
Efficiently Inducing Features of Conditional Random Fields

Andrew McCallum
Computer Science Department

University of Massachusetts Amherst
Amherst, MA 01003

mccallum@cs.umass.edu

Abstract

Conditional Random Fields (CRFs) are undi-
rected graphical models, a special case of
which correspond to conditionally-trained fi-
nite state machines. A key advantage of
CRFs is their great flexibility to include a
wide variety of arbitrary, non-independent
features of the input. Faced with this free-
dom, however, an important question re-
mains: what features should be used? This
paper presents an efficient feature induction
method for CRFs. The method is founded on
the principle of iteratively constructing fea-
ture conjunctions that would significantly in-
crease conditional log-likelihood if added to
the model. Automated feature induction en-
ables not only improved accuracy and dra-
matic reduction in parameter count, but also
the use of larger cliques, and more freedom
to liberally hypothesize atomic input vari-
ables that may be relevant to a task. The
method applies to linear-chain CRFs, as well
as to more arbitrary CRF structures, such as
Relational Markov Networks, where it corre-
sponds to learning clique templates. Exper-
imental results on named entity extraction
and noun phrase segmentation tasks are pre-
sented.

1 Introduction

Many tasks are best performed by models that have
the flexibility to use arbitrary, overlapping, multi-
granularity and non-independent features. For exam-
ple, in natural language tasks, the need for labeled
data can be drastically reduced by using features that
take advantage of domain knowledge in the form of
word lists, part-of-speech tags, character n-grams, cap-
italization patterns, page layout and font information.
It is difficult to capture such inter-dependent features

with a generative probabilistic model because the de-
pendencies among generated variables should be ex-
plicitly captured in order to reproduce the data. How-
ever, conditional probability models, such as condi-
tional maximum entropy classifiers, need not capture
dependencies among variables that they don’t gener-
ate, but on which they condition. There has been sig-
nificant work, for instance, with such models for greedy
sequence modeling in NLP, e.g. (Ratnaparkhi, 1996;
Borthwick et al., 1998).

Conditional Random Fields (CRFs) (Lafferty et al.,
2001) are undirected graphical models, a special case of
which correspond to conditionally-trained finite state
machines. While based on the same exponential form
as maximum entropy models, they have efficient pro-
cedures for complete, non-greedy finite-state inference
and training. CRFs have achieved empirical success
recently in POS tagging (Lafferty et al., 2001), noun
phrase segmentation (Sha & Pereira, 2003) and Chi-
nese word segmentation (McCallum & Feng, 2003).

Given these models’ great flexibility to include a wide
array of features, an important question that remains
is what features should be used? Some features are
atomic and provided, but since CRFs are log-linear
models, one will also want to use some conjunctions to
gain expressive power. Previous standard approaches
build large set of feature conjunctions by according to
hand-built, general patterns. This can result in ex-
tremely large feature sets, of size in the hundreds of
thousands or millions, e.g. (Sha & Pereira, 2003).

But even with this many parameters, the feature set is
still restricted. For example, in some cases capturing
a word tri-gram is important, however, there is not
sufficient memory or computation to include all word
tri-grams. As the number of overlapping atomic fea-
tures increases, the difficulty and importance of con-
structing only certain feature combinations grows.

This paper presents a feature induction method for
CRFs. Founded on the principle of constructing
only those feature conjunctions that significantly in-

crease log-likelihood, the approach builds on that of
Della Pietra et al. (1997), but is altered to work with
conditional rather than joint probabilities, and with a
mean-field approximation and other modifications to
improve efficiency specifically for a conditional model.
In comparison with traditional approaches, automated
feature induction offers both improved accuracy and
significantly reduction in feature count; it enables the
use of richer, higher-order Markov models; and offers
more freedom to liberally guess about which atomic
features may be relevant to a task.

We present results on two natural language tasks. The
CoNLL named entity recognition shared task consists
of Reuters news articles with tagged entities Person,
Location, Organization and Misc. The data is
quite complex, including foreign person names (such as
Yayuk Basuki and Innocent Butare), a wide diversity
of locations (including sports venues such as The Oval,
and rare location names such as Nirmal Hriday), many
types of organizations (from company names such as
3M, to acronyms for political parties such as KDP, to
location names used to refer to sports teams such as
Cleveland), and a wide variety of miscellaneous named
entities (from software such as Java, to nationalities
such as Basque, to sporting competitions such as 1,000
Lakes Rally).

On this task we currently obtain overall F1 of 89%
by using feature induction with CRFs. CRFs with
fixed, hand-constructed conjunction patterns instead
of feature induction, we reach only about 73%.

