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Abstract

Discriminative training of graphical models
can be expensive if the variables have large
cardinality, even if the graphical structure is
tractable. In such cases, pseudolikelihood is
an attractive alternative, because its running
time is linear in the variable cardinality, but
on some data its accuracy can be poor. Piece-
wise training (Sutton & McCallum, 2005)
can have better accuracy but does not scale
as well in the variable cardinality. In this
paper, we introduce piecewise pseudolikeli-
hood, which retains the computational effi-
ciency of pseudolikelihood but can have much
better accuracy. On several benchmark NLP
data sets, piecewise pseudolikelihood has bet-
ter accuracy than standard pseudolikelihood,
and in many cases nearly equivalent to max-
imum likelihood, with five to ten times less
training time than batch CRF training.

1. Introduction

Large-scale discriminative graphical models are be-
coming more common in many applications, includ-
ing computer vision, natural language processing, and
bioinformatics. Such models can require a large
amount of training time, however, because training
requires performing inference, which is intractable for
general graphical structures.

Even tractable models, however, can be difficult to
train if some variables have large cardinality. For
example, consider a series of processing steps of a
natural-language sentence (Sutton et al., 2004; Finkel
et al., 2006), which might begin with part-of-speech
tagging, continue with more detailed syntactic pro-
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cessing, and finish with some kind of semantic analy-
sis, such as relation extraction or semantic entailment.
This series of steps might be modeled as a simple linear
chain, but each variable has an enormous number of
outcomes, such as the number of parses of a sentence.
In such cases, even training using forward-backward is
infeasible, because it is quadratic in the variable car-
dinality. Thus, we desire approximate training algo-
rithms not only that are subexponential in the model’s
treewidth, but also that scale well in the variable car-
dinality.

Pseudolikelihood (PL) (Besag, 1975) is a classical
training method that addresses both of these issues,
both because it requires no propagation and also be-
cause its running time is linear in the variable cardinal-
ity. Although in some situations pseudolikelihood can
be very effective (Parise & Welling, 2005; Toutanova
et al., 2003), in other applications, its accuracy can be
poor.

An alternative that has been employed occasionally
throughout the literature is to train independent clas-
sifiers for each factor and use the resulting parame-
ters to form a final global model. Recently, Sutton
and McCallum (2005) analyze this piecewise estima-
tion method, finding that it performs well when the
local features are highly informative, as can be true in
a lexicalized NLP model with thousands of features.
On the NLP data we consider in this paper, piece-
wise performs better than pseudolikelihood, sometimes
by a very large amount. So piecewise training can
have good accuracy, however, unlike pseudolikelihood
it does not scale well in the variable cardinality.

In this paper, we present and analyze a hybrid method,
called piecewise pseudolikelihood (PWPL), that com-
bines the advantages of both approaches. Essentially,
while pseudolikelihood conditions each variable on all
of its neighbors, PWPL conditions only on those neigh-
bors within the same piece of the model, for exam-
ple, that share the same factor. This is illustrated
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Figure 1. Example of node splitting. Left is the original
model, right is the version trained by piecewise. In this
example, there are no unary factors.

in Figure 2. Remarkably, although PWPL has the
same computational complexity as pseudolikelihood,
on real-world NLP data, its accuracy is significantly
better. In other words, PWPL behaves more like
piecewise than like pseudolikelihood. The training
speed-up of PWPL can be significant even in linear-
chain CRFs, because forward-backward training is
quadratic in the variable cardinality.

Thus, the contributions of this paper are as follows.
The main contribution is in proposing piecewise pseu-
dolikelihood itself (Section 3.1). In the course of ex-
plaining PWPL, we present a new view of piecewise
training as performing maximum likelihood on a trans-
formation of the original graph (Section 2.2). This
viewpoint allows us to show that under certain condi-
tions, PWPL converges to the piecewise solution in the
asymptotic limit of infinite data (Section 3.2). In addi-
tion, it provides some insight into when PWPL may be
expected to do well and to do poorly, an insight that
we verify on synthetic data (Section 4.1). Finally, we
evaluate PWPL on several real-world NLP data sets
(Section 4.2), finding that it performs often compara-
bly to piecewise training and to maximum likelihood,
and on all of our data sets PWPL has higher accuracy
than pseudolikelihood. Furthermore, PWPL can be as
much as ten times faster than batch CRF training.

