document’s time stamp. Here the
time stamp (which in practice is always observed and con-
stant across the document) is associated with each word in
the document. We can also imagine an alternative, cor-
responding generative model in which the time stamp is
generated once per document, conditioned directly on the
per-document mixture over topics. In both cases, the likeli-
hood contribution from the words and the contribution from
the timestamps may need to be weighted by some factor, as
in the balancing of acoustic models and language models
in speech recognition. The later generative storyline more
directly corresponds to common data sets (with one times-
tamp per document); the former is easier to fit, and can also
allow some flexibility in which different parts of the docu-
ment may be discussing different time periods.

Some previous studies have also shown that topic discov-
ery can be influenced by information in addition to word
co-occurrences. For example, the Group-Topic model [18]
showed that the joint modeling of word co-occurrence and
voting relations resulted in more salient, relevant topics.
The Mixed-Membership model [4] also showed interesting
results for research papers and their citations.

Note that, in contrast to other work that models trajec-
tories of individual topics over time, TOT topics and their
meaning are modeled as constant over time. TOT captures
changes in the occurrence (and co-occurrence conditioned
on time) of the topics themselves, not changes in the word
distribution of each topic. The classical view of splitting
and merging of topics is thus reflected as dynamic changes
in the co-occurrence of constant topics. While choosing to
model individual topics as mutable could be useful, it can
also be dangerous. Imagine a subset of documents contain-
ing strong co-occurrence patterns across time: first between
birds and aerodynamics, then aerodynamics and heat, then
heat and quantum mechanics—this could lead to a single
topic that follows this trajectory, and lead the user to inap-
propriately conclude that birds and quantum mechanics are
time-shifted versions of the same topic.

Alternatively, consider a large subject like medicine, which
has changed drastically over time. In TOT we choose to
model these shifts as changes in topic co-occurrence—a de-
crease in occurrence of topics about blood-letting and bile,
and an increase in topics about MRI and retrovirus, while
the topics about blood, limbs, and patients continue to co-
occur throughout. We do not claim that this point of view
is better, but the difference makes TOT much simpler to
understand and implement.

In comparison to more complex alternatives, the relative
simplicity of TOT is a great advantage—not only for the
relative ease of understanding and implementing it, but also
because this approach can in the future be naturally injected
into other more richly structured topic models, such as the
Author-Recipient-Topic model to capture changes in social

network roles over time [10], and the Group-Topic model to
capture changes in group formation over time [18].

We present experimental results with three real-world data
sets. On more than two centuries of U.S. Presidential State-
of-the-Union addresses, we show that TOT discovers top-
ics with both time-localization and word-clarity improve-
ments over LDA. On the 17-year history of the NIPS con-
ference, we show clearly interpretable topical trends, as well
as a two-fold increase in the ability to predict time given
a document. On nine months of the second author’s email
archive, we show another example of clearly interpretable,
time-localized topics, such as springtime faculty recruiting.
On all three data sets, TOT provides more distinct topics,
as measured by KL divergence.

2. TOPICS OVER TIME
Before introducing the Topics over Time (TOT) model,

let us review the basic Latent Dirichlet Allocation model.
Our notation is summarized in Table 1, and the graphical
model representations of both LDA and our TOT models
are shown in Figure 1.

Latent Dirichlet Allocation (LDA) is a Bayesian network
that generates a document using a mixture of topics [2].
In its generative process, for each document d, a multino-
mial distribution θd over topics is randomly sampled from a
Dirichlet with parameter α, and then to generate each word,
a topic zdi is chosen from this topic distribution, and a word,
wdi, is generated by randomly sampling from a topic-specific
multinomial distribution φzdi

. The robustness of the model
is greatly enhanced by integrating out uncertainty about the
per-document topic distribution θ and the per-topic word
distribution φ.

In TOT, topic discovery is influenced not only by word
co-occurrences, but also temporal information. Rather than
modeling a sequence of state changes with a Markov as-
sumption on the dynamics, TOT models (normalized) abso-
lute timestamp values. This allows TOT to see long-range
dependencies in time, to predict absolute time values given
an unstamped document, and to predict topic distributions
given a timestamp. It also helps avoid a Markov model’s
risk of inappropriately dividing a topic in two when there is
a brief gap in its appearance.