On a standard noun phrase segmentation task we
match world-class accuracy while using far less than
an order of magnitude fewer features.

2 Conditional Random Fields

Conditional Random Fields (CRFs) (Lafferty et al.,
2001) are undirected graphical models (also known as
random fields) used to calculate the conditional prob-
ability of values on designated output nodes given val-
ues assigned to other designated input nodes. The
term “random field” has common usage in the sta-
tistical physics and computer vision. In the graphical
modeling community the same models are often known
as “Markov networks”; thus conditional Markov net-
works (Taskar et al., 2002) are the same as conditional
random fields.

Let O be a set of “input” random variables whose
values are observed, and S be a set of “output”
random variables whose values the task requires the
model to predict. The random variables are con-
nected by undirected edges indicating dependencies,
and let C(O,S) be the set of cliques of this graph.
By the Hammersley-Clifford theorem (Hammersley &

Clifford, 1971), CRFs define the conditional probabil-
ity of a set of output values given a set of input values
to be proportional to the product of potential func-
tions on cliques of the graph,

PΛ(s|o) =
1

Zo

∏
c∈C(s,o)

Φc(sc,oc),

where Φc(sc,oc) is the clique potential on clique c, (a
non-negative real value, often determined by an ex-
ponentiated weighted sum over features of the clique,
Φc(sc,oc) = exp(

∑K
k=1 λkfk(sc,oc))), and where Zo

is a normalization factor over all output values, Zo =∑
s′
∏

c∈C(s′,o) Φc(s′c,oc), also known as the partition
function.

In the special case in which the output nodes of
the graphical model are linked by edges in a lin-
ear chain, CRFs make a first-order Markov inde-
pendence assumption, and thus can be understood
as conditionally-trained finite state machines (FSMs).
CRFs of this type are a globally-normalized extension
to Maximum Entropy Markov Models (MEMMs) (Mc-
Callum et al., 2000) that avoid the label-bias prob-
lem (Lafferty et al., 2001). Voted perceptron se-
quence models (Collins, 2002) are approximations to
these CRFs that use stochastic gradient descent and a
Viterbi approximation in training. In the remainder of
this section we introduce the likelihood model, infer-
ence and estimation procedures for linear-chain CRFs.

Now let o = 〈o1, o2, ...oT 〉 be some observed input data
sequence, such as a sequence of words in a text doc-
ument, (the values on T input nodes of the graphical
model). Let S be a set of FSM states, each of which is
associated with a label, l ∈ L, (such as Person). Let
s = 〈s1, s2, ...sT 〉 be some sequence of states, (the val-
ues on T output nodes). The cliques of the graph are
now restricted to include just pairs of states (st−1, st)
that are neighbors in the sequence; connectivity among
input nodes, o, remains unrestricted.1 Linear-chain
CRFs thus define the conditional probability of a state
sequence given an input sequence to be

PΛ(s|o) =
1

Zo
exp

(
T∑

t=1

K∑
k=1

λkfk(st−1, st,o, t)

)
,

where Zo is a normalization factor over all state se-
quences, fk(st−1, st,o, t) is an arbitrary feature func-
tion over its arguments, and λk (ranging from −∞ to
∞) is a learned weight for each feature function. A
feature function may, for example, be defined to have
value 0 in most cases, and have value 1 if and only if
st−1 is state #1 (which may have label Other), and
st is state #2 (which may have label Location), and

1Since the values on the input nodes, o, are known and
fixed, arbitrarily large and complex clique structure there
does not complicate inference.

the observation at position t in o is a word appear-
ing in a list of country names. Higher λ weights make
their corresponding FSM transitions more likely, so
the weight λk in this example should be positive since
words appearing in the list of country names are likely
to be locations.

More generally, feature functions can ask powerfully
arbitrary questions about the input sequence, includ-
ing queries about previous words, next words, and con-
junctions of all these. Nearly universally, however, fea-
ture functions fk do not depend on the value of t other
than as an index into o, and thus parameters λk are
tied across time steps, just as are the transition and
emission parameters in a traditional hidden Markov
model (Rabiner, 1990). Feature functions may have
values from −∞ to ∞, although binary values are tra-
ditional.

CRFs define the conditional probability of a label se-
quence based on total probability over the state se-
quences, PΛ(l|o) =

∑
s:l(s)=l PΛ(s|o), where l(s) is the

sequence of labels corresponding to the labels of the
states in sequence s.

