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Abstract

This note describes generalized expectation (GE) criteria, a framework
for incorporating preferences about model expectations into parameter esti-
mation objective functions. We discuss relations to other methods, various
learning paradigms it supports, and applications that can leverage its flexibil-
ity.

1 Introduction

The parameters of probabilistic models are often set by maximum (aposteriori)
likelihood estimation, moment matching, or the maximum entropy principle. In
many common cases, these three parameter estimation methods are actually equiv-
alent. However, each provides its own perspective on the parameter estimation
problem; each provides different types of flexibility; and each lends itself different
classes of variations outside the equivalence class.

This note describes generalized expectation (GE) criteria, which in some cases also
falls into the same equivalence class, and, similarly, provides yet another different
perspective, a different flexibility, and useful variations outside the common equiv-
alence class. Below we describe GE; we illustrate how it can be used as an aug-
mentation to, or replacement for, traditional parameter estimation methods such as
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maximum likelihood; and we outline GE’s many use-cases in supervised learning,
semi-supervised learning, semi-supervised clustering, transfer learning and more.

A generalized expectation criterion is a term in a parameter estimation objective
function that expresses some preference about the model’s expectations of variable
values. That is, a generalized expectation criterion is a function, G, that maps to a
scalar the model’s predicted distribution over the values of some other function, f ,
of the model variables; and this scalar is added to the objective function used for
parameter estimation.

For example, the function G may express a preference that variable expectations
(with f being the identity function) have a certain value by returning a distance
between the model’s expected value and some target value. The target value would
typically be obtained from some external knowledge source, such as training data
or prior knowledge. But there are many alternative formulations. For instance, G
may be not based on distance to a single target value, but on a smooth hinge loss
function.

Many traditional parameter estimation methods can be described as preferences
about model expectations. (Some of these are related below.)

The non-tradtional “generalized” nature of our proposal that we explore here is
that (1) in factor graphs, we may express preferences about expectations on vari-
able subsets that are not in one-to-one correspondence with the variable subsets
participating in the parameterized factors of the model; for example, we can ex-
press preferences on a subset of model factors, or on marginal distributions larger
than model factors; (2) we may calculate and combine expectations conditioned on
different circumstances, such as different training data with different properties; (3)
the supervised “training signal,” whether that be a target expectation, or, more gen-
erally, the shape of the score function, G, may come not just from labeled training
data, but from any source, including other tasks or human prior knowledge.

In fact, in most of our experiments, the GE terms do not provide enough contraints
themselves to be a consistent estimator. In other words, GE is under-specifying
the parameters—there may be many different parameter settings that are equally
preferred by the GE criteria. Here we rely on combining GE with other objectives.
Alternatively, note that GE criteria could also over-specify parameter preferences,
by, for example, in a sequence model, expressing expecation targets on higher-
order Markov dependencies than are captured by the parameters. In this case, the
expectations will probably not be matched exactly, but we may be able to leverage
conditioning on the entire input sequence to good effect.

One of the key benefits of GE is that it provides a way for humans to directly ex-
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press preferences to the parameter estimator naturally and easily using the language
of expectations, rather than the often complex and counter-intuitive language of the
parameters. Rather than being forced to speak the language of the parameters—
which often have complex relations to the model’s behavior, and which often inter-
act with each other in subtle ways—people can instead speak the language of the
data, the language of desired model outputs, unconstrained by model structure and
unconcerned about the complexities of the model parameterization..

Most of our experiments thus far have been in the application of GE to semi-
supervised learning. Here unlabeled data is combined with limited supervision,
provided by the human trainer in the form of expected prior label distributions
(Mann & McCallum, 2007), or class associations for features (rather than in-
stances) (Druck et al., 2007b). We find that GE performs better than several al-
ternative semi-supervised methods, and provides better accuracy given the same
amount of labeling effort. In some cases, GE with labeled features matches the
accuracy of instance labeling with less than one tenth the wall-clock labeling time.

In the next section we define generalized expectation criteria more formally. In the
later sections we give examples of GE’s use-cases and capabilities; for many of
these we have preliminary experimental results published elsewhere.

2 Definition

Let X be some set of variables, with assignments denoted x ∈ X . Let θ be the
parameters of some model that defines a probability distribution over X , pθ(X).

The expectation of some function f(X) according to the model is

Eθ[f(X)] =
∑
x∈X

pθ(x)f(x),

where f(x) is an arbitrary function of the variables x producing some scalar or
vector value. This function of course may depend only on a subset of the variables
in x.