Time is intrinsically continuous. Discretization of time
always begs the question of selecting the slice size, and the
size is invariably too small for some regions and too large
for others. TOT avoids discretization by associating with
each topic a continuous distribution over time. Many pos-
sible parameterized distributions are possible. Our earlier
experiments were based on Gaussian. All the results in this
paper employ the Beta distribution (which can behave ver-
satile shapes), for which the time range of the data used for
parameter estimation is normalized to a range from 0 to 1.
Another possible choice of bounded distributions is the Ku-
maraswamy distribution [8]. Double-bounded distributions
are appropriate because the training data are bounded in
time. If it is necessary to predict in a small window into
the future, the bounded region can be extended, yet still
estimated based on the data available up to now.

Topics over Time is a generative model of timestamps
and the words in the timestamped documents. There are
two ways of describing its generative process. The first,
which corresponds to the process used in Gibbs sampling
for parameter estimation, is as follows:
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Figure 1: Three topic models: LDA and two perspectives on TOT

SYMBOL DESCRIPTION
T number of topics
D number of documents
V number of unique words
Nd number of word tokens in document d
θd the multinomial distribution of topics

specific to the document d
φz the multinomial distribution of words

specific to topic z
ψz the beta distribution of time specific

to topic z
zdi the topic associated with the ith token

in the document d
wdi the ith token in document d
tdi the timestamp associated with the ith

token in the document d (in Figure 1(c))

Table 1: Notation used in this paper

1. Draw T multinomials φz from a Dirichlet prior β, one for
each topic z;

2. For each document d, draw a multinomial θd from a Dirich-
let prior α; then for each word wdi in document d:

(a) Draw a topic zdi from multinomial θd;

(b) Draw a word wdi from multinomial φzdi
;

(c) Draw a timestamp tdi from Beta ψzdi
.

The graphical model is shown in Figure 1(c). Although,
in the above generative process, a timestamp is generated
for each word token, all the timestamps of the words in a
document are observed as the same as the timestamp of
the document. One might also be interested in capturing
burstiness, and some solution such as Dirichlet compound
multinomial model (DCM) can be easily integrated into the
TOT model [9]. In our experiments there are a fixed number
of topics, T ; although a non-parametric Bayes version of
TOT that automatically integrates over the number of topics
would certainly be possible.

As shown in the above process, the posterior distribution
of topics depends on the information from two modalities—
both text and time. TOT parameterization is

θd|α ∼ Dirichlet(α)

φz|β ∼ Dirichlet(β)

zdi|θd ∼ Multinomial(θd)

wdi|φzdi
∼ Multinomial(φzdi

)

tdi|ψzdi
∼ Beta(ψzdi

).

Inference can not be done exactly in this model. We
employ Gibbs sampling to perform approximate inference.
Note that we adopt conjugate prior (Dirichlet) for the multi-
nomial distributions, and thus we can easily integrate out
θ and φ, analytically capturing the uncertainty associated
with them. In this way we facilitate the sampling—that is,
we need not sample θ and φ at all. Because we use the
continuous Beta distribution rather than discretizing time,
sparsity is not a big concern in fitting the temporal part of
the model. For simplicity and speed we estimate these Beta
distributions ψz by the method of moments, once per itera-
tion of Gibbs sampling. One could estimate the values of the
hyper-parameters of the TOT model, α and β, from data
using a Gibbs EM algorithm [1]. For many applications,
topic models are very sensitive to hyper-parameters, and it
is extremely important to get the right values for the hyper-
parameters. In the particular applications discussed in this
paper, we find that the sensitivity to hyper-parameters is
not very strong. Thus, again for simplicity, we use fixed
symmetric Dirichlet distributions (α = 50/T and β = 0.1)
in all our experiments.

In the Gibbs sampling procedure above, we need to cal-
culate the conditional distribution P (zdi|w, t, z−di, α, β,Ψ),
where z

−di represents the topic assignments for all tokens
except wdi. We begin with the joint probability of a data
set, and using the chain rule, we can obtain the conditional
probability conveniently as

P (zdi|w, t, z−di, α, β,Ψ) ∝ (mdzdi
+ αzdi

− 1)

×
nzdiwdi

+ βwdi
− 1

PV

v=1
(nzdiv + βv) − 1

(1 − tdi)
ψz

di
1−1t

ψz
di

2−1

di

B(ψzdi1
, ψzdi2

)
,

where nzv is the number of tokens of word v are assigned to
topic z, mdz represent the number of tokens in document d
are assigned to topic z. Detailed derivation of Gibbs sam-



pling for TOT is provided in Appendix A. An overview
of the Gibbs sampling procedure we use is shown in Algo-
rithm 1.

