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Abstract

Most topic models, such as latent Dirichlet allocation,
rely on the bag-of-words assumption. However, word order
and phrases are often critical to capturing the meaning of
text in many text mining tasks. This paper presents topical
n-grams, a topic model that discovers topics as well as top-
ical phrases. The probabilistic model generates words in
their textual order by, for each word, first sampling a topic,
then sampling its status as a unigram or bigram, and then
sampling the word from a topic-specific unigram or bigram
distribution. Thus our model can model “white house” as
a special meaning phrase in the ‘politics’ topic, but not
in the ‘real estate’ topic. Successive bigrams form longer
phrases. We present experimental results showing mean-
ingful phrases and more interpretable topics from the NIPS
data and improved information retrieval performance on a
TREC collection.

1 Introduction

Although the bag-of-words assumption is prevalent in
document classification and topic models, the great major-
ity of natural language processing methods represent word
order, including n-gram language models for speech recog-
nition, finite-state models for information extraction and
context-free grammars for parsing. Word order is not only
important for syntax, but also important for lexical mean-
ing. A collocation is a phrase with meaning beyond the
individual words. For example, the phrase “white house”
carries a special meaning beyond the appearance of its in-
dividual words, whereas “yellow house” does not. Note,
however, that whether or not a phrase is a collocation may
depend on the topic context. In the context of a document
about real estate, “white house” may not be a collocation.
N -gram phrases are fundamentally important in many

areas of natural language processing and text mining, in-

cluding parsing, machine translation and information re-
trieval. In general, phrases as the whole carry more in-
formation than the sum of its individual components, thus
they are much more crucial in determining the topics of col-
lections than individual words. Most topic models such as
latent Dirichlet allocation (LDA) [2], however, assume that
words are generated independently from each other, i.e., un-
der the bag-of-words assumption. Adding phrases increases
the model’s complexity, but it could be useful in certain con-
texts. The possible over complicacy caused by introducing
phrases makes these topic models completely ignore them.
It is true that these models with the bag-of-words assump-
tion have enjoyed a big success, and attracted a lot of inter-
ests from researchers with different backgrounds. We be-
lieve that a topic model considering phrases would be defi-
nitely more useful in certain applications.

Assume that we conduct topic analysis on a large collec-
tion of research papers. The acknowledgment sections of
research papers have a distinctive vocabulary. Not surpris-
ingly, we would end up with a particular topic on acknowl-
edgment (or funding agencies) since many papers have an
acknowledgment section that is not tightly coupled with the
content of papers. One might therefore expect to find words
such as “thank”, “support” and “grant” in a single topic.
One might be very confused, however, to find words like
“health” and “science” in the same topic, unless they are
presented in context: “National Institutes of Health” and
“National Science Foundation”.

Phrases often have specialized meaning, but not always.
For instance, “neural networks” is considered a phrase be-
cause of its frequent use as a fixed expression. However, it
specifies two distinct concepts: biological neural networks
in neuroscience and artificial neural networks in modern us-
age. Without consulting the context in which the term is lo-
cated, it is hard to determine its actual meaning. In many sit-
uations, topic is very useful to accurately capture the mean-
ing. Furthermore, topic can play a role in phrase discovery.
Considering learning English, a beginner usually has diffi-
culty in telling “strong tea” from “powerful tea” [15], which



are both grammatically correct. The topic associated with
“tea” might help to discover the misuse of “powerful”.

In this paper, we propose a new topical n-gram (TNG)
model that automatically determines unigram words and
phrases based on context and assign mixture of topics to
both individual words and n-gram phrases. The ability to
form phrases only where appropriate is unique to our model,
distinguishing it from the traditional collocation discovery
methods discussed in Section 3, where a discovered phrase
is always treated as a collocation regardless of the context
(which would possibly make us incorrectly conclude that
“white house” remains a phrase in a document about real
estate). Thus, TNG is not only a topic model that uses
phrases, but also help linguists discover meaningful phrases
in right context, in a completely probabilistic manner. We
show examples of extracted phrases and more interpretable
topics on the NIPS data, and in a text mining application,
we present better information retrieval performance on an
ad-hoc retrieval task over a TREC collection.

2 N -gram based Topic Models

Before presenting our topical n-gram model, we first de-
scribe two related n-gram models. Notation used in this pa-
per is listed in Table 1, and the graphical models are showed
in Figure 1. For simplicity, all the models discussed in this
section make the 1st order Markov assumption, that is, they
are actually bigram models. However, all the models have
the ability to “model” higher order n-grams (n > 2) by
concatenating consecutive bigrams.