Naturally expectations may also be conditioned on certain variable value assign-
ments, for example, when performing “conditional probability training” of some
model. In this case the variables are partioned into “input” variables X and “out-
put” variables Y . A set of assignments to input variables (training data instances)
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X̃ = {x1,x2, ...} may be provided, and the conditional expectation is then

Eθ[f(X, Y )|X̃ ] =
1
|X̃ |

∑
x∈X̃

∑
y∈Y

pθ(y|x)f(x,y).

For simplicity, however, in most of the remainder of the paper we include notation
for the non-conditional case—the addition of the conditional being straightforward.

Definition: A generalized expectation (GE) criteria is a function, G, that takes as
an argument the model’s expectation of f(X), and returns a scalar, which is added
as a term in the parameter estimation objective function:

G(Eθ[f(X)]) → R.

In some cases G might be defined based on a distance to some “target value” for
Eθ[f(X)]. Let f̃ be the target value, and let ∆(·, ·) be some distance function. In
this case, G might be defined:

Gf̃ (Eθ[f(X)]) = −∆(Eθ[f(X)], f̃).

As described thus far, GE is quite generic, and encompasses several other tradi-
tional parameter estimation methods as special cases. The three main degrees of
flexibility which we leverage in a non-traditional way are:

1. A GE criterion is specified independently of the parameterization. In tradi-
tional parameter estimation methods for factor graphs there is a one-to-one
correspondence between the subsets of variables employed in each parame-
terized factor of the model and the subsets of variables on which expectations
are calculated for the objective function. In GE, each of these subsets may
be selected independently. The use of this flexibility is discussed further in
section 4.2.

2. Different conditional GE criteria need not all condition on the same circumstances—
they can condition on different data sets or different combinations of data
sets. The use of this flexibility is discussed further in section 4.1.

3. The supervised “training signal,” whether that be a target expectation, or,
more generally, the shape of the score function, G, may come not just from
labeled training data, but from any source, including other tasks or human
prior knowledge.
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Thus a GE criterion may be specified independently of the parameterization, and
independently of choices of any conditioning data sets. Note also that a GE crite-
rion may operate on some arbitrary subset of the variables in x. Again, the func-
tions f may be defined such that the expection yields moments of the distribution
pθ(X), or any other arbitrary expectation. The scoring function G and the distance
function ∆ may be based on information theory, or be arbitrary functions.

GE terms may be used as the sole components of the parameter estimation objective
function, or they may be used in conjunction with other terms. Examples of such
combinations appear in below.

Naturally, GE may be applied to many different learning paradigms in which ob-
jective functions are used, including joint/generative learning, unsupervised learn-
ing, conditional/discriminative learning, supervised learning, learning with hidden
variables, structure learning, and others. Some examples are discussed below.

3 Some Relations to Other Methods

GE is closely related to several established methods of parameter estimation.

GE is most similar to the method of moments, but, again, with non-traditional
aspects. Moments in probability spaces are expected values of variables raised to
powers (such as mean, E[x1], and variance, E[x2]). Moment matching estimates
parameters by solving equations that equate moments of the model with moments
of a training data set. The traditional method of moments could be seen as a special
case of GE in which the functions f yield the moments of the distribution on X ,
and G is based on a distance function that has its miminum when its two arguments
are equal, and furthermore it is possible to solve the equivalence.

In GE we may take expectations not of variables raised to powers, but of arbitrary
functions. But more significantly, GE expresses arbitrary scalar preferences, not
moment equality equations to be solved. (For example, these scalar preferences
may be calculated as distance from the model’s expectation to a target expectation,
or as an arbitrarily-shaped score function of the model’s expectation, including
hinge-loss or even multi-modal functions.) These scalar preferences allow GE to be
combined with other parameter estimation methods in a multi-criteria objective—
be that traditional maximum likelihood, or simply a prior on parameters.

Maximum likelihood is a special case of GE in which G is the negative cross
entropy between the empirical distribution on X and the model’s distribution on
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X . In other words, the function f is the “vector indicator” function,1 f̃(X) is
the empirical distribution of the vector indicator function f applied to X in the
training data X̃ (the elements of the vector f̃(X) sum to 1), and Gf̃ is the negative
cross entropy between the elements of Eθ[f(X)] and f̃(X). Thus, Eθ[f(X)] =∑

x∈X̃ pθ(x)f(x) and f̃(X) = (1/|X |)
∑

x∈X̃ f(x) and we have

Gf̃ = −
∑

i=1...|X |

f̃(x)i log(Eθ[f(X)]i),

where subscripts i index into the dimensions of the indicator vector.