Algorithm 1 Inference on TOT

1: initialize topic assignment randomly for all tokens
2: for iter = 1 to Niter do
3: for d = 1 to D do
4: for w = 1 to Nd do
5: draw zdw from P (zdw|w, t, z−dw , α, β,Ψ)
6: update nzdww and mdzdw

7: end for
8: end for
9: for z = 1 to T do

10: update ψz
11: end for
12: end for
13: compute the posterior estimates of θ and φ

Although a document is modeled as a mixture of topics,
there is typically only one timestamp associated with a docu-
ment. The above generative process describes data in which
there is a timestamp associated with each word. When fit-
ting our model from typical data, each training document’s
timestamp is copied to all the words in the document. How-
ever, after fitting, if actually run as a generative model, this
process would generate different time stamps for the words
within the same document. In this sense, thus, it is formally
a deficient generative model, but still remains powerful in
modeling large dynamic text collections.

An alternative generative process description of TOT, (bet-
ter suited to generate an unseen document), is one in which
a single timestamp is associated with each document, gener-
ated by rejection or importance sampling, from a mixture of
per-topic Beta distributions over time with mixtures weight
as the per-document θd over topics. As before, this dis-
tribution over time is ultimately parameterized by the set
of timestamp-generating Beta distributions, one per topic.
The graphical model for this alternative generative process
is shown in Figure 1(b).

Using this model we can predict a time stamp given the
words in the document. To facilitate the comparison with
LDA, we can discretize the timestamps (only for this pur-
pose). Given a document, we predict its timestamp by
choosing the discretized timestamp that maximizes the pos-
terior which is calculated by multiplying the timestamp prob-
ability of all word tokens from their corresponding topic-wise
Beta distributions over time, that is, arg maxt

QNd

i=1
p(t|ψzi

).
It is also interesting to consider obtaining a distribution

over topics, conditioned on a timestamp. This allows us to
see the topic occurrence patterns over time. By Bayes rule,
E(θzi

|t) = P (zi|t) ∝ p(t|zi)P (zi) where P (zi) can be esti-
mated from data or simply assumed as uniform. Examples of
expected topic distributions θd conditioned on timestamps
are shown in Section 5.

Regarding parameter estimation, the two processes in Fig-
ure 1 (b) and (c) can become equivalent when we introduce
a balancing hyper-parameter between the likelihood from
two modalities. In the second process, not surprisingly, the
generation of one timestamp would be overwhelmed by the
plurality of words generated under the bag of words assump-
tion. To balance the influence from two different modali-
ties, a tunable hyper-parameter is needed which is respon-

sible for the relative weight of the time modality versus the
text modality. Thus we use such a weighting parameter to
rescale the likelihoods from different modalities, as is also
common in speech recognition when the acoustic and lan-
guage models are combined, and in the Group-Topic model
[18] in which relational Blockstructures and topic models
are integrated. Here a natural setting for the weighting pa-
rameter is the inverse of the number of words Nd in the
document, which is equivalent to generating Nd indepen-
dent and identically distributed (i.i.d.) samples from the
document-specific mixture of Beta distributions. Thus, it
is probabilistically equivalent to drawing Nd samples from
the individual Beta distributions according to the mixture
weights θd, which exactly corresponds to the generative pro-
cess in Figure 1 (c). In practice, it is also important to have
such a hyper-parameter when the likelihoods from discrete
and continuous modalities are combined. We find that this
hyper-parameter is quite sensitive, and set it by trial and
error.

3. RELATED WORK
Several previous studies have examined topics and their

changes across time. Rather than jointly modeling word co-
occurrence and time, many of these methods use post-hoc
or pre-discretized analysis.

The first style of non-joint modeling involves fitting a
time-unaware topic model, and then ordering the documents
in time, slicing them into discrete subsets, and examining
the topic distributions in each time-slice. One example is
Griffiths and Steyvers’ study of PNAS proceedings [5], in
which they identified hot and cold topics based on examina-
tion of topic mixtures estimated from an LDA model.

The second style of non-joint modeling pre-divides the
data into discrete time slices, and fits a separate topic model
in each slice. Examples of this type include the experiments
with the Group-Topic model [18], in which several decades
worth of U.N. voting records (and their accompanying text)
were divided into 15-year segments; each segment was fit
with the GT model, and trends were compared. One diffi-
culty with this approach is that aligning the topics from each
time slice can be difficult, although starting Gibbs sampling
using parameters from the previous time slice can help, as
shown in [14]. Similarly, the TimeMines system [15] for TDT
tasks (single topic in each document) constructs overview

timelines of a set of news stories. A χ2 test is performed to
identify days on which the number of occurrences of named
entities or noun phrases produces a statistic above a given
threshold; consecutive days under this criterion are stitched
together to form an interval to be added into the timeline.