Note that the normalization factor, Zo, is the sum of
the “scores” of all possible state sequences,

Zo =
∑
s∈ST

exp

(
T∑

t=1

K∑
k=1

λkfk(st−1, st,o, t)

)
,

and that the number of state sequences is exponen-
tial in the input sequence length, T . In arbitrarily-
structured CRFs, calculating the normalization factor
in closed form is intractable, and approximation meth-
ods such as Gibbs sampling or loopy belief propagation
must be used. In linear-chain-structured CRFs, as we
have here for sequence modeling, the partition func-
tion can be calculated efficiently in closed form, which
is described next.

2.1 Inference in Linear-chain CRFs

As in forward-backward for hidden Markov models
(HMMs), the probability that a particular transition
was taken between two CRF states at a particular posi-
tion in the input sequence can be calculated efficiently
by dynamic programming. We define slightly modified
“forward values”, αt(si), to be the probability of ar-
riving in state si given the observations 〈o1, ...ot〉. We
set α0(s) equal to the probability of starting in each
state s, and recurse:

αt+1(s) =
∑
s′

αt(s′) exp

(
K∑

k=1

λkfk(s′, s,o, t)

)
.

The backward procedure and the remaining details
of Baum-Welch are defined similarly. Zo is then∑

s αT (s). The Viterbi algorithm for finding the most

likely state sequence given the observation sequence
can be correspondingly modified from its HMM form.

2.2 Training CRFs

The weights of a CRF, Λ = {λ, ...}, are set
to maximize the conditional log-likelihood of la-
beled sequences in some training set, D =
{〈o, l〉(1), ...〈o, l〉(j), ...〈o, l〉(N)},

LΛ =
N∑

j=1

log
(
PΛ(l(j)|o(j))

)
−

K∑
k=1

λ2
k

2σ
,

where the second sum is a Gaussian prior over parame-
ters (with variance σ) that provides smoothing to help
cope with sparsity in the training data.

When the training labels make the state sequence un-
ambiguous (as they often do in practice), the likelihood
function in exponential models such as CRFs is con-
vex, so there are no local maxima, and thus finding
the global optimum is guaranteed.2

It is not, however, straightforward to find it quickly.
Parameter estimation in CRFs requires an iterative
procedure, and some methods require fewer iterations
than others. Iterative scaling is the traditional method
of training these maximum-entropy models (Darroch
et al., 1980; Della Pietra et al., 1997), however it
has recently been shown that quasi-Newton methods,
such as L-BFGS, are significantly more efficient (Byrd
et al., 1994; Malouf, 2002; Sha & Pereira, 2003). This
method approximates the second-derivative of the like-
lihood by keeping a running, finite-sized window of
previous first-derivatives. Sha and Pereira (2003) show
that training CRFs by L-BFGS is several orders of
magnitude faster than iterative scaling, and also much
faster than conjugate gradient.

L-BFGS can simply be treated as a black-box opti-
mization procedure, requiring only that one provide
the first-derivative of the function to be optimized. As-
suming that the training labels on instance j make its
state path unambiguous, let s(j) denote that path, and
then the first-derivative of the log-likelihood is

δL

δλk
=

 N∑
j=1

Ck(s(j),o(j))

−

 N∑
j=1

∑
s

PΛ(s|o(j))Ck(s,o(j))

− λk

σ

where Ck(s,o) is the “count” for feature k given s
and o, equal to

∑T
t=1 fk(st−1, st,o, t), the sum of

2When the training labels do not disambiguate a single
state path, expectation-maximization can be used to fill
in the “missing” state paths. For example, see Teh et al.
(2002)

fk(st−1, st,o, t) values for all positions, t, in the se-
quence s. The first two terms correspond to the differ-
ence between the empirical expected value of feature
fk and the model’s expected value: (Ẽ[fk]−EΛ[fk])N .
The last term is the derivative of the Gaussian prior.

3 Efficient Feature Induction for
CRFs

Typically the features, fk, are based on some num-
ber of hand-crafted atomic observational tests (such
as word is capitalized, or word is “said”, or word ap-
pears in lexicon of country names)—and a large col-
lection of features is formed by making conjunctions
of the atomic tests in certain user-defined patterns,
(for example, the conjunctions consisting of all tests at
the current sequence position conjoined with all tests
at the position one step ahead—producing in one in-
stance perhaps, current word is capitalized and next
word is “Inc”).

Conjunctions important because the model is log-
linear, and the only way to represent certain complex
decision boundaries is to project the problem into a
higher dimensional space comprised of other functions
of multiple variables.

