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ABSTRACT
Hidden Markov models and linear-chain conditional random
fields (CRFs) are applicable to many tasks in spoken lan-
guage processing. In large state spaces, however, training
can be expensive, because it often requires many iterations
of forward-backward. Beam search is a standard heuristic for
controlling complexity during Viterbi decoding, but during
forward-backward, standard beam heuristics can be danger-
ous, as they can make training unstable. We introducesparse
forward-backward, a variational perspective on beam meth-
ods that uses an approximating mixture of Kronecker delta
functions. This motivates a novelminimum-divergence beam
criterion based on minimizing KL divergence between the re-
spective marginal distributions. Our beam selection approach
is not only more efficient for Viterbi decoding, but also more
stable within sparse forward-backward training. For a stan-
dard text-to-speech problem, we reduce CRF training time
fourfold—from over a day to six hours—with no loss in ac-
curacy.

1. INTRODUCTION

Model optimization for finite state transducers with large state
spaces can be slow, because standard estimation techniques,
such as expectation maximization and conditional maximum
likelihood, often require repeatedly running foward-backward
over the training set. This is especially problematic when
the state space is large, because forward-backward requires
quadratic time in the number of states. During Viterbi de-
coding, a standard technique to address this problem isbeam
search, that is, ignoring variable configurations whose esti-
mated max-marginal is sufficiently low. Beam search is es-
sential to practical recognition systems [1, 2]. For sum-product
inference methods such as forward-backward, folk wisdom
exists in the community that beam methods can be effective.
However, they can also be dangerous, because standard beam
selection criteria can inappropriately discard probability mass
in a way that makes optimization unstable. Perhaps for this
reason they have received little attention in the literature.

In this paper, we introduce a perspective on beam search
that motivates its use within sum-product inference. In par-
ticular, we cast beam search as a variational procedure that

approximates a distribution with a large state space by a mix-
ture of many fewer Kronecker delta functions. This motivates
sparse forward-backward, a novel message-passing algorithm
in which approximate marginal distributions are compressed
after each message pass. Essentially, this extends beam search
from max-product inference to sum-product. Our perspective
also motivates theminimum-divergence beam, a new beam
criterion that selects a compressed marginal distributionwithin
a fixed Kullback-Leibler (KL) divergence of the true marginal.
Not only does this criterion perform better than standard beam
criteria for Viterbi decoding, it iteracts more stably withmodel
optimization.

The contributions of this paper are: (1) proposingsparse
forward-backward as a fast method for computing marginals
during training of hidden Markov models (HMMs) and con-
ditional random fields (CRFs), (2) proposing the minimum-
divergence criterion for selecting the beam, (3) experimen-
tal comparison of minimum divergence to other criteria for
Viterbi beam search, and (4) experimental comparison of min-
imum divergence to other criteria for CRF training on the
well-known NetTalk text-to-speech data [3].

2. BACKGROUND AND NOTATION

In this section, we present our notation for hidden Markov
models (HMMs) and conditional random fields (CRFs). We
also briefly review current techniques for CRF training.

HMMs are a classical type of directed graphical model
for sequence data. Define an observation sequence of dis-
crete random variables asx = (x1, . . . , xT ) and a sequence
of discrete random variables for the state (label) variables as
y = (y1, . . . , yT ). Then an HMM models the sequence prob-
ability as

p(y,x) =

T
∏

t=1

p(xt|yt)p(yt|yt−1), (1)

where for simplicity we definep(y1|y0) = p(y1). During in-
ference and parameter estimation, we are often interested in
computing marginal distributionsp(yt|x) for all time steps
t. During decoding, we are interested in efficiently com-



puting the most probable state sequencey, that is, y∗ =
argmaxy p(y|x).