2.1 Bigram Topic Model (BTM)

Recently, Wallach develops a bigram topic model [22] on
the basis of the hierarchical Dirichlet language model [14],
by incorporating the concept of topic into bigram models.
This model is one solution for the “neural network” exam-
ple in Section 1. We assume a dummy word w0 existing at
the beginning of each document. The graphical model pre-
sentation of this model is shown in Figure 1(a). The gener-
ative process of this model can be described as follows:

1. draw Discrete distributions σzw from a Dirichlet prior
δ for each topic z and each word w;

2. for each document d, draw a Discrete distribution θ(d)

from a Dirichlet prior α; then for each word w(d)
i in

document d:

(a) draw z
(d)
i from Discrete θ(d); and

(b) draw w
(d)
i from Discrete σ

z
(d)
i
w

(d)
i−1

.

SYMBOL DESCRIPTION
T number of topics
D number of documents
W number of unique words
Nd number of word tokens in document d
z
(d)
i the topic associated with the ith token in the

document d
x

(d)
i the bigram status between the (i− 1)th token

and ith token in the document d
w

(d)
i the ith token in document d

θ(d) the multinomial (Discrete) distribution of topics
w.r.t. the document d

φz the multinomial (Discrete) unigram distribution
of words w.r.t. topic z

ψv in Figure 1(b), the binomial (Bernoulli) distribution
of status variables w.r.t. previous word v

ψzv in Figure 1(c), the binomial (Bernoulli) distribution
of status variables w.r.t. previous topic z/word v

σzv in Figure 1(a) and (c), the multinomial (Discrete)
bigram distribution of words w.r.t. topic z/word v

σv in Figure 1(b), the multinomial (Discrete) bigram
distribution of words w.r.t. previous word v

α Dirichlet prior of θ
β Dirichlet prior of φ
γ Dirichlet prior of ψ
δ Dirichlet prior of σ

Table 1. Notation used in this paper

2.2 LDA Collocation Model (LDACOL)

Starting from the LDA topic model, the LDA colloca-
tion model [20] (not yet published) introduces a new set
of random variables (for bigram status) x (xi = 1: wi−1

and wi form a bigram; xi = 0: they do not) that denote if
a bigram can be formed with the previous token, in addi-
tion to the two sets of random variables z and w in LDA.
Thus, it has the power to decide if to generate a bigram or
a unigram. At this aspect, it is more realistic than the bi-
gram topic model which always generates bigrams. After
all, unigrams are the major components in a document. We
assume the status variable x1 is observed, and only a uni-
gram is allowed at the beginning of a document. If we want
to put more constraints into the model (e.g., no bigram is
allowed for sentence/paragraph boundary; only a unigram
can be considered for the next word after a stop word is
removed; etc.), we can assume that the corresponding sta-
tus variables are observed as well. This model’s graphical
model presentation is shown in Figure 1(b).

The generative process of the LDA collocation model is
described as follows:
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Figure 1. Three n-gram based topic models

1. draw Discrete distributions φz from a Dirichlet prior β
for each topic z;

2. draw Bernoulli distributions ψw from a Beta prior γ
for each word w;

3. draw Discrete distributions σw from a Dirichlet prior δ
for each word w;

4. for each document d, draw a Discrete distribution θ(d)

from a Dirichlet prior α; then for each word w(d)
i in

document d:

(a) draw x
(d)
i from Bernoulli ψ

w
(d)
i−1

;

(b) draw z
(d)
i from Discrete θ(d); and

(c) draw w
(d)
i from Discrete σ

w
(d)
i−1

if x(d)
i = 1; else

draw w
(d)
i from Discrete φ

z
(d)
i

.

Note that in the LDA Collocation model, bigrams do not
have topics as the second term of a bigram is generated from
a distribution σv conditioned on the previous word v only.

2.3 Topical N-gram Model (TNG)

The topical n-gram model (TNG) is not a pure addition
of the bigram topic model and LDA collocation model. It
can solve the problem associated with the “neural network”
example as the bigram topic model, and automatically de-
termine whether a composition of two terms is indeed a bi-
gram as in the LDA collocation model. However, like other
collocation discovery methods discussed in Section 3, a dis-
covered bigram is always a bigram in the LDA Collocation
model no matter what the context is.

