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Abstract

The task of suggesting recipients for an email
has recently received attention as it has po-
tential to enhance the flow of knowledge
and information within an organization or
social network. We investigate two trans-
fer learning techniques to improve recipient
prediction performance through considering
predictions for multiple users. We present
a novel continuous hidden variable condi-
tional random field for the recipient pre-
diction problem. We characterize this con-
struction as a type of discriminative author
recipient topic or DART model. First we
show transfer based performance increases
achieved through shared hidden variables for
prediction across different users. Second, we
show how transfer from an organization wide
model to a user specific model through para-
meter prior structure also confers substantial
advantage, especially when models are con-
structed for new users.

1 Introduction

The problem of CC prediction was introduced in [10]
along with a number of generative probabilistic mod-
els for solving the problem. Here we use discriminative
methods for the general problem of recipient prediction
and focus upon an exploration of two transfer learn-
ing techniques. We show that it is possible to leverage
the information contained within the related predic-
tion tasks for different users and increase overall pre-
diction performance. These methods also show great
potential for increasing the performance of models for
new users.

There has been growing interest in the exploration of
transfer learning methods within the Machine Learn-
ing community [3, 6, 1, 5, 11, 9]. Early work in [3]

describes multitask learning as an approach to exploit
information used for the training of other tasks to im-
prove a given task. Other recent work explores multi-
task learning based on the minimization of regular-
ization functionals in the context of Support Vector
Machine (SVM) based approaches [5]. In contrast, the
first aspect of our exploration here uses a discrimina-
tive low dimensional latent variable representation to
make predictions for different senders across an orga-
nization. Our approach is thus related to [6] which
sought to obtain a low dimensional latent space suit-
able for multiple image classification tasks. The second
component of our exploration uses a graphical model
over parameter priors to transfer information from an
organization wide model for predictions to user specific
models. Recently, [11] also explored transfer learning
using more sophisticated parameter priors but for sim-
pler discriminative models.

2 Recipient Prediction with DARTSs

Email recipient prediction in the context of a recom-
mending system for users in a social network or or-
ganization is a challenging problem for a number of
reasons, including: (1) there are possibly hundreds
or even thousands of possible recipients; (2) the true
number of reasonable potential recipients is typically
unknown; furthermore, (3) while some suggestions
may indeed be reasonable, unless extensive analysis
and hand labeling is used for augmenting labels, these
suggestions may be flagged as incorrect. While these
issues are important to consider, augmentations to re-
cipient lists can be subjective and therefore we eval-
uate suggestions based on a test subset of emails and
their observed recipients.

Topic models have also received substantial recent at-
tention in the Machine Learning community. A va-
riety of methods have emerged as alternatives to the
original approach to Latent Semantic Analysis (LSA)
[4] or direct Principal Component Analysis (PCA) [7]



of a term document matrix. Latent Dirichlet Alloca-
tion (LDA) [2] is widely regarded as a state of the art
topic modeling method when one wishes to use only
the words of a document to obtain topics. Recently,
McCallum et al. [8] extended the basic LDA approach
to include explicit Author, Recipient and Topic vari-
ables, we shall refer to this approach as ART models.
These models are very effective at extracting mean-
ingful topics and have been shown to reveal user roles
in social networks. Despite these attractive attributes,
our experiments with these types of ART models for
the task of recipient prediction have produced per-
formance far below the baseline method discussed in
Section 3. However, as discussed in Section 1, hid-
den variables and sophisticated prior structures can
be used to implement a variety of transfer learning
approaches. These factors motivate our development
of the following Discriminative Author Recipient Topic
(DART) models and two approaches to transfer learn-
ing with DARTS.
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Figure 1: Our DART model vs. the ART model of [§]

In the following exposition we present a continuous
hidden variable random field based DART model. Our
model can be characterized as a type of discriminative
Boltzmann machine, or a rich discriminative multino-
mial generalization of probabilistic PCA [12]. We use
random variables and notation shown in figure 1. Fig-
ure 1 (left) illustrates our model as a plated random
field and contrasts our DART model with the ART
model of [8] (right). Our DART model encodes the
conditional probability of recipients and hidden topics
given words and the email author as:
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where we have coupled the random variables by the
connection matrices M, M"™ and M®. Z is an in-
tractable normalization constant. For notation conve-
nience, we set M}, =0, for ¢ = 1,---,T, M/, = 0,

fori=1,-- TandMA—OforZ—l -, T. Inte-
grating out thc uncertainty of hidden toplcs7 we seek
to optimize the marginal conditional likelihood of re-
cipients given words and authors for the corpus,
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SYMBOL DESCRIPTION