Furthermore, in structured probabilistic models, represented as factor graphs,
GE’s correspondence to maximum likelihood can also be expressed in terms of
the factor graph structure. Rather than calculating the joint expectations over all
model variables at once, we can rather calculate expectations over the subsets of
variables participating in each parameterized factor. That is, if we minimize the
cross-entropies between (a) the marginal distribution of the variables in each pa-
rameterized factor of the model, and (b) the empirical distribution of the same
variables, this also yields the maximum likelihood parameters, by the Hammersley-
Clifford-Besag theorem. (Of course, a significant additional flexibility that GE pro-
vides is the ability to express various preferences for expectation values on variable
subsets that do not correspond to any factor in the model parameterization.)

When the parameter estimation objective function consists of both some GE terms
and model’s log-likelihood of some training data, the GE terms may be thought of
as a regularizer or type of prior.2 Here the objection function, O, is

O =
∑
x

p̃(x) log(pθ(x)) + G(Eθ[f(X)]).

For example, when f(X) is log p(x), then Eθ[f(X)] is the negative entropy of the
model’s distribution over X , and the GE term may then express a prior preference
for pθ(X) distributions that are close to uniform, as would a zero-parametered
Dirichlet prior for multinomial θ. Further discussion of GE and its relation to
priors appears in section 5.8.

Maximum entropy is a special case in which the parameter estimation objective
function consists of both the entropy of pθ(X), as well as GE terms Gf̃ , where

1A vector indicator function is a function that takes a value x ∈ X and returns a vector of length
|X | containing zeros everywhere except at a position in the vector uniquely associated with the value
x, where it contains a 1.

2Although it is strange to call it a prior, since it is calculated in terms of expectations on model
variables, not directly on parameter values; furthermore, in the conditional training case, the GE
criterion model expectation would depend on the input data X̃ .
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the f̃s are the constraints and the f(X)s are the functions necessary to yield the
corresponding expectations from the model, and Gf̃ insists on exactly matching
expectations and constraints, perhaps modulo the typical L2 or L1 prior. Unlike
traditional maximum entropy, however, GE can naturally express constraints that
have no corresponding parameter, and could apply to models not in the exponential
family.

Note that in the maximum entropy framework, we begin with some statements
about desired expectations (“constraints”), then through the application of the max-
imum entropy principle and Lagrange multipliers we arrive inextricably at a cer-
tain resulting model structure and parameterization. All constraints have param-
eters, and all parameters have constraints—there is a one-to-one correspondence.
By contrast, in GE, we start with some arbitrary model, and then estimate its pa-
rameters through preferences about some of its expectations—which may not be
in one-to-one correspondence with parameters, for example, just a subset of the
parameters. We make extensive use of this flexibility in several use-cases below.

4 Discussion of Degrees Flexibility

Rather than seeing traditional methods as special cases of GE, it is more interesting
to see what non-traditional approaches come to mind when exploring the flexibility
of GE.

4.1 Expectations conditioned on different data sets

When maximizing conditional likelihood, the distribtion over the conditioned vari-
able Y is taken as the empirical distribution over some available data sets X̃ . These
data sets may be used in the same way when calculating expectation Eθ[f(Y |X̃ )]
in GE.

However, in GE is the clear that we could use different such input datasets in differ-
ent GE criterion terms. This flexibility is useful when we have available multiple
different datasets with different properties, such as different missing data, or differ-
ent source distributions. Several possible applications, including semi-supervised
learning and transfer learning, are briefly described below.
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4.2 Different coverage of parametric factors and constraints-expectations

Traditionally in factor graphs or in maximum entropy models there is a one-to-one
correspondence between the subsets of variables appearing the parameterized fac-
tors of the model and the subsets of variables appearing in the constraints used for
training. In GE it is clear that we have the flexibility to break this correspondence
because GE terms are defined separately from the model.

GE training expectations could be expressed in finer grainularity than the param-
eters. That is, f(X) could employ a subset of variables larger than any subset on
which a parameterized factor is defined. In this case the model would not have
individual parameters capable of tuning these expectations, but it could use the
interactions with neighboring factors to try to minimize these GE terms.