Time series analysis has a long history in statistics, much
of which is based on dynamic models, with a Markov as-
sumption that the state at time t+ 1 or t + ∆t is indepen-
dent of all other history given the state at time t. Hidden
Markov models and Kalman filters are two such examples.
For instance, recent work in social network analysis [13] pro-
poses a dynamic model that accounts for friendships drifting
over time. Blei and Lafferty recently present dynamic topic
models (DTMs) in which the alignment among topics across
time steps is captured by a Kalman filter [3].

Continuous Time Bayesian Networks (CTBN) [11] are an
example of using continuous time without discretization. A
CTBN consists of two components: a Bayesian network and
a continuous transition model, which avoids various granu-



larity problems due to discretization. Unlike TOT, however,
CTBNs use a Markov assumption.

Another Markov model that aims to find word patterns
in time is Kleinberg’s “burst of activity model” [7]. This
approach uses a probabilistic infinite-state automaton with
a particular state structure in which high activity states
are reachable only by passing through lower activity states.
Rather than leveraging time stamps, it operates on a stream
of data, using data ordering as a proxy for time. Its infinite-
state automaton has a continuous transition scheme similar
to CTBNs. However, it operates only on one word at a
time, whereas TOT finds time-localized patterns in word
co-occurrences.

TOT uses time quite differently than the above models.
First, TOT does not employ a Markov assumption over time,
but instead treats time as an observed continuous variable.
Second, many other models take the view that the “mean-
ing” (or word associations) of a topic changes over time; in-
stead, in TOT we can rely on topics themselves as constant,
while topic co-occurrence patterns change over time.

Although not modeling time, several other topic models
have associated the generation of additional modalities with
topics. For example, the aforementioned GT model condi-
tions on topics for both word generation and relational links.
As in TOT, GT results also show that jointly modeling an
additional modality improves the relevance of the discov-
ered topics. Another flexible, related model is the Mixed
Membership model [4], which treats the citations of papers
as additional “words”, thus the formed topics are influenced
by both words and citations.

4. DATA SETS
We present experiments with the TOT model on three

real-world data sets: 9 months of email sent and received
by the second author, 17 years of NIPS conference papers,
and 21 decades of U.S. Presidential State-of-the-Union Ad-
dresses. In all cases, for simplicity, we fix the number of
topics T = 501.

4.1 State-of-the-Union Addresses
The State of the Union is an annual message presented by

the President to Congress, describing the state of the coun-
try and his plan for the future. Our data set2 consists of the
transcripts of 208 addresses during 1790-2002 (from George
Washington to George W. Bush). We remove stopwords and
numbers, and all text is downcased. Because the topics dis-
cussed in each address are so diverse, and in order to improve
the robustness of the discovered topics, we increase the num-
ber of documents in this data set by splitting each transcript
into 3-paragraph “documents”. The resulting data set has
6,427 (3-paragraph) documents, 21,576 unique words, and
674,794 word tokens in total. Each document’s time stamp
is determined by the date on which the address was given.

4.2 A Researcher’s Email
This data set consists of the second author’s email archive

of the nine months from January to September 2004, includ-
ing all emails sent and received. In order to model only the

1It would be straightforward to automatically infer the num-
ber of topics using algorithms such as Hierarchical Dirichlet
Process [16].
2http://www.gutenberg.org/dirs/etext04/suall11.txt

new text entered by the author of each message, it is nec-
essary to remove “quoted original messages” in replies. We
eliminate this extraneous text by a simple heuristic: all text
in a message below a “forwarded message” line or timestamp
is removed. This heuristic does incorrectly delete text that
are interspersed with quoted email text. Words are formed
from sequences of alphabetic characters; stopwords are re-
moved, and all text is downcased. The data set contains
13,300 email messages, 22,379 unique words, and 453,743
word tokens in total. Each document’s timestamp is deter-
mined by the day and time the message was sent or received.

4.3 NIPS Papers
The NIPS data set (provided to us by Gal Chechik) con-

sists of the full text of the 17 years of proceedings from
1987 to 2003 Neural Information Processing Systems (NIPS)
Conferences. In addition to downcasing and removing stop-
words and numbers, we also remove the words appearing less
than five times in the corpus—many of them produced by
OCR errors. Two letter words (primarily coming from equa-
tions), are removed, except for “ML”, “AI”, “KL”, “BP”,
“EM” and “IR.” The data set contains 2,326 research pa-
pers, 24,353 unique words, and 3,303,020 word tokens in to-
tal. Each document’s timestamp is determined by the year
of the proceedings.

