
A Conditional Random Field for
Discriminatively-trained Finite-state String Edit Distance

Andrew McCallum and Kedar Bellare
Department of Computer Science

University of Massachusetts Amherst
Amherst, MA 01003, USA

{mccallum,kedarb}@cs.umass.edu

Fernando Pereira
Department of Computer and Information Science

University of Pennsylvania
Philadelphia, PA 10104, USA

pereira@cis.upenn.edu

Abstract

The need to measure distance between se-
quences arises information extraction, ob-
ject identity, data mining, biological sequence
analysis, and other domains. This paper
presents discriminative string-edit CRFs, a
finite-state conditional random field model
for learning the parameters of a string edit
distance function. Conditional random fields
have advantages over generative approaches
to this problem, such as pair HMMs or the
work of Ristad and Yianilos, because as
conditionally-trained methods, they enable
the use of complex, arbitrary actions and fea-
tures of the input strings. Interestingly, our
model is trained from both positive and nega-
tive instances of string pairs, and does not re-
quire that the edit operation sequence align-
ing the given string pairs be provided. We
present positive experimental results on sev-
eral data sets.

1 Introduction

Parameterized methods of measuring edit distance be-
tween two sequences have been of both theoretical
interest and practical import for some time (Leven-
shtein, 1966; Needleman & Wunsch, 1970; Sankoff &
Kruskal, 1999). As in many other models, the ability
to learn such parameters from training data is an in-
teresting problem in optimization, and also an oppor-
tunity for improving accuracy on real-world problems.

Ristad and Yianilos (1998) proposed an expectation-
maximization-based method for learning string edit
distance with a generative finite-state model. In this
approach, training data consists of pairs of strings that
should be considered similar, and the parameters are
probabilities of certain edit operations. In the E-step,
the highest probability edit sequence is found using the

current parameters; in the M-step the probabilities are
re-estimated using the expectations determined in the
E-step so as to reduce the cost of the edit sequences
expected to cause the match. A useful attribute of this
method is that the edit operations and parameters can
be associated with states of a finite state machine (with
probabilities of edit operations depending on previ-
ous edit operations, as determined by the finite-state
structure.) However, as a generative model, this model
cannot tractably incorporate arbitrary features of the
input strings, and it cannot benefit from negative ev-
idence from pairs of strings that should be considered
dissimilar.

Bilenko and Mooney (2003) extend Ristad’s model to
include affine gaps, and also present a learned string
similarity measure based on unordered bags of words,
with training performed by an SVM. Cohen and Rich-
man (2002) use a conditional maximum entropy clas-
sifier to learn weights on several sequence distance fea-
tures. A survey of string edit distance measures is pro-
vided by Cohen et al. (2003). However, none of these
methods combine the expressive power of a Markov
model of edit operations with discriminative training.

This paper presents an undirected graphical model for
string edit distance, and a conditional-probability pa-
rameter estimation method that leverages both match-
ing and non-matching sequence pairs. Based on con-
ditional random fields (CRFs), the approach not only
provides powerful capabilities long sought in many ap-
plication domains, but also demonstrates an interest-
ing example of discriminative learning of a probabilis-
tic model involving structured latent variables.

The training data consists of input string pairs, each
associated with binary label indicating whether the
pair should be considered a “match” or a “mismatch.”
Thus, unlike previous generative models (Ristad &
Yianilos, 1998; Bilenko & Mooney, 2003) the param-
eters are estimated from both positive and negative
examples. Note that it is not necessary to provide the
desired edit-operations or alignments—the alignments

that enable the most accurate discrimination will be
discovered automatically through an EM procedure.
Thus this model is an example of an interesting class
of graphical models that are trained conditionally, but
have latent variables, and find the latent variable pa-
rameters that maximize discriminative performance.
Another recent example includes work in CRFs for ob-
ject recognition from images (Quattoni et al., 2005).

The model is structured as a finite-state machine
(FSM) with a single initial state and two disjoint sets
of non-initial states with no transitions between them.
State transitions are labeled by edit operations. One
of the disjoint sets represents the match condition, the
other the mismatch condition. Any non-empty tran-
sition path starting at the initial state defines an edit
sequence that is wholly contained in either the match
or mismatch sections of the machine. By marginaliz-
ing out all the edit sequences in a section, we obtain
the probability of match or mismatch.