GE training expectations could also be expressed in coarser grainularity than the
parameters. That is, f(X) could employ a subset of variables smaller than any
subset on which a parameterized factor is defined. In this case, the model has a
higher degree of expressivity than the constraints require. Other GE constraints
or other non-GE terms in the objective function may express preferences for the
full degree of expressivity; however, the coarser-grained GE constraints may be
used to leverage a different set of trainining data in which the full granularity is not
available, (e.g. a case of transfer learning). Furthermore, coarse-grained GE terms
may simply express preferences for certain marginal distributions not explicitly
enforced previously.

Of course, GE training expectations can also be expressed on just a fraction of all
the factors (variable subsets) in the model parameterization. In some cases, there
may be no term in the objective function (or no term, beside a parameter prior)
that expresses a preference about certain factors. In this case, the parameters in
those factors will be set in whatever way most helps satisfy the GE terms that
are present. This case is related to hidden variables—variables not present in the
training data—but the GE view on this phenomena is flexible in a different way
because it is expressed in terms of factors missing from the training criteria, not
variables.

GE’s overall flexibility in coverage of parametric factors and constraints-expectations
suggests discussion about “two factor graphs”: one factor graph describing the
variable subsets employed in the parameterization of the model, and another factor
graph describing the variable subsets employed in the constraints and expectations
used for training. For training such a model, we would need inference in the “cross
product” of the two factor graphs.
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4.3 Flexible Supervision

In maximum likelihood parameter estimation, the parameters are set to give highest
probability to the model generating some observed set of data. In maximum apriori
estimation, the parameters are set to those that give high value to the product of this
data likelihood and a prior distribution on parameters. Usually this prior is selected
to be “non-informative.”3

It is our belief that too often machine learning is performed tabula rasa. The model
parameters are estimated from labeled training, but without the benefit of domain
knowledge from a human expert. Human experts have helpful knowlege about
what good solutions look like, but there have not been intuitive, convenient ways
to express this knowledge in the parameter estimation objective function.

GE, however, makes it easy for a human expert to directly express highly specific
supervision signals—input to training not based on labeled training data. A human
expert can make natural statements such as “I would expect that a professor’s home
page would have more hyperlinks to students’ pages than would another student’s,”
or “I would expect that 70% or more of the documents containing the word ice
would be about ICEHOCKEY instead of BASEBALL,” and these can be directly
translated into GE terms that guide parameter estimation.

Without GE, the primary way that domain experts inject their knowledge is through
the selection of model structure and feature selection. But this still leaves a signif-
icant parameter estimation problem. Furthermore, although crucial, model struc-
ture selection and feature selection may be a difficult medium of communication
between a domain expert and a machine learning expert because they are often
quite technical considerations that domain experts may have difficulty understand-
ing, e.g. (“Should we use a Gaussian or a log-normal distribution? I don’t know;
what is a log-normal distribution again?”).

Supervision concerning GE expectation terms can come from a variety of sources.
As described above, humans can express these directly. But also they could come
from other related tasks. Recently we have been performing transfer learning ex-
periments in which GE-style supervision from one task helps estimate the parame-
ters for another task. This is described further below.

3Although it may also be designed to be “informative.” However, this is relatively rare, perhaps
because, as described above, priors are specified “in the language of parameter space,” and it is
difficult for humans to speak this language given the complexities of the model and the interactions
among its parts.
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5 Use Cases

5.1 Application to semi-supervised learning

In semi-supervised learning we perform learning for a supervised task in which
only a small portion of training data is labeled, but we have available a large data
set with labels missing. GE expectations may be calculated separately using these
different data sets. That is, we may condition on the unlabeled data X̃ when calcu-
lating model expectations, Eθ[f(x, y)] for some of the GE terms.

Note in particular that GE terms may express constraints on only a fraction of the
factors in the model, (for example, only on the features appearing in the labeled
data, or only on features over which prior knowledge is expressed), however, other
factors (features appearing only in the unlabeled data) will have their parameters
usefully set, as described in section 4.2. Based on co-occurrences, these parameters
on unlabeled-only features will be set help to satisfy the GE terms.

Mann and McCallum (2007) describe an application of GE to semi-supervised
learning in which the GE terms express preferences about marginal class distrib-
tions. These marginal class distributions can often be provided by human domain
experts, or may be robustly estimated from labeled data, even when labeled data is
far too sparse to estimate the many parameters on input-feature/label affinities.