2. Piecewise Training

2.1. Background

In this paper, we are interested in estimating the con-
ditional distribution p(y|x) of a discrete output vector
y given an input vector x. We model p by a factor
graph G with variables s ∈ S and factors {ψa}A

a=1 as

p(y|x) =
1

Z(x)

A∏
a=1

ψa(ya,xa). (1)

A conditional distribution which factorizes in this way
is called a conditional random field (Lafferty et al.,

Figure 2. Illustration of the difference between piecewise
pseudolikelihood (PWPL) and standard pseudolikelihood.
In standard PL, at left, the local term for a variable ys

is conditioned on its entire Markov blanket. In PWPL,
at right, each local term conditions only on the neighbors
within a single factor.

2001; Sutton & McCallum, 2006). Typically, each fac-
tor is modeled in an exponential form

ψa(ya,xa) = exp{λ>a fa(ya,xa)}, (2)

where λa is real-valued parameter vector, and fa re-
turns a vector of features or sufficient statistics over the
variables in the set a. The parameters of the model
are the set Λ = {λa}A

a=1, and we will be interested
in estimating them given a sample of fully observed
input-output pairs D = {(x(i),y(i))}N

i=1.

Maximum likelihood estimation of Λ is intractable for
general graphs, so parameter estimation is performed
approximately. One approach is to approximate the
partition function logZ(x) directly, such as by MCMC
or variational methods. A second, related approach is
to estimate the parameters locally, that is, to train
them using an approximate objective function that
does not require global computation. We focus in this
paper on two local learning methods: pseudolikelihood
and piecewise training.

Pseudolikelihood (Besag, 1975) is a classical approxi-
mation that simultaneously classifies each node given
its neighbors in the graph. For a variable s, let N(s)
be the set of all of its neighbors, not including s itself.
Then the pseudolikelihood is defined as

`pl(Λ) =
∑
s∈G

log p(ys|yN(s),x),

where the conditional distributions are

p(ys|yN(s),x) =
∏

a3s ψa(ys, yN(s),xa)∑
y′

s

∏
a3s ψa(y′s, yN(s),xa)

. (3)

where by a 3 s means the set of all factors a that
depend on the variable s. In other words, this is a sum
of conditional log likelihoods, where for each variable
we condition on the true values of its neighbors in the
training data.



Piecewise Pseudolikelihood for Efficient Training of CRFs

It is a well-known result that if the model family
includes the true distribution, then pseudolikelihood
converges to the true parameter setting in the limit
of infinite data (Gidas, 1988; Hyvarinen, 2006). One
way to see this is that pseudolikelihood is attempt-
ing to match all of model conditional distributions to
the data. If it succeeds in matching them all exactly,
then a Gibbs sampler run on the model distribution
will have the same invariant distribution as a Gibbs
sampler run on the true data distribution.

Piecewise training is a heuristic method that has been
applied in scattered places in the literature, and has
recently been studied more systematically (Sutton &
McCallum, 2005). The intuition is that if each factor
ψ(ya,xa) can on its own accurately predict ya from xa,
then the prediction of the global factor graph will also
be accurate. Formally, piecewise training maximizes
the objective function

`PW(Λ) =
∑

a

log
ψa(ya,xa)∑
y′

a
ψa(y′a,xa)

. (4)

The explanation for the name piecewise is that each
term in (4) corresponds to a “piece” of the graph, in
this case a single factor, and that term would be the ex-
act likelihood of the piece if the rest of the graph were
omitted. From this view, pieces larger than a single
factor are certainly possible, but we do not consider
them in this paper. Another way of viewing piecewise
training is that it is equivalent to approximating logZ
by the Bethe energy with uniform messages, as would
be the case after running 0 iterations of BP (Sutton &
Minka, 2006).