There can easily be over 100,000 atomic tests (many
based on tests for the identity of words in the vocabu-
lary), and ten or more shifted-conjunction patterns—
resulting in several million features (Sha & Pereira,
2003). This large number of features can be pro-
hibitively expensive in memory and computation; fur-
thermore many of these features are irrelevant, and
others that are relevant are excluded.

In response, we wish to use just those conjunctions
(i.e. feature-function-enabling cliques) that will sig-
nificantly improve performance. We start with no fea-
tures, and over several rounds of feature induction: (1)
consider a set of proposed new features (both atomic
observational tests and conjunctions), (2) select for in-
clusion those candidate features that will most increase
the log-likelihood of the correct state path s(j), (3)
train weights for all included features, and (4) iterate
to step (1) until a stopping criteria is reached.

The proposed new features are based on the hand-
crafted observational tests, consisting of singleton
tests, and binary conjunctions of singleton tests with
each other, and with other features currently in the
model. The later allows arbitrary-length conjunctions
to be built. The fact that not all singleton tests are
included in the model gives the designer great freedom
to use a very large variety of observational tests and
a large window of time shifts. Noisy and irrelevant
features—as measured by lack of likelihood gain—will
simply never be selected for inclusion in the model.

As in the previous section, we begin by describing
feature induction for the general case of arbitrarily-
structured CRFs, and then focus on linear-chain
CRFs.

3.1 Feature Induction for
Arbitrarily-Structured CRFs

To measure the effect of adding a new feature, we de-
fine the new conditional model with the additional fea-
ture g having weight µ to have the same form as the
original model (as if this new candidate feature were
included along side the old ones):

PΛ+g,µ(s|o) =
PΛ(s|o) exp

(∑
c∈C(s,o) µ g(sc,oc)

)
Zo(Λ, g, µ)

;

(1)
Zo(Λ, g, µ) def=

∑
s′ PΛ(s′|o) exp(

∑
c∈C(s,o) µ g(sc,oc))

in the denominator is simply the additional portion of
normalization required to make the new function sum
to 1 over all output values.

Following (Della Pietra et al., 1997), we efficiently as-
sess many candidate features in parallel by assuming
that the λ parameters on all old features remain fixed
while estimating the gain, G(g), of a candidate feature,
g. The gain of a feature is defined as the improvement
in log-likelihood the feature provides,

GΛ(g) = max
µ

GΛ(g, µ) = max
µ

LΛ+gµ−LΛ− (µ2/2σ).

(2)
Note that the µ that gives maximum likelihood must
be found. As will be further explained below, in con-
ditional probability models—unlike binary-featured
joint probability models (Della Pietra et al., 1997)—
the optimal value of µ cannot be calculated in closed-
form. An iterative procedure, such as Newton’s
method must be used, and this involves calculating
LΛ+gµ with a new µ for each iteration—thus repeat-
edly performing inference, with a separate Zo for each
training instance.3 (Remember that an “instance”
here is a set of values for all the nodes in a graph.)

With this daunting prospect in mind, we make the fea-
ture gain calculation significantly more time-efficient
for CRFs and for large training sets with two further
reasonable and mutually-supporting approximations:

1. During the iterative gain calculation procedure,
we use a mean field approximation to avoid joint

3In Della Pietra et al’s (1997) feature induction proce-
dure for non-conditional probability models, the partition
function Z could be calculated just once for each Newton
iteration since it did not depend on a conditioning input, o,
but we cannot. However, as they do, we can still share Zo

across the gain calculation for many candidate features, g,
since we both assume that the parameters on old features
remain fixed.

inference over all output variables, and rather
make each a separate, independent inference prob-
lem. In particular, when inferring the distribution
over values of each output node s, we assume that
all other output nodes are fixed at their maxi-
mum likelihood values, (e.g. for sequence prob-
lems, their Viterbi-determined values).
The calculation of the partition function, Z, for
each inference problem thus becomes significantly
simpler since it involves a sum over only the al-
ternative values for a single output node, s—not
a sum over all alternative configurations for the
entire graph, which is exponential in the number
of output nodes in the graph.

2. The first assumption allows us to treat each out-
put node s as a separate inference problem, and
thus gives us the option to choose to skip some of
them. In many tasks, the great majority of the
output nodes are correctly labeled, even in the
early stages of training. (For example, in a named
entity extraction task, nearly all lowercase words
are not named entities; the model learns this very
quickly, and there is little reason to include infer-
ence on these words in the gain calculation.)
We significantly increase efficiency by including in
the gain calculation only those output nodes that
are mislabeled by the current model, (or correctly
labeled only within some margin of the decision
surface).