A conditional random field (CRF) [4] models the condi-
tional distributionp(y|x) directly. A first-order, linear-chain
CRF is defined as:

p(y|x) =
1

Z(x)

∏

t

Ψt(yt, yt+1,x), (2)

whereZ(x) =
∑

y

∏

t Ψt(yt, yt+1,x) is a normalizing factor
over all output configurations. A CRF is parameterized using
feature functions{fk} such that

Ψt(yt, yt+1,x) = exp

(

∑

k

λkfk(yt, yt+1,x)

)

, (3)

whereλk are the parameters or feature weights for the model.
Training of a CRF is typically done by maximizing the

conditional log-likelihood of fully-observed training dataD =
{x̃i, ỹi}

N
i=1. If Ft(y,x) = {fk(yt, yt+1,x)} denotes the vec-

tor of feature values at timet, andF(y,x) =
∑

t Ft(y,x)
denotes theglobal feature function, then the gradient of the
conditional log likelihoodL =

∑

i log p(ỹi|x̃i, λ) with re-
spect to the model parametersλ = {λk} is given by

∇λL =
∑

i

(

F(ỹi, x̃i)− Ep

〈

F(yi, x̃i)
〉

)

, (4)

whereEp〈·〉 denotes the expectation under the distribution
p = p(yi|x̃i, λ). It is important to observe that this requires
performing inference once for each sequence, per iterationof
the optimizer. For data sets with large state spaces, this pro-
cedure can requiredays of computation. Following previous
work [5], we optimize the parameters using limited-memory
BFGS (L-BFGS) [6], a limited-memory variant of a standard
quasi-Newton gradient-based optimizer. This has implica-
tions for inference algorithms that computeEp〈·〉 approxi-
mately, because inaccurate gradients will degrade the BFGS
approximation to the Hessian, severely hurting convergence
of the optimizer.

3. SPARSE FORWARD-BACKWARD

Standard beam search can be viewed as maintaining sparselo-
cal marginal distributions such that together they are as close
as possible to a large distribution. In this section, we formal-
ize this intuition using a variational argument, which moti-
vates our new beam criterion for sparse forward-backward.

Consider a discrete distributionp(y), wherey is assumed
to have very many possible configurations. We approximate
p by a sparse distributionq, which we write as a mixture of
Kronecker delta functions:

q(y) =
∑

i∈I

qiδi(y), (5)

whereI = {i1, . . . , ik} is the set of indicesi such thatq(y =
i) is non-zero, andδi(y) = 1 if y = i. We refer to the setI as
the beam and its cardinality|I| as theweight of the beam.

Consider the problem of finding the distributionq(y) of
smallest weight such that KL(q‖p) ≤ ǫ. First, suppose the
set I = {i1, . . . , ik} is fixed in advance, and we wish to
choose the probabilitiesqi to minimize KL(q‖p). Then the
optimal choice is simplyqi = pi/

∑

i∈I pi, a result which
can be verified using Lagrange multipliers on the normaliza-
tion constraint ofq.

Second, suppose we wish to determine the set of indicesI
of a fixed sizek which minimize KL(q‖p). Then the optimal
choice is whenI = {i1, . . . , ik} consists of the indices of
the largestk values of the discrete distributionp. To see this,
first defineZ(I) =

∑

i∈I pi. Then the optimal approximating
distribution is:

arg min
q

KL(q‖p) = arg min
I

{

arg min
{qi}

∑

i∈I

qi log
qi

pi

}

(6)

= arg min
I

{

∑

i∈I

pi

Z(I)
log

pi/Z(I)

pi

}

(7)

= arg max
I

{

log Z(I)
}

(8)

That is, the optimal choice of indices is the one that retains
most probability mass. This means that it is straightforward
to find the discrete distributionq of minimal weight such that
KL(q||p) ≤ ǫ. We sort the elements of the probability vec-
tor p, truncate afterlog Z(I) exceeds−ǫ, and renormalize to
obtainq.