One of the key contributions of our model is to make it
possible to decide whether to form a bigram for the same
two consecutive word tokens depending on their nearby
context (i.e., co-occurrences). Thus, additionally, our model
is a perfect solution for the “white house” example in Sec-
tion 1. As in the LDA collocation model, we may assume
some x’s are observed for the same reason as we discussed
in Section 2.2. The graphical model presentation of this
model is shown in Figure 1(c). Its generative process can
be described as follows:

1. draw Discrete distributions φz from a Dirichlet prior β
for each topic z;

2. draw Bernoulli distributions ψzw from a Beta prior γ
for each topic z and each word w;

3. draw Discrete distributions σzw from a Dirichlet prior
δ for each topic z and each word w;



4. for each document d, draw a Discrete distribution θ(d)

from a Dirichlet prior α; then for each word w(d)
i in

document d:

(a) draw x
(d)
i from Bernoulli ψ

z
(d)
i−1w

(d)
i−1

;

(b) draw z
(d)
i from Discrete θ(d); and

(c) draw w
(d)
i from Discrete σ

z
(d)
i
w

(d)
i−1

if x(d)
i = 1;

else draw w
(d)
i from Discrete φ

z
(d)
i

.

Note that our model is a more powerful generalization of
BTM and of LDACOL. Both BTM (by setting all x’s to 1)
and LDACOL (by making σ conditioned on previous word
only) are the special cases of our TNG models.

Before discussing the inference problem of our model,
let us pause for a brief interlude on topic consistency of
terms in a bigram. As shown in the above, the topic as-
signments for the two terms in a bigram are not required
to be identical. We can take the topic of the first/last word
token or the most common topic in the phrase, as the topic
of the phrase. In this paper, we will use the topic of the
last term as the topic of the phrase for simplicity, since long
noun phrases do truly sometimes have components indica-
tive of different topics, and its last noun is usually the “head
noun”. Alternatively, we could enforce consistency in the
model with ease, by simply adding two more sets of arrows
(zi−1 → zi and xi → zi). Accordingly, we could substitute
Step 4(b) in the above generative process with “draw z

(d)
i

from Discrete θ(d) if x(d)
i = 1; else let z(d)

i = z
(d)
i−1;” In

this way, a word has the option to inherit a topic assignment
from its previous word if they form a bigram phrase. How-
ever, from our experimental results, the first choice yields
better performance. From now on, we will focus on the
model shown in Figure 1(c).

Finally we want to point out that the topical n-gram
model is not only a new framework for distilling n-gram
phrases depending on nearby context, but also a more sen-
sible topic model than the ones using word co-occurrences
alone.

In state-of-the-art hierarchical Bayesian models such as
latent Dirichlet allocation, exact inference over hidden topic
variables is typically intractable due to the large number
of latent variables and parameters in the models. Approxi-
mate inference techniques such as variational methods [12],
Gibbs sampling [1] and expectation propagation [17] have
been developed to address this issue. We use Gibbs sam-
pling to conduct approximate inference in this paper. To
reduce the uncertainty introduced by θ, φ, ψ, and σ, we
could integrate them out with no trouble because of the con-
jugate prior setting in our model. Starting from the joint
distribution P (w, z,x|α, β, γ, δ), we can work out the con-
ditional probabilities P (z(d)

i , x
(d)
i |z(d)

−i ,x
(d)
−i ,w, α, β, γ, δ)

conveniently1 using Bayes rule, where z(d)
−i denotes the

topic assignments for all word tokens except word w
(d)
i ,

and x(d)
−i represents the bigram status for all tokens except

word w(d)
i . During Gibbs sampling, we draw the topic as-

signment z(d)
i and the bigram status x(d)

i iteratively2 for
each word token w

(d)
i according to the following condi-

tional probability distribution:

P (z(d)
i , x

(d)
i |z(d)

−i ,x
(d)
−i ,w, α, β, γ, δ)

∝ (γ
x
(d)
i

+ p
z
(d)
i−1w

(d)
i−1xi

− 1)(α
z
(d)
i

+ q
dz

(d)
i

− 1)

×


β

w
(d)
i

+n
z
(d)
i

w
(d)
i

−1∑W

v=1
(βv+n

z
(d)
i

v
)−1

if x(d)
i = 0

δ
w

(d)
i

+m
z
(d)
i

w
(d)
i−1

w
(d)
i

−1∑W

v=1
(δv+m

z
(d)
i

w
(d)
i−1

v
)−1

if x(d)
i = 1

where nzw represents how many times word w is assigned
into topic z as a unigram, mzwv represents how many times
word v is assigned to topic z as the 2nd term of a bigram
given the previous word w, pzwk denotes how many times
the status variable x = k (0 or 1) given the previous word
w and the previous word’s topic z, and qdz represents how
many times a word is assigned to topic z in document d.
Note all counts here do include the assignment of the token
being visited. Details of the Gibbs sampling derivation are
provided in Appendix A.