5. EXPERIMENTAL RESULTS
In this section, we present the topics discovered by the

TOT model and compare them with topics from LDA. We
also demonstrate the ability of the TOT model to predict
the timestamps of documents, more than doubling accuracy
in comparison with LDA. We furthermore find topics discov-
ered by TOT to be more distinct from each other than LDA
topics (as measured by KL Divergence). Finally we show
how TOT can be used to analyze topic co-occurrence condi-
tioned on a timestamp. Topics presented in this section are
extracted from a single sample at the 1000th iteration of the
Gibbs sampler. For the address data set, 1000 iterations of
the Gibbs sampler took 3 hours on a dual-processor Opteron
(Linux), 2 hours for the email data set, and 10 hours for the
NIPS data set.

5.1 Topics Discovered for Addresses
The State-of-the-Union addresses contain the full range of

United States history. Analysis of this data set shows strong
temporal patterns. Some of them are broad historical is-
sues, such as a clear “American Indian” topic throughout the
1800s and peaking around 1860, or the rise of “Civil Rights”
across the second half of the 1900s. Other sharply localized
trends are somewhat influenced by the individual president’s
communication style, such as Theodore Roosevelt’s sharply
increased use of the words “great”, “men”, “public”, “coun-
try”, and “work”. Unfortunately, space limitations prevent
us from showing all 50 topics.

Four TOT topics, their most likely words, their Beta dis-
tributions over time, their actual histograms over time, as
well as comparisons against their most similar LDA topic
(by KL divergence), are shown in Figure 2. Immediately we
see that the TOT topics are more neatly and narrowly fo-
cused in time; (time analysis for LDA is done post-hoc). An
immediate and obvious effect is that this helps the reader un-
derstand more precisely when and over what length of time
the topical trend was occurring. For example, in the left-



Mexican War Panama Canal Cold War Modern Tech

states 0.02032 government 0.02928 world 0.01875 energy 0.03902
mexico 0.01832 united 0.02132 states 0.01717 national 0.01534
government 0.01670 states 0.02067 security 0.01710 development 0.01448
united 0.01521 islands 0.01167 soviet 0.01664 space 0.01436
war 0.01059 canal 0.01014 united 0.01491 science 0.01227
congress 0.00951 american 0.00872 nuclear 0.01454 technology 0.01227
country 0.00906 cuba 0.00834 peace 0.01408 oil 0.01178
texas 0.00852 made 0.00747 nations 0.01069 make 0.00994
made 0.00727 general 0.00731 international 0.01024 effort 0.00969
great 0.00611 war 0.00660 america 0.00987 administration 0.00957

mexico 0.06697 government 0.05618 defense 0.05556 program 0.02674
government 0.02254 american 0.02696 military 0.03819 energy 0.02477
mexican 0.02141 central 0.02518 forces 0.03308 development 0.02287
texas 0.02109 canal 0.02283 security 0.03020 administration 0.02119
territory 0.01739 republic 0.02198 strength 0.02406 economic 0.01710
part 0.01610 america 0.02170 nuclear 0.01858 areas 0.01585
republic 0.01344 pacific 0.01832 weapons 0.01654 programs 0.01578
military 0.01111 panama 0.01776 arms 0.01254 major 0.01534
state 0.00974 nicaragua 0.01381 maintain 0.01161 nation 0.01242
make 0.00942 isthmus 0.01137 strong 0.01106 assistance 0.01052

Figure 2: Four topics discovered by TOT (above) and LDA (bottom) for the Address data set. The titles are
our own interpretation of the topics. Histograms show how the topics are distributed over time; the fitted
beta PDFs is shown also. (For LDA, beta distributions are fit in a post-hoc fashion). The top words with
their probability in each topic are shown below the histograms. The TOT topics are better localized in time,
and TOT discovers more event-specific topical words.

most topic, TOT clearly shows that the Mexican-American
war (1846-1848) occurred in the few years just before 1850.
In LDA, on the other hand, the topic spreads throughout
American history; it has its peak around 1850, but seems to
be getting confused by a secondary peak around the time
of World War I, (when “war” words were used again, and
relations to Mexico played a small part). It is not so clear
what event is being captured by LDA’s topic.

The second topic, “Panama Canal,” is another vivid ex-
ample of how TOT can successfully localize a topic in time,
and also how jointly modeling words and time can help
sharpen and improve the topical word distribution. The
Panama Canal (constructed during 1904-1914) is correctly
localized in time, and the topic accurately describes some of
the issues motivating canal construction: the sinking of the
U.S.S. Maine in a Cuban harbor, and the long time it took

U.S. warships to return to the Caribbean via Cape Horn.
The LDA counterpart is not only widely spread through
time, but also confounding topics such as modern trade rela-
tions with Central America and efforts to build the Panama
Railroad in the 1850s.