The cost of a transition is a function of its edit opera-
tion, the previous state, the new state, the two input
strings, and the starting and ending position (the po-
sition of the match-so-far before and after performing
this edit operation) for each of the two input strings.
In practical applications, we take full advantage of this
flexibility. For example, the cost function can exam-
ine portions of the input strings both before and after
the current match position, it can examine domain
knowledge, such as lexicons, or it can depend on rich
conjunctions of more primitive features.

Of potentially even greater impact, the edit operations
themselves are also extremely flexible. They can make
arbitrarily-sized forward jumps in both input strings,
and the size of the jumps can be conditioned on the
input strings, the current match points in each, and
the previous state of the finite state process. For ex-
ample, a single edit operation could match a three-
letter acronym against its expansion in the other string
by consuming three capitalized characters in the first
string, and consuming three matching words in the
second string. The cost of such an operation could be
conditioned on the previous state of the finite state
process, as well as the appearance of the consumed
strings in various lexicons.

Inference and training in the model depends on a com-
plex dynamic program in three dimensions. We em-
ploy various optimizations to speed learning.

We present experimental results on five standard text
data sets, including short strings such as names and
addresses, as well as longer more complex strings, such
as bibliographic citations. We show significant error
reductions in all but one of the data sets.

2 Discriminatively Trained String
Edit Distance

Let x = x1 · · ·xm and y = y1 · · · yn be two strings or
symbol sequences. This pair of input strings is associ-
ated with an output label z ∈ {0, 1} indicating whether
or not the strings should be considered a match (1) or
a mismatch (0).1 As we now explain, our model scores
alignments between x and y as to whether they are
a match or a mismatch. An alignment a is a four-
tuple consisting of a sequence of edit operations, two
sequences of string positions, and a sequence of FSM
states.

Let a.e = e1 · · · ek indicate the sequence edit opera-
tions, such as delete-one-character-in-x, or substitute-
one-character-in-x-for-one-character-in-y, or also delete-
all-characters-in-x-up-to-its-next-nonalphabetic. Each
edit operation consumes either some of x (deletion),
some of y (insertion), or some of both (substitution).
We have therefore corresponding non-decreasing se-
quences a.ix = i1, . . . , ik and a.iy = j1, . . . , jk of string
position indices into x and y such that edit operations
e1 · · · ep edit xi1 · · ·xip into yj1 · · · yjp .

To classify alignments into matches or mismatches, we
take edits as transition labels for a non-deterministic
FSM with state set S = {q0} ∪ S0 ∪ S1. There are
transitions from the initial state q0 to states in the
disjoint sets S0 and S1, but no transitions between
those two sets. In addition to the edit sequence and
string position sequences, we associate the alignment
a with a sequence of consecutive destinations states
a.q = q1 · · · qk, where ep labels an allowed transition
from qp−1 to qp. By construction, either a.q ⊆ S0 or
a.q ⊆ S1. Alignments with states in S1 are supposed
to represent matches, while alignments with states in
S0 are supposed to represent mismatches.

In summary, we define an alignment by the four-
tuple a = 〈a.e = e1 · · · ek,a.ix = i1 · · · ik,a.iy =
j1 · · · jk,a.q = q1 · · · qk〉. For convenience, we also
write a = a0, a1 · · · ak with ap = 〈ep, ip, jp, qp〉, 1 ≤
p ≤ k and a0 = 〈−, 0, 0, q0〉 where − is a dummy ini-
tial edit.

Given two strings x and y, our discriminative string
edit CRF defines the probability of an alignment be-
tween x and y as

p(a|x,y) =
1

Zx,y

|a|∏
i=1

Φ(ai−1, ai,x,y),

1One could also straightforwardly imagine a different
regression-based scenario in which z is real-valued, or also
a ranking-based criteria, in which two pairs are provided
and z indicates which pair of strings should be considered
closer.

where the potential function Φ(·) is a non-negative
function of its arguments, and Zx,y is the normalizer
(partition function). In our experiments we parame-
terize these potential functions as an exponential of a
linear scoring function

Φ(ai−1, ai,x,y) = exp Λ · f(ai−1, ai,x,y),

where f is a vector of feature functions, each taking
as arguments two consecutive states in the alignment
sequence, the corresponding edits and their string po-
sitions.