Let f̃ = p̃(Y ) be some target distribution over class labels, and let f(x,y) =
1
n

∑n
i

~I(yi) where ~I denotes the vector indicator function on labels y ∈ Y and n is
the number of output variables4. The expectation of f(x,y) is then the model pre-
dicted distribution over labels. A GE term might simply be defined as the negative5

KL-divergence between these distributions

−D

(
f̃ ,

1
|X̃ |

∑
x∈X̃

∑
y∈Y

pθ(y|x)f(x,y)
)

. (1)

5.2 Application to semi-supervised clustering

Closely related to semi-supervised learning is semi-supervised clustering, in which
unsupervised clustering is guided by limited human input.

4For example, for a classification task n = 1, while for a sequence labeling task n would be the
length of the sequence.

5Throughout this section we assume we aim to maximize the objective function.
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GE terms can straightforwardly be added to objective functions for unsupervised
learning with latent variables. These GE terms may express various human prefer-
ences about certain expectations, including guiding some latent variables to certain
positions, guiding more or fewer latent variables to cover certain regions of space,
encouraging sparseness properties through GE terms that score second moments,
or enforcing certain constraints on model predictions (as in the applications de-
scribed in Sections 5.1 and 5.3).

As one possibility, suppose we have a “prototype” instance x′ for cluster y. We
can encourage the model for cluster y to give high probability to similar instances
by including a GE term ∑

x∈X̃

pθ(x|y)sim(x,x′), (2)

where sim is some similarity function, for example cosine similarity.

5.3 Application to semi-supervised learning with feature labeling

GE also makes very natural an under-explored paradigm for semi-supervised learning—
one in which the limited supervision is in the form of “feature labeling” (or more
generically “expectation labeling”) rather than “instance labeling.” In text classifi-
cation, for example, rather than examining and labeling documents, human labelers
instead simply indicate a relatively small set of words that are positively correlated
with each class. This human input can be readily translated into constraints on
model expectations for certain feature-label combinations. Druck et al. (2007b)
explore this scenario, showing that learning with labeled features gives much bet-
ter accuracy given the same amount of labeling effort.

Specifically, suppose we have prior knowledge about some feature of an input vari-
able fi(x). For example fi(x) may indicate that x is a specific word, or that it
matches some regular expression. Let f̃ = p̃(Y |fi(x)=1) be the target distribution
over labels conditioned on feature fi(x) being present. For simplicity, here we con-
sider problems with a single output variable y. Let f(x, y) = 1

Ci

~I(y)
∑n

j fi(xj),
where Ci =

∑n
j fi(xj), so that the expectation is the model predicted class dis-

tribution when fi(x) is present. We encourage these distributions to agree using
negative KL-divergence

−D

(
f̃ ,

1
|X̃ |

∑
x∈X̃

∑
y∈Y

pθ(y|x)f(x, y)
)

. (3)

11



5.4 Application to constraints beyond the model factors

Since GE terms are specified indepedently of the model or its factorization, it is
natural to consider terms expressing preferences that are more specific than the
model itself can represent.

For example, the model may be a linear-chain CRFs with first-order Markov depen-
dencies, but a GE objective function may express preferences about second-order
Markov statistics. When using generative training (for example, an HMM), this
may not have much effect, but in a conditionally-trained model (a CRF), there is
freedom to include features of the input from an arbitrarily-sized window—one of
higher Markov over than the factors on the output—and the parameters can use the
long-range view of the input to try to satisfy these preferences.

Specifically, consider a linear chain CRF with parameterized factors of the form
Ψt(x,y) = exp(

∑
i θifi(xt, yt, yt+1)). We could specify a GE term that scores

the model expectation of a function that looks at an additional input and output
variable, such as f(xt, xt+1, yt, yt+1, yt+2), without including a corresponding pa-
rameter θ in the model.

5.5 Application to transfer learning and distantly labeled data

Transfer learning applies when we have labeled data for a task that is related but
not identical to the target task. In addition we may have some limited labeled data
for the target task. GE applies very well to this scenario because it can help us
manage two key difficulties in transfer learning.

First, when we can identify which features from the related task apply robustly also
to the target task, we can emphasize those in the GE terms. If we learn mappings
from “related features” to “target features” we can create GE terms that leverage
the mapping.