The third topic shows the rise and fall of the Cold War,
with a peak on the Reagan years, when Presidential rhetoric
on the subject rose dramatically. Both TOT and LDA topics
mention “nuclear,” but only TOT correctly identifies “so-
viet”. LDA confounds what is mostly a cold war topic (al-
though it misses “soviet”) with words and events from across
American history, including small but noticeable bumps for
World War I and the Civil War. TOT correctly has its own
separate topic for World War I.

Lastly, the rightmost topics in Figure 2, “Modern Tech,”
shows a case in which the TOT topic is not necessarily



Faculty Recruiting ART Paper MALLET CVS Operations

cs 0.03572 xuerui 0.02113 code 0.05668 check 0.04473
april 0.02724 data 0.01814 files 0.04212 page 0.04070
faculty 0.02341 word 0.01601 mallet 0.04073 version 0.03828
david 0.02012 research 0.01408 java 0.03085 cvs 0.03587
lunch 0.01766 topic 0.01366 file 0.02947 add 0.03083
schedule 0.01656 model 0.01238 al 0.02479 update 0.02539
candidate 0.01560 andres 0.01238 directory 0.02080 latest 0.02519
talk 0.01355 sample 0.01152 version 0.01664 updated 0.02317
bruce 0.01273 enron 0.01067 pdf 0.01421 checked 0.02277
visit 0.01232 dataset 0.00960 bug 0.01352 change 0.02156

cs 0.05137 email 0.09991 code 0.05947 paper 0.06106
david 0.04592 ron 0.04536 mallet 0.03922 page 0.05504
bruce 0.02734 messages 0.04095 version 0.03772 web 0.04257
lunch 0.02710 data 0.03408 file 0.03702 title 0.03526
manmatha 0.02391 calo 0.03236 files 0.02534 author 0.02763
andrew 0.02332 message 0.03053 java 0.02522 papers 0.02741
faculty 0.01764 enron 0.03028 cvs 0.02511 email 0.02204
april 0.01740 project 0.02415 directory 0.01978 pages 0.02193
shlomo 0.01657 send 0.02023 add 0.01932 nips 0.01967
al 0.01621 part 0.01680 checked 0.01481 link 0.01860

Figure 3: Four topics discovered by TOT (above) and LDA (bottom) for the Email data set, showing improved
results with TOT. For example, the Faculty Recruiting topic is correctly identified in the spring in the TOT
model, but LDA confuses it with other interactions among faculty.

better—just interestingly different than the LDA topic. The
TOT topic, with mentions of energy, space, science, and
technology, is about modern technology and energy. Its em-
phasis on modern times is also very distinct in its time dis-
tribution. The closest LDA topic also includes energy, but
focuses on economic development and assistance to other
nations. Its time distribution shows an extra bump around
the decade of the Marshal Plan (1947-1951), and a lower
level during George W. Bush’s presidency—both inconsis-
tent with the time distribution learned by the TOT topic.

5.2 Topics Discovered for Email
In Figure 3 we demonstrate TOT on the Email data set.

Email is typically full of seasonal phenomena (such as paper
deadlines, summer semester, etc.). One such seasonal exam-
ple is the “Faculty Recruiting” topic, which (unlike LDA)
TOT clearly identifies and localizes in the spring. The LDA
counterpart is widely spread over the whole time period,
and consequently, it cannot separate faculty recruiting from

other types of faculty interactions and collaboration. The
temporal information captured by TOT plays a very impor-
tant role in forming meaningful time-sensitive topics.

The topic “ART paper” reflects a surge of effort in col-
laboratively writing a paper on the Author-Recipient-Topic
model. Although the co-occurrence pattern of the words
in this topic is strong and distinct, LDA failed to discover a
corresponding topic—likely because it was a relatively short-
lived phenomena. The closest LDA topic shows the general
research activities, work on the DARPA CALO project, and
various collaborations with SRI to prepare the Enron email
data set for public release. Not only does modeling time
help TOT discover the “ART paper” task, but an alterna-
tive model that relied on coarse time discretization may miss
such topics that have small time spans.