Simple manipulations give us the posterior estimates of
θ, φ, ψ, and σ as follows:

θ̂
(d)
z = αz+qdz∑T

t=1
(αt+qdt)

φ̂zw = βw+nzw∑W

v=1
(βv+nzv)

ψ̂zwk = γk+pzwk∑1

k=0
(γk+pzwk)

σ̂zwv = δv+mzwv∑W

v=1
(δv+mzwv)

(1)

As discussed in the bigram topic model [22], one could
certainly infer the values of the hyperparameters in TNG
using a Gibbs EM algorithm [1]. For many applications,
topic models are sensitive to hyperparameters, and it is im-
portant to get the right values for the hyperparameters. In
the particular experiments discussed in this paper, however,
we find that sensitivity to hyperparameters is not a big con-
cern. For simplicity and feasibility in our Gigabyte TREC
retrieval tasks, we skip the inference of hyperparameters,
and use some reported empirical values for them instead to
show salient results.

3 Related Work

Collocation has long been studied by lexicographers and
linguists in various ways. Traditional collocation discov-

1As shown in Appendix A, one could further calculate P (z
(d)
i | · · ·)

and P (x
(d)
i | · · ·) as in a traditional Gibbs sampling procedure.

2For some observed x
(d)
i , only z

(d)
i needs to be drawn.



ery methods range from frequency to variance, to hypothe-
sis testing, to mutual information. The simplest method is
counting. A small amount of linguistic knowledge (a part-
of-speech filter) has been combined with frequency [13] to
discover surprisingly meaningful phrases. Variance based
collocation discovery [19] considers collocations in a more
flexible way than fixed phrases. However, high frequency
and low variance can be accidental. Hypothesis testing can
be used to assess whether or not two words occur together
more often than chance. Many statistical tests have been
explored, for example, t-test [5], χ2 test [4], and likelihood
ratio test [7]. More recently, an information-theoretically
motivated method for collocation discovery is utilizing mu-
tual information [6, 11].

The hierarchical Dirichlet language model [14] is closely
related to the bigram topic model [22]. The probabilistic
view of smoothing in language models shows how to take
advantage of a bigram model in a Bayesian way.

The main stream of topic modeling has gradually gained
a probabilistic flavor as well in the past decade. One of
the most popular topic model, latent Dirichlet allocation
(LDA), which makes the bag-of-words assumption, has
made a big impact in the fields of natural language pro-
cessing, statistical machine learning and text mining. Three
models we discussed in Section 2 all contain an LDA com-
ponent that is responsible for the topic part.

In our point of view, the HMMLDA model [10] is the
first attack to word dependency in the topic modeling frame-
work. The authors present HMMLDA as a generative com-
posite model that takes care of both short-range syntac-
tic dependencies and long-range semantic dependencies be-
tween words; its syntactic part is a hidden Markov model
and the semantic component is a topic model (LDA). Inter-
esting results based on this model are shown on tasks such
as part-of-speech tagging and document classification.

4 Experimental Results

We apply the topical n-gram model to the NIPS pro-
ceedings dataset that consists of the full text of the 13
years of proceedings from 1987 to 1999 Neural Informa-
tion Processing Systems (NIPS) Conferences. In addition
to downcasing and removing stopwords and numbers, we
also removed the words appearing less than five times in
the corpus—many of them produced by OCR errors. Two-
letter words (primarily coming from equations), were re-
moved, except for “ML”, “AI”, “KL”, “BP”, “EM” and
“IR.” The dataset contains 1,740 research papers, 13,649
unique words, and 2,301,375 word tokens in total. Top-
ics found from a 50-topic run on the NIPS dataset (10,000
Gibbs sampling iterations, with symmetric priors α = 1,
β = 0.01, γ = 0.1, and δ = 0.01) of the topical n-
gram model are shown in Table 2 as anecdotal evidence,

with comparison to the corresponding closest (by KL diver-
gence) topics found by LDA.