To apply these ideas to forward-backward in sequence
models, essentially we compress the marginal beliefs after
every message pass. We call this methodsparse forward-
backward, which we define as follows. Letαt(i) denote the
forward messages,βt(i) the backward messages, andγt(i) =
αt(i)βt(i) be the computed marginals. We initializeβt(j) =
1 for all time stepst and statesi andj. Then the sparse for-
ward recursion is:

1. Pass the message in the standard way:

αt(j)←
∑

i

Ψt(i, j)αt−1(i) (9)

2. Compute the new dense beliefγt as

γt(j) ∝ αt(j)βt(j) (10)

3. Compress into a sparse beliefγ′(j), maintaining
KL(γ′‖γ) ≤ ǫ. Call the resulting beamIt.

4. Compressαt(j) to respect the new beamIt.

The backward recursion is defined similarly. Note that in ev-
ery compression operation, the beamIt is recomputed from
scratch; therefore, during the backward pass, variable config-
urations can both leave and enter the beam on the basis of
backward information. Just as in standard forward-backward,
it can be shown by recursion the sum of final alphas yields the
mass of the beam. That is, ifI is the set of all state sequences



in the beam, then
∑

j aT (j) =
∑

y∈I

∏

t Ψt(yt, yt−1,x).
Therefore, because backward revisions to the beam do not de-
crease the local sum of betas, they do not damage the quality
of the global beam over sequences.

The criterion in step 3 for selecting the beam is novel, and
we call it theminimum-divergence criterion. Alternatively, we
could take the topN states, or all states within a threshold. In
the next section we will compare to these alternate criteria.

Finally, we discuss a few practical considerations. We
have found improved results by adding a minimum belief size
constraintK, which prevents a belief stateγ′

t(j) from being
compressed belowK non-zero entries. Also, we have found
that the minimum-divergence criterion usually finds a good
beam after a single forward pass. Minimizing the number of
passes is desirable, because if finding a good beam requires
many forward and backward passes, one may as well do exact
forward-backward.

4. RESULTS AND ANALYSIS

In this section we evaluate sparse forward-backward for both
max-product and sum-product inference in HMMs and CRFs,
using both synthetic data and the well known NetTalk text-to-
speech data set.

4.1. Decoding Experiments

While our primary focus is on sparse forward-backward dur-
ing training, in this section we compare minimum divergence
to traditional beam search criteria during Viterbi decoding.
We generate synthetic data from an HMM of length75. Tran-
sition matrix entries are sampled from a Dirichlet withα = .1
and emission matrices are generated from a mixture of two
distributions: (1) a low entropy, sparse conditional distribu-
tion with 10 non-zero elements and (2) a high entropy Dirich-
let with α = 104, with priors of.75 and.25 respectively. The
goal is to simulate a regime where most states are highly in-
formative about their destination, but a few are less informa-
tive. We compare our minimum-divergence criterion against
two traditional beam search criteria: (1) a fixed beam size,
and (2) an adaptive beam where message entries are retained
if their log score is within a fixed threshold of the best so
far. Minimum divergence usingKL ≤ 0.001 and minimum
beam size|Ii| ≥ 4 finds the exact Viterbi solution with an
average of only9.6 states per variable. On the other hand, the
fixed beam requires between20 and25 states, and the simple
threshold beam requires30.4 states per variable to achieve the
same accuracy. We have similar results on the NetTalk data.

4.2. Training Experiments

In this section, we present results showing that sparse forward-
backward can be embedded within CRF training, yielding sig-
nificant speedups in training time with no loss in testing per-
formance.

First, we train CRFs on synthetic data generated from a
100 state HMM generated in the same manner as in the pre-
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Fig. 1. Learning curves for CRF training on synthetic data. Sparse
forward-backward has the same accuracy as exact training with less
than a quarter of the training time. Other beam criteria are either
slower or less robust than minimum divergence.

vious section. We use50 sequences for training and50 se-
quences for testing. In all cases we use exact Viterbi decoding
to compute testing accuracy.

Figure 1 shows learning curves plotting log likelihood on
the training set against computation time in seconds. We
compare five different methods: (1) the minimum-divergence
beam withKL ≤ 0.5, |Ii| ≥ 30, (2) a small fixed beam of
|Ii| = 30, (3) a larger fixed beam, (4) a threshold beam, and
(5) exact forward backward. Both the larger fixed beam and
the threshold beam are calibrated to explore on average the
same number of states as the minimum-divergence beam.