The “MALLET” topic shows that, after putting in an
intense effort in writing and discussing Java programming
for the MALLET toolkit, the second author had less and
less time to write code for the toolkit. In the correspond-



Recurrent NN Game Theory

state 0.05963 game 0.02850
recurrent 0.03765 strategy 0.02378
sequence 0.03616 play 0.01490
sequences 0.02462 games 0.01473
time 0.02402 player 0.01451
states 0.02057 agents 0.01346
transition 0.01300 expert 0.01281
finite 0.01242 strategies 0.01123
length 0.01154 opponent... 0.01088
strings 0.01013 nash 0.00848

state 0.05957 game 0.01784
sequence 0.03939 strategy 0.01357
sequences 0.02625 play 0.01131
time 0.02503 games 0.00940
states 0.02338 algorithm 0.00915
recurrent 0.01451 expert 0.00898
markov 0.01398 time 0.00837
transition 0.01369 player 0.00834
length 0.01164 return 0.00750
hidden 0.01072 strategies 0.00640

Figure 4: Two topics discovered by TOT (above)
and LDA (bottom) for the NIPS data set. For ex-
ample, on the left, two major approaches to dynamic
system modeling are confounded by LDA, but TOT
more clearly identifies waning interest in Recurrent
Neural Networks, with a separate topic (not shown)
for rising interest in Markov models.

ing LDA topic, MALLET development is confounded with
CVS operations—which were later also used for managing
collaborative writing of research papers.

TOT appropriately and clearly discovers a separate top-
ics for “CVS operations,” seen in the rightmost column.
The closest LDA topic is the previously discussed one that
merges MALLET and CVS. The second closest LDA topic
(bottom right) discusses research paper writing, but not
CVS. All these examples show that TOT’s use of time can
help it pull apart distinct events, tasks and topics that may
be confusingly merged by LDA.

5.3 Topics Discovered for NIPS
Research paper proceedings also present interesting trends

for analysis. Successfully modeling trends in the research lit-
erature can help us understand how research fields evolve,

Table 2: Average KL divergence between topics for
TOT vs. LDA on three data sets. TOT finds more
distinct topics.

Address Email NIPS
TOT 0.6266 0.6416 0.5728
LDA 0.5965 0.5943 0.5421

Table 3: Predicting the decade, in the Address data
set. L1 Error is the difference between predicted
and true decade. In the Accuracy column, we see
that TOT predicts exactly the correct decade nearly
twice as often as LDA.

L1 Error E(L1) Accuracy
TOT 1.98 2.02 0.19
LDA 2.51 2.58 0.10

and measure the impact of differently shaped profiles in
time.

Figure 4 shows two topics discovered from the NIPS pro-
ceedings. “Recurrent Neural Networks” is clearly identified
by TOT, and correctly shown to rise and fall in prominence
within NIPS during the 1990s. LDA, unaware of the fact
that Markov models superceded Recurrent Neural Networks
for dynamic systems in the later NIPS years, and unaware
of the time-profiles of both, ends up mixing the two methods
together. LDA has a second topic elsewhere that also covers
Markov models.

On the right, we see “Games” and game theory. This
is an example in which TOT and LDA yield nearly identi-
cal results, although, if the terms beyond simply the first
ten are examined, one sees that LDA is emphasizing board
games, such as chess and backgammon, while TOT used its
ramping-up time distribution to more clearly identify game
theory as part of this topic (e.g., the word “Nash” occurs in
position 12 for TOT, but not in the top 50 for LDA).

We have been discussing the salience and specificity of
TOT’s topics. Distances between topics can also be mea-
sured numerically. Table 2 shows the average distance of
word distributions between all pairs of topics, as measured
by KL Divergence. In all three data sets, the TOT topics are
more distinct from each other. Partially because the Beta
distribution is rarely multi-modal, the TOT model strives to
separate events that occur during different time spans, and
in real-world data, time differences are often correlated with
word distribution differences that would have been more dif-
ficult to tease apart otherwise. The MALLET-CVS-paper
distinction in the email data set is one example. (Events
with truly multi-modal time distributions would be mod-
eled with alternatives to the Beta distribution.)

5.4 Time Prediction
One interesting feature of our approach (not shared by

state-transition-based Markov models of topical shifts) is the
capability of predicting the timestamp given the words in a
document. This task also provides another opportunity to
quantitatively compare TOT against LDA.

On the State-of-the-Union Address data set, we measure
the ability to predict the decade given the text of the ad-
dress, as measured in accuracy, L1 error and average L1
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Figure 5: The distribution over topics given time
in the NIPS data set. Note the rich collection of
shapes that emerge from the Bayesian inversion of
the collection of per-topic Beta distributions over
time.

distance to the correct decade (number of decades differ-
ence between predicted and correct decade). As shown in
Table 3, TOT achieves double the accuracy of LDA, and
provides an L1 relative error reduction of 20%.