The “Reinforcement Learning” topic provides an ex-
tremely salient summary of the corresponding research
area. The LDA topic assembles many common words used
in reinforcement learning, but in its word list, there are quite
a few generic words (such as “function”, “dynamic”, “deci-
sion”) that are common and highly probable in many other
topics as well. In TNG, we can find that these generic words
are associated with other words to form n-gram phrases
(such as “markov decision process”, etc.) that are only
highly probable in reinforcement learning. More impor-
tantly, by forming n-gram phrases, the unigram word list
produced by TNG is also cleaner. For example, because
of the prevalence of generic words in LDA, highly related
words (such as “q-learning” and “goal”) are not ranked high
enough to be shown in the top 20 word list. On the contrary,
they are ranked very high in the TNG’s unigram word list.

In the other three topics (Table 2), we can find similar
phenomena as well. For example, in “Human Receptive
System”, some generic words (such as “field”, “receptive”)
are actually the components of the popular phrases in this
area as shown in the TNG model. “system” is ranked high in
LDA, but almost meaningless, and on the other hand, it does
not appear in the top word lists of TNG. Some extremely
related words (such as “spatial”), ranked very high in TNG,
are absent in LDA’s top word list. In “Speech Recognition”,
the dominating generic words (such as “context”, “based”,
“set”, “probabilities”, “database”) make the LDA topic less
understandable than even just TNG’s unigram word list.

In many situations, a crucially related word might be not
mentioned enough to be clearly captured in LDA, on the
other hand, it would become very salient as a phrase due to
the relatively stronger co-occurrence pattern in an extremely
sparse setting for phrases. The “Support Vector Machines”
topic provides such an example. We can imagine that “kkt”
will be mentioned no more than a few times in a typical
NIPS paper, and it probably appears only as a part of the
phrase “kkt conditions”. TNG satisfyingly captures it suc-
cessfully as a highly probable phrase in the SVM topic.

As we discussed before, higher-order n-grams (n > 2)
can be approximately modeled by concatenating consecu-
tive bigrams in the TNG model, as shown in Table 2 (such
as “markov decision process”, “hidden markov model” and
“support vector machines”, etc.).

To numerically evaluate the topical n-gram model, we
could have used some standard measures such as perplexity
and document classfication accuracy. However, to convinc-
ingly illustrate the power of the TNG model on larger, more
real scale, here we apply the TNG model to a much larger
standard text mining task—we employ the TNG model
within the language modeling framework to conduct ad-hoc
retrieval on Gigabyte TREC collections.



Reinforcement Learning Human Receptive System
LDA n-gram (2+) n-gram (1) LDA n-gram (2+) n-gram (1)
state reinforcement learning action motion receptive field motion
learning optimal policy policy visual spatial frequency spatial
policy dynamic programming reinforcement field temporal frequency visual
action optimal control states position visual motion receptive
reinforcement function approximator actions figure motion energy response
states prioritized sweeping function direction tuning curves direction
time finite-state controller optimal fields horizontal cells cells
optimal learning system learning eye motion detection figure
actions reinforcement learning rl reward location preferred direction stimulus
function function approximators control retina visual processing velocity
algorithm markov decision problems agent receptive area mt contrast
reward markov decision processes q-learning velocity visual cortex tuning
step local search goal vision light intensity moving
dynamic state-action pair space moving directional selectivity model
control markov decision process step system high contrast temporal
sutton belief states environment flow motion detectors responses
rl stochastic policy system edge spatial phase orientation
decision action selection problem center moving stimuli light
algorithms upright position steps light decision strategy stimuli
agent reinforcement learning methods transition local visual stimuli cell

Speech Recognition Support Vector Machines
LDA n-gram (2+) n-gram (1) LDA n-gram (2+) n-gram (1)
recognition speech recognition speech kernel support vectors kernel
system training data word linear test error training
word neural network training vector support vector machines support
face error rates system support training error margin
context neural net recognition set feature space svm
character hidden markov model hmm nonlinear training examples solution
hmm feature vectors speaker data decision function kernels
based continuous speech performance algorithm cost functions regularization
frame training procedure phoneme space test inputs adaboost
segmentation continuous speech recognition acoustic pca kkt conditions test
training gamma filter words function leave-one-out procedure data
characters hidden control context problem soft margin generalization
set speech production systems margin bayesian transduction examples
probabilities neural nets frame vectors training patterns cost
features input representation trained solution training points convex
faces output layers sequence training maximum margin algorithm
words training algorithm phonetic svm strictly convex working
frames test set speakers kernels regularization operators feature
database speech frames mlp matrix base classifiers sv
mlp speaker dependent hybrid machines convex optimization functions

Table 2. The four topics from a 50-topic run of TNG on 13 years of NIPS research papers with their
closest counterparts from LDA. The Title above the word lists of each topic is our own summary of
the topic. To better illustrate the difference between TNG and LDA, we list the n-grams (n > 1) and
unigrams separately for TNG. Each topic is shown with the 20 sorted highest-probability words. The
TNG model produces clearer word list for each topic by associating many generic words (such as
“set”, “field”, “function”, etc.) with other words to form n-gram phrases.