An important observation is that the denominator of
(3) sums over assignments to a single variable, whereas
the denominator of (4) sums over assignments to an
entire factor, which may be a much larger set. This
is why pseudolikelihood can be much more computa-
tionally efficient than piecewise when the variable car-
dinality is large.

2.2. Node-Splitting View

In this section, we present a novel view of piecewise
training that will be useful later. The piecewise like-
lihood (4) can be viewed as the exact likelihood in
a transformation of the original graph. In the trans-
formed graph, we split the variables, adding one copy
of each variable for each factor that it participates in,
as pictured in Figure 1. We call the transformed graph
the node-split graph.

Formally, the splitting transformation is as follows.
Given a factor graph G, create a new graph G′ with
variables {yas}, where a ranges over all factors in G

and s over all variables in a. For any factor a, let
πa map variables in G to their copy in G′, that is,
πa(ys) = yas for any variable s in G. Finally, for each
factor ψa(ya, θ) in G, add a factor ψ′a to G′ as

ψ′a(πa(ya), θ) = ψa(ya, θ). (5)

Clearly, piecewise training in the original graph is
equivalent to exact maximum likelihood training in the
node-split graph. The benefit of this viewpoint will
become apparent when we describe piecewise pseudo-
likelihood in the next section.

3. Piecewise Pseudolikelihood

3.1. Definition

The main motivation of piecewise training is computa-
tional efficiency, but in fact piecewise does not always
provide a large gain in training time over other ap-
proximate methods. In particular, the time required
to evaluate the piecewise likelihood at one parameter
setting is the same as is required to run one iteration
of belief propagation (BP). More precisely, piecewise
training uses O(mK) time, where m is the maximum
number of assignments to a single variable ys and K is
the size of the largest factor. Belief propagation also
uses O(mK) time per iteration; thus, the only com-
putational savings over BP is a factor of the number
of BP iterations required. In tree-structured graphs,
piecewise training is no more efficient than forward-
backward.

To address this problem, we propose piecewise pseu-
dolikelihood. Piecewise pseudolikelihood (PWPL) is
defined as:

`pwpl(Λ;x,y) =
∑

a

∑
s∈a

log pLCL(ys|ya\s,x, λa), (6)

where (x,y) are an observed data point, the set a\s
means all of the variables in the domain of factor a
except for s, and pLCL is a locally-normalized score
similar to a conditional probability and defined below.

In other words, the piecewise pseudolikelihood is a sum
of local conditional probabilities. Each variable s par-
ticipates as the domain of a conditional once for each
factor that it neighbors. As in piecewise training, the
local conditional probabilities pLCL are not the true
probabilities according to the model, but are a quan-
tity computed locally from a single piece (in this case,
a single factor). The local probabilities pLCL are de-
fined as

pLCL(ys|ya\s,x, λa) =
ψa(ys,ya\s,xa)∑
y′

s
ψa(y′s,ya\s,xa)

. (7)
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Then given a data set D = {(x(i),y(i))}, we select the
parameter setting that maximizes

Opwpl(Λ;D) =
∑

i

`pwpl(Λ;x(i),y(i))−
∑

a

‖λa‖2

2σ2
, (8)

where the second term is a Gaussian prior on the pa-
rameters to reduce overfitting. The piecewise pseu-
dolikelihood is convex as a function of Λ, and so its
maximum can be found by standard techniques. In
the experiments below, we use limited-memory BFGS
(Nocedal & Wright, 1999).

Compared to standard piecewise, the main advantage
of PWPL is that training requires only O(m) time
rather than O(mK). Compared to pseudolikelihood,
the difference is that whereas in pseudolikelihood each
local term conditions on the entire Markov blanket, in
PWPL each local term conditions only on a variable’s
neighbors within a single factor. For this reason, the
local terms in PWPL are not true conditional distribu-
tions according to the model. The difference between
PWPL and pseudolikelihood is illustrated in Figure 2.
In the next section, we discuss why in some situations
this can cause PWPL to have better accuracy than
pseudolikelihood.