5.5 Topic Distribution Profile over Time
It is also interesting to consider the TOT model’s distri-

bution over topics as a function of time. The time distribu-
tion of each individual topic is described as a Beta distribu-
tion (having flexible mean, variance and skewness), but even
more rich and complex profiles emerge from the interactions

among these Beta distributions. TOT’s approach to model-
ing topic distributions conditioned on time stamp—based on
multiple time-generating Betas, inverted with Bayes rule—
has the dual advantages of a relatively simple, easy-to-fit pa-
rameterization, while also offering topic distributions with
a flexibility that would be more difficult to achieve with
a direct, non-inverted parameterization, (i.e. one generat-
ing topic distributions directly conditioned on time, without
Bayes-rule inversion).

The expected topic mixture distributions for the NIPS
data set are shown in Figure 5. The topics are consistently
ordered in each year, and the heights of a topic’s region rep-
resents the relative weight of the corresponding topic given
a timestamp, calculated using the procedure described in
Section 2. We can clearly see that topic mixtures change
dramatically over time, and have interesting shapes. NIPS
begins with more emphasis on neural networks, analog cir-
cuits and cells, but now emphasizes more SVMs, optimiza-
tion, probability and inference.

5.6 Topic Co-occurrences over Time
We can also examine topic co-occurrences over time, which,

as discussed in Section 1, are dynamic for many large text
collections. In the following, we say two topics z1 and z2
(strongly) co-occur in a document d if both θz1 and θz2 are
greater than some threshold h (we set h = 2/T ); then we

2 4 6 8 1 0 1 2 1 4 1 600 . 0 50 . 10 . 1 50 . 20 . 2 50 . 30 . 3 50 . 40 . 4 50 . 5
n e u r a ln e t w o r kl e a r n i n g S V M sm i x t u r e m o d e l s

b o o s t i n g
b a c k g r o u n d N L P

n e u r a l n e t w o r ks t r u c t u r ed i s t a n c e d i g i t s
Figure 6: Eight topics co-occurring strongly with
the “classification” topic in the NIPS data set.
Other co-occurring topics are labeled as a com-
bined background topic. Classification with neural
networks declined, while co-occurrence with SVMs,
boosting and NLP are on the rise.

can count the number of documents in which certain topics
(strongly) co-occur, and map out how co-occurrence pat-
terns change over time.

Figure 6 shows the prominence profile over time of those
topics that co-occur strongly with the NIPS topic “classifica-
tion.” We can see that at the beginning NIPS, this problem
was solved primarily with neural networks. It co-occurred
with the “digit recognition” in the middle 90’s. Later, prob-
abilistic mixture models, boosting and SVM methods be-
came popular.

6. CONCLUSIONS
This paper has presented Topic over Time (TOT), a model

that jointly models both word co-occurrences and localiza-
tion in continuous time. Results on three real-world data
sets show the discovery of more salient topics that are as-
sociated with events, and clearly localized in time. We also
show improved ability to predict time given a document.
Reversing the inference by Bayes rule, yields a flexible pa-
rameterization over topics conditioned on time, as deter-
mined by the interactions among the many per-topic Beta
distributions.

Unlike some related work with similar motivations, TOT
does not require discretization of time or Markov assump-
tions on state dynamics. The relative simplicity of our ap-
proach provides advantages for injecting these ideas into
other topic models. For example, in ongoing work we are
finding patterns in topics and group membership over time,
with a Group-Topic model over time. Many other extensions
are possible.
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APPENDIX

A. GIBBS SAMPLING DERIVATION FOR
TOT

We begin with the joint distribution P (w, t, z|α, β,Ψ). We can
take advantage of conjugate priors to simplify the integrals. All
symbols are defined in Section 2.

P (w, t, z|α, β,Ψ)

= P (w|z, β)p(t|Ψ, z)P (z|α)

=
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Using the chain rule, we can obtain the conditional probability
conveniently,

P (zdi|w, t, z−di, α, β,Ψ)

=
P (zdi, wdi, tdi|w−di, t−di, z−di, α, β,Ψ)

P (wdi, tdi|w−di, t−di, z−di, α, β,Ψ)

∝
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In practice, the balancing hyper-parameter often appears as an
exponential power of the last term above. Since timestamps are
drawn from continuous Beta distributions, sparsity is not a big
problem for parameter estimation of Ψ. For simplicity, we update
Ψ after each Gibbs sample by the method of moments, detailed
as follows:

ψ̂z1 = t̄z

„

t̄z(1 − t̄z)

s2z
− 1

«

ψ̂z2 = (1 − t̄z)

„

t̄z(1 − t̄z)

s2z
− 1

«

where t̄z and s2z indicate the sample mean and the biased sample
variance of the timestamps belonging to topic z, respectively.