4.1 Ad-hoc Retrieval

Traditional information retrieval (IR) models usually
represent text with bags-of-words assuming that words oc-
cur independently, which is not exactly appropriate to nat-
ural language. To address this problem, researchers have
been working on capturing word dependencies. There are
mainly two types of dependencies being studied and shown
to be effective: 1) topical (semantic) dependency, which is
also called long-distance dependency. Two words are con-
sidered dependent when their meanings are related and they
co-occur often, such as “fruit” and “apple”. Among mod-
els capturing semantic dependency, the LDA-based docu-
ment models [23] are state-of-the-art. For IR applications,
a major advantage of topic models (document expansion),
compared to online query expansion in pseudo relevance
feedback, is that they can be trained offline, thus more effi-
cient in handling a new query; 2) phrase dependency, also
called short-distance dependency. As reported in literature,
retrieval performance can be boosted if the similarity be-
tween a user query and a document is calculated by com-
mon phrases instead of common words [9, 8, 21, 18]. Most
research on phrases in information retrieval has employed
an independent collocation discovery module, e.g., using
the methods described in Section 3. In this way, a phrase
can be indexed exactly as an ordinary word.

The topical n-gram model automatically and simulta-
neously takes cares of both semantic co-occurrences and
phrases. Also, it does not need a separate module for phrase
discovery, and everything can be seamlessly integrated into
the language modeling framework, which is one of the most
popular statistically principled approaches to IR. In this sec-
tion, we illustrate the difference in IR experiments of the
TNG and LDA models, and compare the IR performance
of all three models in Figure 1 on a TREC collection intro-
duced below.

The SJMN dataset, taken from TREC with standard
queries 51-150 that are taken from the title field of TREC
topics, covers materials from San Jose Mercury News in
1991. All text is downcased and only alphabetic characters
are kept. Stop words in both the queries and documents
are removed, according to a common stop word list in the
Bow toolkit [16]. If any two consecutive tokens were orig-
inally separated by a stopword, no bigram is allowed to be
formed. In total, the SJMN dataset we use contains 90,257
documents, 150,714 unique words, and 21,156,378 tokens,
which is order of magnitude larger than the NIPS dataset.
Relevance judgments are taken from the the judged pool
of the top retrieved documents by various participating re-
trieval systems from previous TREC conferences.

The number of topics are set to be 100 for all models
with 10,000 Gibbs sampling iterations, and the same hyper-
parameter setting (with symmetric priors α = 1, β = 0.01,

γ = 0.1, and δ = 0.01) for the NIPS dataset are used. Here,
we aim to beat the state-of-the-art model [23] instead of the
state-of-the-art results in TREC retrieval that need signifi-
cant, non-modeling effort to achieve (such as stemming).

4.2 Difference between Topical N-grams
and LDA in IR Applications

From both of LDA and TNG, a word distribution for
each document can be calculated, which thus can be viewed
as a document model. With these distributions, the likeli-
hood of generating a query can be computed to rank docu-
ments, which is the basic idea in the query likelihood (QL)
model in IR. When the two models are directly applied to do
ad-hoc retrieval, the TNG model performs significant better
than the LDA model under the Wilcoxon test at 95% level.
Among of 4881 relevant documents for all queries, LDA
retrieves 2257 of them but TNG gets 2450, 8.55% more.
The average precision for TNG is 0.0709, 61.96% higher
than its LDA counterpart (0.0438). Although these results
are not the state-of-the-art IR performance, we claim that,
if used alone, TNG represent a document better than LDA.
The average precisions for both models are very low, be-
cause corpus-level topics may be too coarse to be used as
the only representation in IR [3, 23]. Significant improve-
ments in IR can be achieved through a combination with the
basic query likelihood model.