3.2. Analysis

PWPL can be readily understood from the node-split
viewpoint. In particular, the piecewise pseudolikeli-
hood is simply the standard pseudolikelihood applied
to the node-split graph. In this section, we use the
asymptotic consistency of standard pseudolikelihood
to gain insight into the performance of PWPL.

Let p∗(y) be the true distribution of the data, after the
node splitting transformation has been applied. Both
PWPL and standard piecewise cannot distinguish this
distribution from the distribution pNS on the node-split
graph that is defined by the product of marginals

pNS(y) =
∏

a∈G′

p∗(ya), (9)

where p∗(ya) is the marginal distribution of the vari-
ables in factor a according to the true distribution.
By that we mean that the piecewise likelihood of any
parameter setting Λ when the data distribution is ex-
actly the true distribution p∗ is equal to the piecewise
likelihood of Λ when the data distribution equals the
distribution pNS, and similarly for PWPL.

So equivalently, we suppose that we are given an in-
finite data set drawn from the distribution pNS. Now,
the standard consistency result for pseudolikelihood is
that if the model class contains the generating distri-
bution, then the pseudolikelihood estimate converges

asymptotically to the true distribution. In this setting,
that implies the following statement. If the model fam-
ily defined by G′ contains pNS, then piecewise pseudo-
likelihood converges in the limit to the same parameter
setting as standard piecewise.

Because this is an asymptotic statement, it provides
no guarantee about how PWPL will perform on real
data. Even so, it has several interesting consequences
that provide insight into the method. First, it may
impact what sort of model is conducive to PWPL. For
example, consider a Potts model with unary factors
ψ(ys) = [1 eθs ]> for each variable s, and pairwise
factors

ψ(ys, yt) =
(
eλst 1
1 1.

)
, (10)

for each edge (s, t), so that the model parameters are
{θs} ∪ {λst}. Then the above condition for PWPL
to converge in the infinite data limit will never be
satisfied, because the pairwise piece cannot represent
the marginal distribution of its variables. In this case,
PWPL may be a bad choice, or it may be useful to con-
sider pieces that contain more than one factor, which
we do not consider in this paper. In particular, shared-
unary piecewise (Sutton & Minka, 2006) may be ap-
propriate.

Second, this analysis provides intuition about the dif-
ferences between piecewise pseudolikelihood and stan-
dard pseudolikelihood. For each variable s with neigh-
borhood N(s), standard pseudolikelihood approxi-
mates the model marginal p(yN(s)) over the neighbor-
hood by the empirical marginal p̃(yN(s)). We expect
this approximation to work well when the model is a
good fit, and the data is ample.

In PWPL, we perform the node-splitting transforma-
tion on the graph prior to maximizing the pseudolike-
lihood. The effect of this is to reduce each variable’s
neighborhood size, that is, the cardinality of N(s).

This has two potential advantages. First, because the
neighborhood size is small, PWPL may converge to
piecewise faster than pseudolikelihood converges to the
exact solution. Of course, the exact solution should be
better than piecewise, so whether to prefer standard
PL or piecewise PL depends on precisely how much
faster the convergence is. Second, the node-split model
may be able to exactly model the marginal of its neigh-
borhood in cases where the original graph may not be
able to model its larger neighborhood. Because the
neighborhood is smaller, the pseudolikelihood conver-
gence condition may hold in the node-split model when
it does not in the original model. In other words, stan-
dard pseudolikelihood requires that the original model
is a good fit to the full distribution. In contrast, we ex-
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Figure 3. Learning curves for PWPL and pseudolikelihood.
For smaller amounts of training data PWPL performs bet-
ter than pseudolikelihood, but for larger data sets, the sit-
uation is reversed.

pect piecewise pseudolikelihood to be a good approxi-
mation to piecewise when each individual piece fits the
empirical distribution well. The performance of piece-
wise pseudolikelihood need not require the node-split
model to represent the distribution across pieces.