To obtain the probability of match given simply the
input strings, we marginalize over all alignments in
the corresponding state set:

p(z|x,y) =
∑

a.q⊆Sz

1
Zx,y

|a|∏
i=1

Φ(ai−1, ai,x,y),

Fortunately, this sum can be calculated efficiently by
dynamic programming. Typically, for any given edit
operation, starting positions and input strings, there
are a small number of possible resulting ending posi-
tions.

3 Parameter Estimation

Parameters are estimated by penalized maximum like-
lihood on a set of training data. Training data con-
sists of a set of N string pairs, indexed by j, each pair
〈x(j),y(j)〉 being associated with a label z(j) ∈ {0, 1},
indicating whether or not the pair should be consid-
ered a match. For the penalization term in the log-
likelihood we use a zero-mean spherical Gaussian prior,∑

k λ2
k/σ2.

The incomplete (non-penalized) log-likelihood is then

LI =
(∑

j

log p(z(j)|x(j),y(j))
)

and the complete log-likelihood is

LC =
(∑

j

∑
a

log(p(z(j)|a,x(j),y(j))p(a|x(j),y(j)))
)

We maximize this likelihood with EM, estimating
p(a|x(j),y(j)) given current parameters Λ in the E-
step, and maximizing the complete penalized log-
likelihood in the M-step. For optimization in the M-
step we use BFGS. To avoid poor-performance locall
minima, the parameters are initialized to values that
yield a reasonable default edit distance.

Dynamic programming for this model fills a three-
dimensional table (two for the two input strings, and

one for the number of states in S). The table can
be moderately large in practice (n = m = 100 and
|S| = 12, resulting in 120,000 entries), and beam
search may effectively be used to increase speed, just
as in speech recognition, where even larger tables are
common.

It is interesting to consider what alignments will be
learned in S0, the non-match portion of the model. To
attain high accuracy, these states should attract string
pairs that are dissimilar. So one might wonder, then,
if it will learn alignments that always prefer simply to
delete all of x, and then insert all of y. However, note
that discovering exactly how dissimilar two strings are
requires finding as good an alignment as is possible,
and then deciding that this alignment is not very good.
Interestingly these good-as-possible alignments are ex-
actly what our learning procedure discovers. Driven by
an objective function that aims to maximize the like-
lihood of the correct binary match/non-match labels,
the model finds the latent alignment paths enable it
to maximize this likelihood.

This model thus falls in a family of interesting tech-
niques involving discrimination among complex struc-
tured objects, in which the structure or relationship
among the parts is unknown (latent), and the latent
choice has high impact on the discrimination task.
Similar considerations are at the core of discrimina-
tive non-probabilistic methods for structured problems
such as handwriting recognition (LeCun et al., 1998)
and speech recognition (Woodland & Povey, 2002),
and, more recently, computer vision object recogni-
tion (Quattoni et al., 2005). We discuss related work
further in Section 6.

4 Implementation

The model has been implemented as part of the finite-
state transducer toolkit Mallet. We map three-
dimensional dynamic programming problems over po-
sitions in x and y and states S to Mallet’s ex-
isting finite-state forward-backward and Viterbi im-
plementations by encoding the two position indices
into a single index in a diagonal crossing pattern that
starts at (0, 0). Then, for example, a single-character
delete operation, which would correspond to a adja-
cent vertical or horizontal hop in the original table,
corresponds here to a longer, one-dimensional (but
deterministically-calculated) jump.

In addition to the standard edit operations (insertion,
deletion, substitution) we have also implemented more
powerful edits that come naturally in this model, such
as delete-until-end-of-word, delete-word-in-lexicon, and
delete-word-appearing-in-other-string.