In the query likelihood model, each document is scored
by the likelihood of its model generating a query Q,
PLM (Q|d). Let the query Q = (q1, q2, ..., qLQ

). Under
the bag-of-words assumption, PLM (Q|d) =

∏LQ

i=1 P (qi|d),
which is often specified by the document model with
Dirichlet smoothing [24],

PLM (q|d) =
Nd

Nd + µ
PML(q|d) + (1− Nd

Nd + µ
)PML(q|coll),

where Nd is the length of document d, PML(q|d) and
PML(q|coll) are the maximum likelihood (ML) estimates
of a query term q generated in document d and in the en-
tire collection, respectively, and µ is the Dirichlet smooth-
ing prior (in our reported experiments we used a fixed value
with µ = 1000 as in [23]).

To calculate the query likelihood from the TNG model
within the language modeling framework, we need to sum
over the topic variable and bigram status variable for each
token in the query token sequence. Given the posterior es-
timates θ̂, φ̂, ψ̂, and σ̂ (Equation 1), the query likelihood of
query Q given document d, PTNG(Q|d) can be calculated3

as

PTNG(Q|d) =
LQ∏
i=1

PTNG(qi|qi−1, d),

3A dummy q0 is assumed at the beginning of every query, for the con-
venience of mathematical presentation.



No. Query LDA TNG Change
053 Leveraged Buyouts 0.2141 0.3665 71.20%
097 Fiber Optics Applications 0.1376 0.2321 68.64%
108 Japanese Protectionist Measures 0.1163 0.1686 44.94%
111 Nuclear Proliferation 0.2353 0.4952 110.48%
064 Hostage-Taking 0.4265 0.4458 4.52%
125 Anti-smoking Actions by Government 0.3118 0.4535 45.47%
145 Influence of the “Pro-Israel Lobby” 0.2900 0.2753 -5.07%
148 Conflict in the Horn of Africa 0.1990 0.2788 40.12%

Table 3. Comparison of LDA and TNG on TREC retrieval performance (average precision) of eight
queries. The top four queries obviously contain phrase(s), and thus TNG achieves much better per-
formance. On the other hand, the bottom four queries do not contain common phrase(s) after pre-
processing (stopping and punctuation removal). Surprisingly, TNG still outperforms LDA on some
of these queries.

where

PTNG(qi|qi−1, d) =
T∑

zi=1

(P (xi = 0|ψ̂qi−1)P (qi|φ̂zi)

+P (xi = 1|ψ̂qi−1)P (qi|σ̂ziqi−1))P (zi|θ̂(d)),
and,

P (xi|ψ̂qi−1) =
T∑

zi−1=1

P (xi|ψ̂zi−1qi−1)P (zi−1|θ̂(d)).

Due to stopping and punctuation removal, we may simply
set P (xi = 0|ψ̂qi−1) = 1 and P (xi = 1|ψ̂qi−1) = 0 at
corresponding positions in a query. Note here in the above
calculation, the bag-of-words assumption is not made any
more.

Similar to the method in [23], we can combine the query
likelihood from the basic language model and the likelihood
from the TNG model in various ways. One can combine
them at query level, i.e.,

P (Q|d) = λPLM (Q|d) + (1− λ)PTNG(Q|d),

where λ is a weighting factor between the two likelihoods.
Alternatively, under first order Markov assumption,

P (Q|d) = P (q1|d)
∏LQ

i=2 P (qi|qi−1, d), and one can com-
bine the query likelihood at query term level (used in this
paper), that is,

P (qi|qi−1, d) = λPLM (qi|d) + (1− λ)PTNG(qi|qi−1, d).

To illustrate the difference of TNG and LDA in IR appli-
cations, we select a few of the 100 queries that clearly con-
tain phrase(s), and another few of them that do not contain
phrase due to stopping and puntuation removal, on which
we compare the IR performance (average precision)4 as
shown in Table 3.

4The results reported in [23] is a little better since they did stemming.

4.3 Comparison of BTM, LDACOL and
TNG on TREC Ad-hoc Retrieval

In this section, we compare the IR performance of the
three n-gram based topic models on the SJMN dataset5, as
shown in Table 4. For a fair comparison, the weighting fac-
tor λ (reported in Table 4) are independently chosen to get
the best performance from each model. Under the Wilcoxon
test with 95% confidence, TNG significantly outperforms
BTM and LDACOL on this standard retrieval task.