Finally, this analysis suggests that we might expect
piecewise pseudolikelihood to perform poorly in two
regimes: First, if so much data is available that
pseudolikelihood has asymptotically converged, then
it makes sense to use pseudolikelihood rather than
piecewise pseudolikelihood. Second, if features of the
local factors cannot fit the training data well, then
we expect the node-split model to fit the data quite
poorly, and piecewise pseudolikelihood cannot possi-
bly do well.

4. Experiments

4.1. Synthetic Data

In the previous section, we argued intuitively that
PWPL may perform better on small data sets, and
pseudolikelihood on larger ones. In this section we
verify this intuition in experiments on synthetic data.
The general setup is replicated from Lafferty et al.
(2001). We generate data from a second-order HMM
with transition probabilities

pα(yt|yt−1, yt−2) = αp2(yt|yt−1, yt−2)
+ (1− α)p1(yt|yt−1) (11)

ML PL PW PWPL
POS

Accuracy 94.4 94.4 94.2 94.4
Time (s) 33846 6705 23537 3911

Chunking
Chunk F1 91.4 90.3 91.7 91.4
Time (s) 24288 1534 5708 766

Named-entity
Chunk F1 90.5 85.1 90.5 90.3
Time (s) 52396 8651 6311 4780

Table 1. Comparison of piecewise pseudolikelihood to stan-
dard piecewise and to pseudolikelihood on real-world NLP
tasks. Piecewise pseudolikelihood is in all cases compara-
ble to piecewise, and on two of the data sets superior to
pseudolikelihood.

BP PL PW PWPL

Start-Time 96.5 82.2 97.1 94.1
End-Time 95.9 73.4 96.5 90.4
Location 85.8 73.0 88.1 85.3
Speaker 74.5 27.9 72.7 65.0

Table 2. F1 performance of PWPL, piecewise, and pseu-
dolikelihood on information extraction from seminar an-
nouncements. Both standard piecewise and piecewise pseu-
dolikelihood outperform pseudolikelihood.

and emission probabilities

pα(xt|yt, xt−1) = αp2(xt|yt, xt−1)
+ (1− α)p1(xt|yt). (12)

Thus, for α = 0, the generating distribution pα is a
first-order HMM, and for α = 1, it is an autoregres-
sive second-order HMM. We compare different approx-
imate methods for training a first-order CRF. There-
fore higher values of αmake the learning problem more
difficult, because the model family does not contain
second-order dependencies. We use five states and
26 possible observation values. For each setting of α,
we sample 25 different generating distributions. From
each generating distribution we sample 1,000 training
instances of length 25, and 1,000 testing instances. We
use α ∈ {0, 0.1, 0.25, 0.5, 0.75, 1.0}, for 150 synthetic
generating models in all.

First, we find that piecewise pseudolikelihood performs
almost identically to standard piecewise training. Av-
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eraged over the 150 data sets, the mean difference in
testing error between piecewise pseudolikelihood and
piecewise is 0.002, and the correlation is 0.999.

Second, we compare piecewise to traditional pseudo-
likelihood. On this data, pseudolikelihood performs
slightly better overall, but the difference is not sta-
tistically significant (paired t-test; p > 0.1). However,
when we examine the accuracy as a function of training
set size (Figure 3), we notice an interesting two-regime
behavior. Both PWPL and pseudolikelihood seem to
be converging to a limit, and the eventual pseudolikeli-
hood limit is higher than PWPL, but PWPL converges
to its limit faster. This is exactly the behavior intu-
itively predicted by the argument in Section 3.2: that
PWPL can converge to the piecewise solution in less
training data than pseudolikelihood to its (potentially
better) solution.