It is not that joint inference over all output variables is
intractable (after all, it is performed both during esti-
mation of the λs and a test time), but rather that per-
forming full, joint inference repeatedly inside an inner
loop to estimate µ would be extremely time-consuming
and unnecessarily inefficient.

3.2 Feature Induction for Linear-Chain CRFs

The feature induction procedure is now described in
more detail for the specific case of linear-chain CRFs.
Below we also describe three additional important
modeling choices, (indicated with 1∗, 2∗, 3∗).

Following equation 1, the new linear-chain CRF model
with additional feature g having weight µ has cliques
consisting only of adjacent pairs of states:

PΛ+g,µ(s|o) =
PΛ(s|o) exp

(∑T
t=1 µ g(st−1, st,o, t)

)
Zo(Λ, g, µ)

;

Zo(Λ, g, µ) def=
∑

s′ PΛ(s′|o) exp(
∑T

t=1 µ g(s′t−1, s
′
t,o, t))

in the denominator is again the additional portion of
normalization required by the candidate feature.

With the mean field approximation we instead per-
form µ-aware inference on individual output variables

Input: (1) Training set: paired sequences of feature vec-
tors and labels; for example, associated with the sequence
of words in the English text of a news article: a binary vec-
tor of observational-test results for each word, and a label
indicating if the word is a person name or not. (2) a finite
state machine with labeled states and transition structure.
Algorithm: (1) Begin with no features in the model,
K = 0. (2) Create a list of candidate features consisting
of observational tests, and conjunctions of observational
tests with existing features. Limit the number of conjunc-
tions by only using a limited number of conjuncts with
highest gain (Eqs 2 and 4). (3) Evaluate all candidate fea-
tures, and add to the CRF model some subset of candidates
with highest gain, thereby increasing K. (4) Use a quasi-
Newton method to adjust all the parameters of the CRF
model so as to increase conditional likelihood of the label
sequences given the input sequences; but avoid over-fitting
too quickly by running only a handful of Newton iterations.
(5) Go to step 2 unless some convergence criteria is met.
Output: A finite state CRF model that finds the most
likely label sequence given an input sequence by using its
induced features, learned weights and the Viterbi algo-
rithm.

Figure 1: Outline of the algorithm for linear-chain
CRFs.

s separately. Furthermore, we can drastically reduce
the number of new features evaluated by measuring
the gain of courser-grained, agglomerated features. In
particular, if it is less important to explore the space of
features that concern FSM transitions, and more im-
portant to explore the space of features that concern
observational tests, (1∗) we can define and evaluate al-
ternative agglomerated features, g(st,o, t), that ignore
the previous state, st−1. When such a feature is se-
lected for inclusion in the model, we can include in the
model the several analogous features g(st−1, st,o, t) for
st−1 equal to each of the FSM states in S, or a sub-
set of FSM states selected by a simpler criteria. Using
these assumptions, the the posterior distribution over
FSM states of a single output variable at sequence po-
sition t (given a new candidate feature g and weight
µ) is

PΛ+g,µ(s|o, t) =
PΛ(s|o, t) exp (µ g(st,o, t))

Zot
(Λ, g, µ)

.

where Zot
(Λ, g, µ) def=

∑
s′ PΛ(s′|o, t) exp(µg(s′t,o, t)),

and where PΛ(s|o, t) is the posterior distribution
over FSM states at position t (known in Rabiner’s
(1990) notation as γt(s)), calculated by full dynamic-
programming-based inference and fixed parameters Λ,
using “forward” α and “backward” β values analo-
gously to HMMs: PΛ(s|o, t) = αt(s|o)βt+1(s|o)/Zo.

Using the mean field approximation and the agglomer-
ated features, the approximate likelihood of the train-
ing data using the new candidate feature g and weight

µ is L̂Λ+gµ = N∑
j=1

Tj∑
t=1

log
(
PΛ+gµ(s(j)

t |o(j), t)
)− µ2

2σ
−

K∑
k=1

λ2
k

2σ
;

(3)
and L̂Λ is defined analogously, with PΛ instead of
PΛ+gµ and without −µ2/2σ.

However, rather than summing over all output vari-
ables for all training instances,

∑N
j=1

∑Tj

t=1, we sig-
nificantly gain efficiency by including only those M
tokens that are mislabeled by the current model, Λ.
Let {o(i) : i = 1...M} be those tokens, and o(i) be the
input sequence in which the ith error token occurs at
position t(i).