Space limitations prevent us from presenting the results
for all queries, but it is interesting to see that different mod-
els are good at quite different queries. For some queries
(such as No. 117 and No. 138), TNG and BTM perform
similarly, and better than LDACOL, and for some other
queries (such as No. 110 and No. 150), TNG and LDA-
COL perform similarly, and better than BTM. There are also
queries (such as No. 061 and No. 130) for which TNG per-
forms better than both BTM and LDACOL. We believe that
they are clear empirical evidence that our TNG model are
more generic and powerful than BTM and LDACOL.

We analyze the performance of the TNG model for
query No. 061, as an example. As we inspect the phrase
“Iran-Contra” contained in the query, we find that it has
been primarily assigned to two topics (politics and econ-
omy) in TNG. This has increased the bigram likelihood
of some documents emphasizing the relevant topic (such
as “SJMN91-06263203”), thus helps promote these docu-
ments to higher ranks. As a special case of TNG, LDACOL
is unable to capture this and leads to inferior performance.

It is true that for certain queries (such as No. 069 and
No. 146), TNG performs worse than BTM and LDACOL,
but we notice that all models perform badly on these queries

5The running times of our C implementation on a dual-processor
Opteron for the three models are 11.5, 17, 22.5 hours, respectively.



No. Query TNG BTM Change LDACOL Change
061 Israeli Role in Iran-Contra Affair 0.1635 0.1104 -32.47% 0.1316 -19.49%
069 Attempts to Revive the SALT II Treaty 0.0026 0.0071 172.34% 0.0058 124.56%
110 Black Resistance Against the South African Government 0.4940 0.3948 -20.08% 0.4883 -1.16%
117 Capacity of the U.S. Cellular Telephone Network 0.2801 0.3059 9.21% 0.1999 -28.65%
130 Jewish Emigration and U.S.-USSR Relations 0.2087 0.1746 -16.33% 0.1765 -15.45%
138 Iranian Support for Lebanese Hostage-takers 0.4398 0.4429 0.69% 0.3528 -19.80%
146 Negotiating an End to the Nicaraguan Civil War 0.0346 0.0682 97.41% 0.0866 150.43%
150 U.S. Political Campaign Financing 0.2672 0.2323 -13.08% 0.2688 0.59%

All Queries 0.2122 0.1996 -5.94%* 0.2107 -0.73%*

Table 4. Comparison of the bigram topic model (λ = 0.7), LDA collocation model (λ = 0.9) and the
topical n-gram Model (λ = 0.8) on TREC retrieval performance (average precision). * indicates sta-
tistically significant differences in performance with 95% confidence according to the Wilcoxon test.
TNG performs significantly better than other two models overall.

and the behaviors are more possibly due to randomness.

5 Conclusions

In this paper, we have presented the topical n-gram
model. The TNG model automatically determines to form
an n-gram (and further assign a topic) or not, based on its
surrounding context. Examples of topics found by TNG
are more interpretable than its LDA counterpart. We also
demonstrate how TNG can help improve retrieval perfor-
mance in standard ad-hoc retrieval tasks on TREC collec-
tions over its two special-case n-gram based topic models.

Unlike some traditional phrase discovery methods, the
TNG model provides a systematic way to model (topical)
phrases and can be seamlessly integrated with many proba-
bilistic frameworks for various tasks such as phrase discov-
ery, ad-hoc retrieval, machine translation, speech recogni-
tion and statistical parsing.

Evaluating n-gram based topic models is a big challenge.
As reported in [22], the bigram topic models have only been
shown to be effective on hundreds of documents, and also
we have not seen a formal evaluation of the unpublished
LDA collocation models. To the best of our knowledge, our
paper presents the very first application of all three n-gram
based topic models on Gigabyte collections, and a novel
way to integrate n-gram based topic models into the lan-
guage modeling framework for information retrieval tasks.

Appendix
A Gibbs Sampling Derivation for the Topical

N -grams Model

We begin with the joint distribution
P (w,x, z|α, β, γ, δ). We can take advantage of con-

jugate priors to simplify the integrals. All symbols are
defined in Section 2.

P (w, z,x|α, β, γ, δ)

=
∫∫∫ D∏

d=1

Nd∏
i=1

(P (w(d)
i |x(d)

i , φ
z
(d)
i

, σ
z
(d)
i
w

(d)
i−1

)

P (x(d)
i |ψz(d)

i−1w
(d)
i−1

))
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p(φz|β)dΦ
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(
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Using the chain rule and Γ(α) = (α− 1)Γ(α− 1), we can
obtain the conditional probability conveniently,
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Or equivalently,
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