Of course, the training set sizes considered in Figure 3
are fairly small, but this is exactly the case we are in-
terested in, because on natural language tasks, even
when hundreds of thousands of words of labeled data
are available, this is still a small amount of data com-
pared to the number of useful features.

4.2. Real-World Data

Now, we evaluate piecewise pseudolikelihood on four
real-world NLP tasks: part-of-speech tagging, named-
entity recognition, noun-phrase chunking, and infor-
mation extraction.

For part-of-speech tagging (POS), we report results on
the WSJ Penn Treebank data set. Results are aver-
aged over five different random subsets of 1911 sen-
tences, sampled from Sections 0–18 of the Treebank.
Results are reported from the standard development
set of Sections 19–21 of the Treebank. We use a first-
order linear chain CRF. There are 45 part-of-speech
labels.

For the task of noun-phrase chunking (chunking), we
use a loopy model, the factorial CRF introduced by
Sutton et al. (2004). Factorial CRFs consist of a se-
ries of undirected linear chains with connections be-
tween cotemporal labels. This is a natural model for
jointly performing multiple dependent sequence label-
ing tasks. We consider here the task of jointly predict-
ing part-of-speech tags and segmenting noun phrases
in newswire text. Thus, the FCRF we use has a two-
level grid structure. We report results here on subsets
of 223 training sentences, and the standard test set
of 2012 sentences. Results are averaged over 5 dif-
ferent random subsets. There are 45 different POS
labels, and the three NP labels. We use the same fea-

tures and experimental setup as previous work (Sut-
ton & McCallum, 2005). We report joint accuracy on
(NP, POS) pairs; other evaluation metrics show simi-
lar trends.

In named-entity recognition, the task is to find proper
nouns in text. We use the CoNLL 2003 data set, con-
sisting of 14,987 newswire sentences annotated with
names of people, organizations, locations, and miscel-
laneous entities. We test on the standard development
set of 3,466 sentences. Evaluation is done using pre-
cision and recall on the extracted chunks, and we re-
port F1 = 2PR/P + R. We use a linear-chain CRF,
whose features are described elsewhere (McCallum &
Li, 2003).

Finally, for the task of information extraction, we con-
sider a model with many irregular loops, which is the
skip chain model introduced by Sutton and McCallum
(2004). This model incorporates certain long-distance
dependencies between word labels into a linear-chain
model for information extraction. The idea is to ex-
ploit that when the same word appears multiple times
in the same message, it tends to have the same la-
bel. We represent this by adding edges between out-
put nodes (yi, yj) when the words xi and xj are iden-
tical and capitalized. The task is to extract informa-
tion about seminars from email announcements from
a standard data set (Freitag, 1998). We use the same
features and test/training split as the previous work.
The data is labeled with four fields—Start-Time,
End-Time, Location, and Speaker—and we report
token-level F1 on each field separately.

For all the data sets, we compare to pseudolikelihood,
piecewise training, and conditional maximum likeli-
hood with belief propagation. All of these objective
functions are maximized using limited-memory BFGS.
We use a Gaussian prior with variance σ2 = 10.

Stochastic gradient techniques, such as stochastic
meta-descent (Schraudolph, 1999), would be likely to
converge faster than the baselines we report here, be-
cause all our current results use batch optimization.
However, stochastic gradient can be used with PWPL
just as with standard maximum likelihood. Thus, al-
though the training time of our baseline could likely
be improved considerably, the same is true of our new
approach, so that our comparison is fair.

4.3. Results

For the first three tasks—part-of-speech tagging,
chunking, and NER—piecewise pseudolikelihood and
standard piecewise training have equivalent accuracy
both to each other and to maximum likelihood (Ta-
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ble 1). Despite this, piecewise pseudolikelihood is
much more efficient than standard piecewise (Table 1).
On the named-entity data, which has the fewest labels,
PWPL uses 75% of the time of standard piecewise,
a modest improvement. On the data sets with more
labels, the difference is more dramatic: on the POS
data, PWPL uses 16% of the time of piecewise and
on the chunking data, PWPL needs only 13%. Sim-
ilarly, PWPL is also between is 5 to 10 times faster
than maximum likelihood.