5 Experimental Results

We show experimental results on six real-world, and
one synthetic data set, all of which have been used
in previous work evaluating string edit measures. The
first two data sets are the name and address fields of the
Restaurant database. Among its 864 records, 112 are
matches. The last four data sets are citation strings
from the standard Reasoning, Constraint, Reinforce-
ment and Face sections of the CiteSeer data. The ra-
tios of citations to unique papers for these are 514/196,
349/242, 406/148 and 295/199 respectively. Making
the problem more challenging than certain other eval-
uations on this data, our strings are not segmented
into fields such as title or author, but treated as unseg-
mented wholes. We also present results on synthetic
noise on person names, generated by the UIS Database
generator. This program produces perturbed names
according to modifiable noise parameters, including
the probability of an error anywhere in a record, the
probability of single character insertion, deletion or
swap, and the probability of a word swap.

5.1 Edit Operations and Features

One of the great advantages of our model is the abil-
ity to include non-independent features, and extremely
flexible edit operations. The features used in our ex-
periments include subsets of the following, described
as acting on cell i, j in the dynamic programming table
and the two input strings x and y:

• same, different : xi and yj match (do not match);

• same-alphabets, different-alphabets : xi and yj are
alphabetic and they match (do not match);

• same-numbers, different-numbers : xi and yj are
numeric and they match (do not match);

• punctuation-x, punctuation-y : xi and yj are punc-
tuation, respectively;

• alphabet-mismatch, number-mismatch : One of xi

and yj is alphabetic (numeric), the other is not;

• end-of-x, end-of-y : i = |x| (j = |y|);

• same-next-character, different-next-character: xi+1

and yi+1 match (do not match).

Edit operations on FSM transitions include:

• Standard string edit operations: insert, delete and
substitute.

• Two character operations: swap-two-characters.

• Word skip operations: skip-if-word-in-lexicon, skip-
word-if-present-in-other-string, skip-parenthesized-
words and skip-any-word .

• Operations for handling acronyms and abbrevia-
tions by inserting, deleting, or substituting spe-
cific types of substrings.

Learned parameters are associated with the features as
well as with state transitions in the FSM. All transi-
tions entering a state may share tied parameters (first
order), or have different parameters (second order).
Since the FSM can have more states than edit oper-
ations, it can remember the context of previous edit
actions.

5.2 Experimental Methodology

Our model exploits both positive and negative exam-
ples during training. Positive training examples in-
clude all pairs of strings referring to the same object
(the matching strings). However, the total number
of negative examples is quadratic in the number of
objects. Due to both time and memory constraints,
as well as a desire to avoid overwhelming the positive
training examples, we sample the negative (mismatch)
string pairs so as to attain a 1:10 ratio of match to mis-
match pairs. In order to preferentially sample “near
misses” we employ one of two strategies:

• Remove negative examples that are below a
threshold according to a convenient similarity
score. For the Citeseer datasets we use the cosine
metric to measure similarity of two citations; for
other datasets we use the metric of Jaro (1989).

• Run our CRF on the negative examples using de-
fault initial parameters, set by hand to reason-
able values, and choose those examples which the
model considers most matching.

As in Bilenko and Mooney (2003), we use a 50/50
train/test split of the data, and repeat the process
with the folds interchanged. With the restaurant name
and restaurant address dataset, we ran our algorithm
with different choices of features and states, and 4 ran-
dom splits of the data. With the Citeseer datasets, we
ran our algorithm for one random split of the data.
Additional experiments with these larger datasets are
forthcoming.

To provide EM training with a reasonable starting
point we hand-set the initial parameters to somewhat
arbitrary, yet reasonable parameters. Of course, hand-
setting of string edit parameters is the standard for all
the non-learning approaches. We examined a small

Distance Metric Restaurant name Restaurant address Reasoning Face Reinforcement Constraint

Edit Distance 0.290 0.686 0.927 0.952 0.893 0.924
Learned Edit Distance 0.354 0.712 0.938 0.966 0.907 0.941
Vector-space 0.365 0.380 0.897 0.922 0.903 0.923
Learned Vector-space 0.433 0.532 0.924 0.875 0.808 0.913
CRF Edit Distance 0.448 0.783 0.964 0.918 0.917 0.976

Table 1: Averaged F-measure for detecting matching field values on several standard data sets (bold indicates
highest F1). The top four rows are results duplicated from Bilenko and Mooney (2003); the bottom row is the
performance of the CRF method introduced in this paper.

held-out set of data to verify that these initial param-
eters were reasonable. We set the parameters on the
match portion of the FSM to provide good alignments.
We then copy these parameters to the mismatch por-
tion of the model, and offset by bringing all values
closer to zero by a small constant.