Compared to exact forward backward, the minimum di-
vergence beam uses one-fourth of the time of exact training
with no loss in accuracy. The larger fixed beam is designed
to test how important it is for the beam to be adaptive, be-
cause this fixed beam uses the average number of states used
by our minimum-divergence criterion. Although minimum
divergence and the larger fixed beam converge to the same
solution, minimum divergence finishes faster, indicating that
the adaptive beam does improve training time. Most of the
benefit occurs later in training, as the model becomes farther
from uniform.

The small fixed beam performs poorly, because the noisy
gradient computation causes our L-BFGS optimizer to termi-
nate early. Finally, the threshold beam results in somewhat
inaccurate gradients, but L-BFGS does terminate normally.
However, the recognition accuracy of the final model is low,
at67.1%.

Finally, we present results training on the real-world NetTalk
data set [3]. The task is to produce the proper phones given
a string of letters as input. The data consists of 20,008 En-
glish words. In Figure 2 we present run time, model likeli-
hood and accuracy results for a52-state CRF for the NetTalk
problem that is trained on 19075 examples and tested on 934
examples. In CRFs without latent variables, as here, choiceof
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Fig. 2. Learning curves for CRF training on NetTalk. Sparse
forward-backward (final test accuracy of91.7%) performs equiva-
lently to exact training (91.6%) using only a quarter of the training
time. A fixed-size beam yields unstable results (85.7%).

initialization does not change the final solution, because the
penalized likelihood for CRFs is strictly concave. But good
initialization can still reduce the number of gradient steps re-
quired to find the optimum. Therefore, we initialize the CRF
parameters using a subset of12% of the data, before training
on the full data until convergence. Beam methods are used
both during this initialization period and during the complete
training run. We compare the minimum divergence beam with
KL ≤ .005 and |Ii| ≥ 10 to a fixed beam(|Ii| = 20), a
threshold beam (set to average36 states per time step), and
exact forward backward. After the initialization period, the
threshold beam has test set accuracy of67%, while minimum
divergence, the fixed-sized beam, and exact forward back-
ward all have accuracy on the test set of74%.

After the complete training run, exact forward-backward
training results in a test set accuracy of91.6%. The fixed
beam terminates normally, but with very noisy gradients in
the final iteration, resulting in a test accuracy of only85.7%.
The threshold beam results in gradient estimates that are so
noisy that our L-BFGS optimizer is unable to take a single
complete step. In contrast, minimum divergence achieves an
accuracy of91.7% in less than one-quarter of the time of exact
forward-backward.

5. RELATED WORK

Although beam search is commonly used for Viterbi decod-
ing [1], we are unaware of published descriptions of its use
during forward-backward. In the probabilistic graphical mod-
els community, there is related work on zero-compression in
clique trees [7], described in [8]. Their technique considers
every factor in a clique tree, and sets the smallest factor val-
ues to zero, with the constraint that the total mass of the fac-
tor does not fall below a fixed valueδ. In contrast to our
work, they prune the model’s factors once before performing
inference, whereas we dynamically prune the beliefs during

inference. Indeed, in our method the beam can change during
inference as new information arrives from other parts of the
model. There is also closely related work in sparse loopy be-
lief propagation in computer vision [9], but this does not use
the minimum-divergence beam.

6. CONCLUSIONS

We have presented a principled method for significantly speed-
ing up decoding and learning tasks in HMMs and CRFs. We
also have presented experimental work illustrating the utility
of our approach. As future work, we believe a promising av-
enue of exploration would be to explore adaptive strategies
involving interaction of our L-BFGS optimizer, detecting ex-
cessively noisy gradients and automatically settingǫ values.
While the results we have presented here are with HMMs and
linear-chain CRFs, we believe this line of work can be gener-
alized to other structures.
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