For example, let fi(x) be some feature of an input variable x that is relevant to both
tasks. Let S̃ be labeled source domain data and T̃ be unlabeled target domain data.
We define the reference expectation f̃ = p̃S̃(Y |fi(x) = 1), which is the observed
class distribution when feature fi(x) is present in the labeled source data S̃. We
let f(x, y) = 1

Ci

~I(y)
∑n

j fi(xj) (as in Section 5.3). The GE term encourages
agreement between the source and target expectations

−D

(
f̃ ,

1
|T̃ |

∑
x∈T̃

∑
y∈Y

pθ(y|x)f(x, y)
)

. (4)
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Second, sometimes the data for the related task may be missing so much context,
that the model does not directly apply to it. In this case, this “distantly labeled
data” can be external knowledge source used to robustly estimate the constraints
f̃(X). For example, a lexicon of city names is lacking the context of surrounding
natural language so crucial to the information extraction model, but the lexicon (in
conjunction with other lexicons and background knoweldge) can be used to set GE
constraints f̃(X) on the affinity between certain words and the LOCATION label.
Druck et al. (2007a) describe experiments with this approach.

5.6 Application to active learning

Active learning occurs when not all training supervision is available at the begin-
ning of training; rather, it is solicited by the machine to the human during the learn-
ing process—hopefully in such a way as to minimize the human effort required to
reach a certain level of accuracy.

Typically active learning has consisted of the machine solicting labels for instances
it carefully chooses. GE makes it natural to solicit additional types of feedback,
such as “labeled features” as described in section 5.3 above.

As described in the next subsection, GE also opens up several avenues for commu-
nication between the human and the model which may be useful for active learning.

5.7 GE as a language for safe communication with the model

Although there has been much research in active learning, it is rarely deployed in
practice. The more common human-machine interaction cycle when using machine
learning to build a new system is (1) label data, (2) train and test an initial model,
(3) perform error analysis, (4) make adjustments to the model, adding new features,
adding new parameters, (5) go back to step 2, repeating as necessary.

In our experience in steps (3) and (4) there are numerous times when we might see
some repeated egregious error, wonder how the model could make such a mistake,
and wish we could “reach into the model parameterization” and directly jack up or
down the value of some parameter.

But doing this could be very dangerous. Parameter values in factor graphs are deli-
cately balanced against each other. Manually tuning some parameter after training
could have unintended consequences. Humans can rarely speak safely in the lan-
gage of parameter values.
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GE, however, allows the human to interact or “speak to the model” in terms of
expectations rather than parameter values. Expectations are expressed in terms of
the data, about which the human will likely have better intuitions than the effects
of the model parameters.

If during error analysis we see some repeated egregious error, we may add some
new GE constraint (which is more than just adding a feature—it also adds pref-
erences for certain values), and thus nudge the model in the intended direction,
knowing that further training will safely preserve the delicate balance among pa-
rameters.

5.8 Expressive language for “priors”

In traditional maximum aposteriori parameter estimation desiterata for the likeli-
hood term typically come from training data and are expressed in terms of feature
functions, while desiterata for the parameter prior term typically are expressed in
terms of parameter values, e.g. preferring parameter values close to zero.

GE-style “priors” are expressed in terms of model expectations. This provides a
more natural method for incorporating domain knowledge into the objective func-
tion than informative priors or subjective likelihood [M. Lavine 2007], because
domain knowledge is often naturally expressed in terms of expectations; human-
performed attempts to translate such domain knowledge directly into individual
parameter value preferences is fraught with difficulty, since parameters and their
effects typically interact with each other in complex, subtle ways. However, the
mathematics of GE would perform this translation automatically.

Charles Sutton has pointed out that G could represent a probability distribution
over expected values of f(X). Distance functions to a target can also represent
varying degrees of preference for different expected values, but human experts
may find it easier to express preferences in probability density functions than in
distances.

This point is also related to empirical Bayes. David Blei points to work in empir-
ical Bayes by Brad Efron in which expectations on the data are used to determine
certain priors.
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6 Conclusions

Generalized expectation (GE) criteria provide desirable flexibility that will be use-
ful in several types of learning tasks.

Our claim is not that GE is a fundamentally new statistical estimator. We are merely
advocating for GE as a unexplored perspective that naturally suggests creative so-
lutions to some important problems.

We expect that there is a significant amount of related work. We will update this
note with further related work in the future.

We are excited about the future possibilities of GE, and have already begun exper-
imentation with some of the approaches described above. In addition to work in
semi-supervised learning with label regularization (Mann & McCallum, 2007), and
semi-supervised learning with feature labeling (Druck et al., 2007b), recent prelim-
inary experiments in domain adaptation and active learning are yielding positive
results.
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