Lexicons were populated automatically by gathering
the most frequent words in the training set. (One
could imagine future work with lexicon feature values
set to inverse-document-frequency values, or similar
information retrieval metrics.) In some cases, before
training, lexicons were edited to remove all surnames
of authors.

The equations in section 3 are used to calculate
p(z|x,y). A threshold of 0.5 predicts whether the
string pair is a match or a mismatch. (Note that alter-
native thresholds could easily be used to trade of preci-
sion and recall, if desired, and that CRFs are typically
good at predicting calibrated posterior probabilities
needed for such tuning as well as accuracy/coverage
curves.)

Precision is calculated to be the ratio of the number
of correctly classified duplicates to the total number of
duplicates identified. We also calculate the recall value
as the ratio of correctly classified duplicates to the to-
tal number of duplicates in the dataset. We report the
mean performance across multiple random splits.

5.3 Results

In experiments on the six real-world data sets we com-
pare our performance against results in a recent bench-
mark paper by Bilenko and Mooney (2003), who re-
cently completely thesis work in this area. These re-
sults are summarized in Table 1, where the top four
rows are duplicated from Bilenko and Mooney (2003),
and the bottom row shows the results of our method
introduced here. The entries are the average F1 mea-
sure across the folds. Precise statistical significance
measures are forthcoming, although the large perfor-
mance improvements, and the fact that the difference
in performance across our trials is typically around

Run F1
i, d, s 0.701
i, d, s, paren 0.835
i, d, s, lex 0.769
i, d, s, lex 2nd order 0.742
i, d, s, paren,lex,pres 0.746
i, d, s, paren,lex,pres 2nd order 0.699

Table 2: Averaged maximum F-measure for different
state combinations on restaurant name (trained and
evaluated on the same subset of data).

0.01, both suggest strong significance.

In the other tables we present results showing the im-
pact of various edit operations and features.

Table 2 provides F1 on the restaurant dataset as vari-
ous advanced edit operations are added to the model:
i indicates the insert operation, d indicates the delete
operation, s indicates the substitute operation, paren
indicates the skip-parenthesized-word operation, lex in-
dicates the skip-if-word-in-lexicon operation, and pres
indicates the skip-word-if-present-in-other-string state.
The only features we used are same-alphabets and
different-alphabets. As can be seen form the results
in Table 2 adding “skip” states improves performance.
Although, skip-parenthesized-words gives better results
on the smaller dataset, skip-if-word-in-lexicon state pro-
duces a higher accuracy on an average. This is be-
cause in the restaurant name dataset the location of the
restaurant is given inside parenthesis and this helps us
filter out false positives.

Table 3 shows the benefits of including various fea-
tures on the restaurant address dataset, while keeing
a fixed set of edit operations (insert, delete and substi-
tute). In the table, s, d stand for the same, different fea-
tures, salp,dalp stand for the same-alphabets, different-
alphabets features and snum,dnum stand for the same-
numbers, different-numbers features. The s, d features
are different from the salp,dalp,snum,dnum features in
that the weights learned in the former depend only on
whether the two characters are equal or not, and no

Run F1
s, d 0.944
salp, dalp, snum, dnum 0.973

Table 3: Averaged maximum F1-measure for differ-
ent feature combinations on a subset of the restaurant
address data set.

Run F1
Without skip 0.856
With skip 0.981

Table 4: Average maximum F-measure for synthetic
name dataset with and without skip-if-present-in-other-
string state

separate weights are learned for a number match and
a alphabet match. We conjecture that a number mis-
match in the address data should be penalized more
than an alphabet mismatch. Separating the same, dif-
ferent feature into features for alphabets and numbers
reduces the error from about 6% to 3%.