Then algebraic simplification using these approxima-
tions, equations 2 and 3 gives ĜΛ(g, µ) =

M∑
i=1

log

(
exp

(
µ g(st(i),o(i), t(i))

)
Zo(i)(Λ, g, µ)

)
− µ2

2σ

= MµẼ[g]−
M∑
i=1

log
(
EΛ[exp(µ g)|o(i)]

)
− µ2

2σ
,

The optimal value of µ cannot be solved in closed form,
but Newton’s method typically finds it in about 15
iterations.

There are two additional important modeling choices:
(2∗) Because we expect our models to still require sev-
eral thousands of features, we save time by adding
many of the features with highest gain each round of
induction rather than just one; (including a few re-
dundant features is mildly wasteful, but not harmful).
(3∗) Because even models with a small select number
of features can still severely overfit, we train the model
with just a few BFGS iterations (not to convergence)
before performing the next round of feature induction.

Figure 1 outlines the inputs, steps and output of the
overall algorithm.

4 Experimental Results

Experimental results show the benefits of automated
feature induction on two natural language processing
tasks: named entity recognition, where it reduces er-
ror by 40%, and noun phrase segmentation, where it
matches world-class accuracy while reducing feature
count by significantly more than an orders of magni-
tude.

4.1 Named Entity Recognition

CoNLL has provided named entity labels Person,
Location, Organization, Misc, and Other, on

Without induction With induction
Prec Recall F1 Prec Recall F1

PER 91.8 46.7 61.94 93.2 93.3 93.2
LOC 94.1 80.5 86.7 93.0 91.9 92.4
ORG 92.0 48.5 63.5 84.9 83.9 84.4
MISC 91.7 66.7 77.2 83.1 77.0 80.0
Overall 92.7 60.7 73.3 89.8 88.2 89.0

Figure 2: English named entity extraction.

a collection of Reuters newswire articles in English
about various news topics from all over the world. The
training set consists of 946 documents (203621 tokens);
the test set of 216 documents (51362 tokens).

On this data set we use several families of atomic ob-
servational tests: (a) the word itself, (b) part-of-speech
tags and noun phrase segmentation tags imperfectly
assigned by an automated method (c) 16 character-
level regular expressions, mostly concerning capital-
ization and digit patterns, such as A, A+, Aa+, Aa+Aa*,
A., D+, .*D.*, where A, a and D indicate the regu-
lar expressions [A-Z], [a-z] and [0-9] respectively,
(d) 8 lexicons entered by hand, such as honorifics,
days and months, (e) 35 lexicons (obtained from Web
sites), such as countries, publicly-traded companies,
surnames, stopwords, and universities, people names,
organizations, NGOs and nationalities, (f) all the
above tests, time-shifted by -2, -1, 1 and 2, (g) the sec-
ond time a capitalized word appears, the results of all
the above tests applied to that word’s first mention are
copied to the current token with the tag firstmention,
(h) some articles have a header, such as Baseball,
Soccer, or Finance; when present, these are noted
on every token of the document.4

Observational features are induced by evaluating can-
didate features consisting of conjunctions of these ob-
servational tests. Candidates are generated by build-
ing all possible conjunctions among the the 1000
atomic and existing conjunction-features with the
highest gain. CRF features consist of observational
tests in conjunction with the identities of the source
and destination states of the FSM.

A first-order CRF was trained for about 12 hours on
a 1GHz Pentium with a Gaussian prior variance of 10,
inducing 1000 or fewer features (down to a gain thresh-
old of 5.0) each round of 10 iterations of L-BFGS. Per-
formance results for each of the entity classes can be
found in Figure 2. The model achieved an overall F1
of 89% using 80,294 features. Using fixed conjunction
patterns instead of feature induction results in F1 73%
(with about 1 million features).

A sample of conjunctions induced appears in Figure 3.
4Complete source code, including all lexicons and ex-

act regular expressions for features can be found at
http://www.cs.umass.edu/∼mccallum/mallet.

Index Feature
0 inside-noun-phrase (ot−1)
5 stopword (ot)
20 capitalized (ot+1)
75 word=the (ot)
100 in-person-lexicon (ot−1)
200 word=in (ot+2)
300 capitalized (firstmentiont+1)

& capitalized (firstmentiont+2)
500 word=Republic (ot+1)
711 word=RBI (ot) & header=Baseball (ot)
1027 header=Cricket (ot) & English-county (ot)
1298 company-suffix-word (firstmentiont+2)
4040 location (ot) & POS=NNP (ot)

& capitalized (ot) & stopword (ot−1)
4945 moderately-rare-first-name (ot−1)

& very-common-last-name (ot)
4474 word=the (ot−2) & word=of (ot)

Figure 3: Sampling of features induced for the named
entity recognition task.