T number of topics

Ny number of emails

\% number of unique words

R number of recipients

A number of authors

Ny number of word tokens in email d

Sa number of recipients on email d

MY T x (V —1) word connection matrix
M T x (R — 1) recipient connection matrix
M* T x (A — 1) author connection matrix
tai the it" topic of email d

Waj the " word of email d

Tdk the k" recipient of email d

ad the author of email d

Table 1: Notation used in this paper

To perform learning with our DART model we take the
gradient of the conditional log likelihood and arrive at
the following update rules:
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where Wq or equivalently mgr, d = 1,...,D, and
k=1,...,V — 1 denote draws from a Gibbs sampler

and I(¢ € Q) and I(a = b) are indicator functions.
Under the DART model here, the conditional distrib-
utions required for the sampler are either log-normal
for t or multinomial for the other variables. As with
more tractable conditional random fields, these up-
dates have an intuitive interpretation as consisting of
differences between expectations involving the empir-
ical or data distribution and expectations based on
(approximated) model distributions. The final terms
in these updates arise from the use of a zero mean
Gaussian prior for parameters.



Figure 2: Transfer learning using information from an or-
ganization scale model (left) to user specific models.

3 Results and Conclusions

To provide a straightforward, intuitive evaluation we
use a mean reciprocal rank (MRR) metric. In infor-
mation retrieval the reciprocal rank of a test document
is the reciprocal of the rank at which the first relevant
response was returned, or 0 if none of the responses
contained a relevant answer. The score for a sequence
of queries is the mean of the individual query’s recip-
rocal ranks.

For our experiments we use two approaches to make
recipient predictions. In our first experiment, we use
the model itself to make recipient predictions by com-
puting the mean of the hidden variable distribution
given observed author and word features. We then
compute the multinomial distribution obtained when
conditioning upon this sample. The ordering of re-
cipients produced by this distribution is then used to
determine the MRR by finding the first predicted re-
cipient also on the list of test email recipients. Our
second experiment uses an approach based on com-
puting the cosine similarity within the latent space for
a given test email and all training set emails. Pre-
dictions are then obtained from recipients of the re-
trieved documents. Finally, our baseline method is a
term frequency, inverse document frequency (TFIDF)
based cosine similarity computation using the original
document vectors and the same MRR computation as
the latent space method.

We use the Enron email corpus with the processing de-
scribed in [8]. The resulting corpus consists of 23,488
email messages sent among 147 users. Emails that
were not received by at least one of the 147 users are
not included. In order to capture only the new text
entered by the author of a message, “quoted original
messages” in replies were removed using some heuristic
methods. Finally, to remove sensitivity to capitaliza-
tion, all text was downcased. Finally, we randomly
partition the data set into .9, .1 percent training and
test sets for our experiments and use 200 topics.

For our first experiment we use the shared hidden
variable structure of our DART model to learn a la-
tent space model for predictions across all users in our
training set. From figure 3 (top) we see that shared
variable transfer learning increases MRR across the en-
tire Enron corpus by 10% over the non-transfer TIDIF
baseline. In our second experiment we investigate pa-
rameter prior based transfer learning as illustrated in
figure 2. We first learn an organization wide model
and then achieve transfer by using the parameters of
this model as a non-zero mean Gaussian parameter
prior for a model specifically trained for user 50. Fig-
ure 3 (bottom) compares a user specific model trained
with transfer with a user specific model trained using
a zero mean Gaussian prior. The TFIDF baseline is
also given. From this analysis we see that the most
dramatic benefits of transfer occur early in learning
but benefits persist after many iterations of gradient
based learning.
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Figure 3: Transfer learning using: shared hidden variables
(top), parameter priors (bottom).

In conclusion, we have shown how two types of transfer
learning using DARTSs confer significant advantages.
Both shared hidden variables and prior based methods
improve recipient prediction performance. In the lat-
ter case our experiments involved a user with over 2000
emails in their local training set. Early iterations in
learning are analogous to situations where fewer train-
ing examples are available. We thus expect that trans-
fer learning methods using these approaches could be
most beneficial to models for new users.
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