The training times of the baseline methods may appear
relatively modest. If so, this is because for both the
chunking and POS data sets, we use relatively small
subsets of the full training data, to make running this
comparison more convenient. This makes the abso-
lute difference in training time even more meaningful
than it may appear at first. Also, it may appear from
Table 1 that PWPL is faster than standard pseudolike-
lihood, but the apparent difference is due to low-level
inefficiencies in our implementation. In fact the two
algorithms have similar complexity.

On the skip chain data (Table 2), standard piece-
wise performs worse than exact training using BP,
and piecewise pseudolikelihood performs worse than
standard piecewise. Both piecewise methods, however,
perform better than pseudolikelihood.

As predicted in Section 3.2, pseudolikelihood is indeed
a better approximation on the node-split graph. In
Table 1, PL performs much worse than ML, but PWPL
performs only slightly worse than PW. In Table 2, the
difference between PWPL and PW is larger, but still
less than the difference between PL and ML.

5. Discussion and Related Work

Piecewise training and piecewise pseudolikelihood can
both be considered types of local training methods,
that avoid propagation throughout the graph. Such
training methods have recently been the subject of
much interest (Abbeel et al., 2005; Toutanova et al.,
2003; Punyakanok et al., 2005). Of course, the local
training method most closely connected to the cur-
rent work is pseudolikelihood itself. We are unaware
of previous variants of pseudolikelihood that condition
on less than the full Markov blanket.

An interesting connection exists between piecewise
pseudolikelihood and maximum entropy Markov mod-
els (MEMMs) (Ratnaparkhi, 1996; McCallum et al.,
2000). In a linear chain with variables y1 . . . yT , we

can rewrite the piecewise pseudolikelihood as

`pwpl(Λ) =
T∑

t=1

log pLCL(yt|yt−1,x)pLCL(yt−1|yt,x).

(13)

The first part of (13) is exactly the likelihood for
an MEMM, and the second part is the likelihood of
a backward MEMM. Interestingly, MEMMs crucially
depend on normalizing the factors at both training and
test time. To include local normalization at training
time but not test time performs very poorly. But by
adding the backward terms, in PWPL we are able to
drop normalization at test time, and therefore PWPL
does not suffer from label bias.

The current work also has an interesting connection to
search-based learning methods (Daumé III & Marcu,
2005). Such methods learn a model to predict the next
state of a local search procedure from a current state.
Typically, training is viewed as classification, where
the correct next states are positive examples, and al-
ternative next states are negative examples. One view
of the current work is that it incorporates backward
training examples, that attempt to predict the previ-
ous search state given the current state.

Finally, stochastic gradient methods, which make gra-
dient steps based on subsets of the data, have recently
been shown to converge significantly faster for CRF
training than batch methods, which evaluate the gra-
dient of the entire data set before updating the param-
eters (Vishwanathan et al., 2006). Stochastic gradient
methods are currently the method of choice for train-
ing linear-chain CRFs, especially when the data set is
large and redundant. However, as mentioned above,
stochastic gradient methods can also be applied to
piecewise pseudolikelihood. Also, in some cases, such
as in relational learning problems, the data are not iid,
and the model includes explicit dependencies between
the training instances. For such a model, it is unclear
how to apply stochastic gradient, but piecewise pseu-
dolikelihood may still be useful. Finally, stochastic
gradient methods do not address cases in which the
variables have large cardinality, or when the graphical
structure of a single training instance is intractable.

6. Conclusion

We present piecewise pseudolikelihood (PWPL), a lo-
cal training method that is especially attractive when
the variables in the model have large cardinality. Be-
cause PWPL conditions on fewer variables, it can have
better accuracy than standard pseudolikelihood, and
is dramatically more efficient than standard piecewise,
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requiring as little as 13% of the training time.
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