For example, feature #1027 helps model the fact that
when an English county is mentioned in an article
about the game of cricket, the word is actually refer-
ring to an Organization (a team), not a Location
(as it would be otherwise). Feature #1298 indicates
that the first time this capitalized word was used in
the article, it was followed by a company-indicating
suffixed, such as “Inc.”; often a company name will
be introduced with its full, formal name at the begin-
ning of the article, but later be used in a short form
(such as “Addison Wesley Inc.” and later “Addison
Wesley”). Feature #4474 probably indicates that an
organization name will appear at index t+1—the pat-
tern matching phrases such as “the CEO of” or “the
chairperson of”.

We are currently performing experiments with many
alternative hand-specified conjunction patterns be-
cause, while a manual feature construction approach
might not reach 89%, we suspect that it should be able
to perform better than 73%. Note, however, that one
of the goals of automated feature induction techniques
is to avoid the need for this type of manual search in
structure space.

4.2 Noun Phrase Segmentation

Noun phrase segmentation consists of applying tags
Begin, Interior, Outside to English sentences in-
dicating the locations and durations of noun phrases,
such as “Rockwell International Corp.”, “a tentative
agreement”, “it”, and “its contract”. Results reported
here are on the data used for the CoNLL-2000 shared
task, with their standard train/test split.

Several systems are in a statistical tie for best perfor-
mance, with F1 between 93.89% and 94.38%. (Kudo &
Matsumoto, 2001; Sha & Pereira, 2003; Zhang et al.,

2002). All operate in very high dimensional space. For
example, Sha and Pereira (2003) present results with
two models, one using about 800,000 features, and the
other 3.8 million features. The CRF feature induc-
tion method introduced here achieves 93.96% with just
25,296 features (and less than 8 hours of computation).

The benefit is not only the decreased memory foot-
print, but the possibility that this memory and time
efficiency may enable the use of additional atomic fea-
tures and conjunction patterns that (with further error
analysis and experimentation on the development set)
could yield statistically improved performance.

5 Related Work

Conditionally-trained exponential models have been
used successfully in many natural language tasks, in-
cluding document classification (Nigam et al., 1999),
sequence segmentation (Beeferman et al., 1999), se-
quence tagging (Ratnaparkhi, 1996; Punyakanok &
Roth, 2001; McCallum et al., 2000; Lafferty et al.,
2001; Sha & Pereira, 2003)—however, all these exam-
ples have used hand-generated features. In some cases
feature set sizes are in the hundreds of thousands or
millions. In nearly all cases, significant human effort
was made to hand-tune the patterns of features used.

The best known method for feature induction on ex-
ponential models, and the work on which this paper
builds is Della Pietra et al. (1997). However, they
describe a method for non-conditional models, while
the majority of the modern applications of such ex-
ponential models are conditional models. This paper
creates a practical method for conditional models, also
founded on the principle of likelihood-driven feature
induction, but with a mean-field and other approxi-
mations to address tractability in the face of instance-
specific partition functions and other new difficulties
caused by the conditional model.

The method bears some resemblance to Boosting (Fre-
und & Schapire, 1997) in that it creates new conjunc-
tions (weak learners) based on a collection of misclassi-
fied instances, and assigns weights to the new conjunc-
tions. However, (1) the selection of new conjunctions
is entirely driven by likelihood; (2) even after a new
conjunction is added to the model, it can still have
its weight changed; this is quite significant because
one often sees Boosting inefficiently “re-learning” an
identical conjunction solely for the purpose of “chang-
ing its weight”; and furthermore, when many induced
features have been added to a CRF model, all their
weights can efficiently be adjusted in concert by a
quasi-Newton method such as BFGS; (3) regulariza-
tion is manifested as a prior over weights. A theoret-
ical comparison between this induction method and
Boosting is an area of future work.

Boosting has been applied to CRF-like models (Al-
tun et al., 2003), however, without learning new con-
junctions and with the inefficiency of not changing the
weights of features once they are added. Other work
(Dietterich, 2003) estimates parameters of a CRF by
building trees (with many conjunctions), but again
without adjusting weights once a tree is incorporated.
Furthermore it can be expensive to add many trees,
and some tasks may be diverse and complex enough
to inherently require several thousand features.

6 Conclusions

Conditional random fields provide tremendous flexi-
bility to include a great diversity of features. The pa-
per has presented an efficient method of automatically
inducing features that most improve conditional log-
likelihood. The experimental results are quite positive.

We have focused here on inducing new conjunctions
(or cliques) of the input variables, however the method
also naturally applies to inducing new cliques of the
output variables, or input and output variables com-
bined. This corresponds to structure learning and
“clique template” learning for conditional Markov net-
works, such as Relational Markov Networks (Taskar
et al., 2002), and experimental exploration in this area
is a topic of future work.

Acknowledgments

Thanks to John Lafferty, Fernando Pereira, Wei Li, An-
dres Corrada-Emmanuel, Drew Bagnell and Guy Lebanon,
who provided helpful discussions. This work was sup-
ported in part by the Center for Intelligent Information
Retrieval; SPAWARSYSCEN-SD grant numbers N66001-
99-1-8912 and N66001-02-1-8903.

References

Altun, Y., Hofmann, T., & Johnson, M. (2003). Dis-
criminative learning for label sequences via boosting.
Advances in Neural Information Processing Systems
(NIPS*15).

Beeferman, D., Berger, A., & Lafferty, J. D. (1999). Statis-
tical models for text segmentation. Machine Learning,
34, 177–210.

Borthwick, A., Sterling, J., Agichtein, E., & Grishman, R.
(1998). Exploiting diverse knowledge sources via maxi-
mum entropy in named entity recognition. Proceedings
of the Sixth Workshop on Very Large Corpora, Associa-
tion for Computational Linguistics.

Byrd, R. H., Nocedal, J., & Schnabel, R. B. (1994). Rep-
resentations of quasi-Newton matrices and their use in
limited memory methods. Mathematical Programming,
63, 129–156.

Collins, M. (2002). Discriminative training methods for
hidden markov models: Theory and experiments with
perceptron algorithms.

Darroch, J., Lauritzen, S., & Speed, T. (1980). Markov
fields and log-linear interaction models for contingency
tables. Annals of Statistics, 8, 522–539.

Della Pietra, S., Della Pietra, V. J., & Lafferty, J. D.
(1997). Inducing features of random fields. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence,
19, 380–393.

Dietterich, T. (2003). Personal Communication.

Freund, Y., & Schapire, R. (1997). A decision-theoretic
generalization of on-line learning and an application to
boosting. Journal of Computer and System Sciences, 55,
119–139.

Hammersley, J., & Clifford, P. (1971). Markov fields on
finite graphs and lattices. Unpublished manuscript.

Kudo, T., & Matsumoto, Y. (2001). Chunking with sup-
port vector machines.

Lafferty, J., McCallum, A., & Pereira, F. (2001). Condi-
tional random fields: Probabilistic models for segment-
ing and labeling sequence data. Proc. ICML.

Malouf, R. (2002). A comparison of algorithms for maxi-
mum entropy parameter estimation. Sixth Workshop on
Computational Language Learning (CoNLL-2002).

McCallum, A., & Feng, F.-F. (2003). Chinese word seg-
mentation with conditional random fields and integrated
domain knowledge. (unpublished manuscript).

McCallum, A., Freitag, D., & Pereira, F. (2000). Maximum
entropy Markov models for information extraction and
segmentation. Proceedings of ICML (pp. 591–598).

Nigam, K., Lafferty, J., & McCallum, A. (1999). Us-
ing maximum entropy for text classification. IJCAI-99
Workshop on Machine Learning for Information Filter-
ing (pp. 61–67).

Punyakanok, V., & Roth, D. (2001). The use of classifiers
in sequential inference. NIPS 13. Forthcoming.

Rabiner, L. R. (1990). A tutorial on hidden markov models
and selected applications in speech recognition. Readings
in Speech Recognition (pp. 267–296). Los Altos, CA:
Morgan Kaufmann.

Ratnaparkhi, A. (1996). A maximum entropy model for
part-of-speech tagging. In E. Brill and K. Church (Eds.),
Proceedings of the conference on empirical methods in
natural language processing, 133–142. Somerset, New
Jersey: Association for Computational Linguistics.

Sha, F., & Pereira, F. (2003). Shallow parsing with con-
ditional random fields. Proceedings of Human Language
Technology, NAACL.

Taskar, B., Abbeel, P., & Koller, D. (2002). Discrimi-
native probabilistic models for relational data. Eigh-
teenth Conference on Uncertainty in Artificial Intelli-
gence (UAI02).

Teh, Y. W., Kakade, S., & Roweis, S. (2002). An alternate
objective function for markovian fields. ICML-2002.

Zhang, T., Damerau, F., & Johnson, D. (2002). Text
chunking based on a generalization of winnow. Journal
of Machine Learning Research, 2, 615–637.