Finally, Table 4 demonstrates the power of CRFs to in-
clude extremely flexible edit operations that examine
arbitrary pieces of the two input strings. In particular
we measure the impact of including the skip-word-if-
present-in-other-string operation, (or simply “skip” for
short). Here we train and test on the UIS synthetic
name data, in which the error probability is 40%, the
typo error probability is 40% and the swap first and
last name probability is 50%; (the rest of the param-
eters were unchanged from the default values). The
difference in performance is dramatic, bringing error
down from about 14% to less than 2%. Of course
traditional string edit dynamic programs are not able
to represent substring swaps, but the skip operation
gives an excellent approximation while preserving ef-
ficient finite-state inference. Typical improved align-
ments with the new operation may skip over a match-
ing swapped firstname, and then proceed to correct
individual typographic errors in the last name.

A sample alignment found by our model on the restau-
rant name are shown in Table 5. As discussed in Sec-
tion 3, the non-match portion of the model indeed
learn the best possible latent alignments in order to
measure distance with the most salient features. The
entries in the dynamic programming table correspond
to states i, d, s, l, p representing insert, delete, sub-
stitute, skip-word-in-lexicon, skip-parenthesized-word re-
spectively. The - symbol corresponds to no transition.

|ε|r|e|s|t|a|u|r|a|n|t|:|k|a|t|z|u|ε|
ε|l| | | | | | | | | | |s| | | | | | |
k| | | | | | | | | | | | |s| | | | | |
a| | | | | | | | | | | | | |s| | | | |
t| | | | | | | | | | | | | | |s| | | |
s| | | | | | | | | | | | | | | |s| | |
u| | | | | | | | | | | | | | | | |s| |
ε| | | | | | | | | | | | | | | | | |-|

Table 5: Alignment for both sides of the model with
correct prediction

6 Related Work

String (dis)similarity metrics based on edit distance
are widely used in applications ranging from approx-
imate matching and duplicate removal in database
records to identifying conserved regions in compara-
tive genomics. Levenshtein (1966) introduced least-
cost editing based on independent symbol insertion,
deletion, and substitution costs, and Needleman and
Wunsch (1970) extended the method to allow gaps.
Editing between strings over the same alphabet can
be generalized to transduction between strings in dif-
ferent alphabets, for instance in letter-to-sound map-
pings (Riley & Ljolje, 1996) and in speech recognition
(Jelinek et al., 1975).

In most applications, the edit distance model is de-
rived by heuristic means, possibly including some
data-dependent tuning of parameters. For exam-
ple, Monge and Elkan (1997) recognize duplicate cor-
rupted records using an edit distance with tunable
edit and gap costs. Hernandez and Stolfo (May 1995)
merge records in large databases using rules based on
domain-specific edit distances for duplicate detection.
Cohen (2000) used a token based TF-IDF string sim-
ilarity score to compute ranked approximate joins on
tables derived from Web pages. Koh et al. (2004) used
association rule mining to check for duplicate records
with per-field exact, Levenshtein or BLAST 2 gapped
alignment (Altschul et al., 1997) matching. Recently,
Cohen et al. (2003) surveyed edit and common sub-
string similarity metrics for name and record match-
ing, and their application in various duplicate detec-
tion tasks.

In bioinformatics, sequence alignment algorithms with
edit costs based on evolutionary or biochemical esti-
mates are widely used (Durbin et al., 1998). Position-
independent costs are normally used for general se-
quence similarity search, but position-dependent costs
are often used when searching for specific sequence mo-
tifs.

In basic edit distance, the cost of individual edit op-

erations is independent of the string context. How-
ever, applications often require edit costs to change
depending on context. For instance, the characters in
an author’s first name after the first character are more
likely to be deleted than the first character. Instead
of specialized representations and dynamic program-
ming algorithms, we can instead represent context-
dependent editing with weighted finite-state transduc-
ers (Eilenberg, 1974; Mohri et al., 2000) whose states
represent different types of editing contexts. The
same idea has also been expressed with pair hidden
Markov models for pairwise biological sequence align-
ment (Durbin et al., 1998).

If edit costs are identified with − log probabilities
(up to normalization), edit distance models and cer-
tain weighted transducers can be interpreted as gen-
erative models for pairs of sequences. Pair HMMs
are such generative models by definition. Therefore,
expectation-maximization using an appropriate ver-
sion of the forward-backward algorithm can be used
to learn parameters that maximize the likelihood of
a given training set of pairs of strings according to
the generative model (Ristad & Yianilos, 1998; Ristad
& Yianilos, 1996; Durbin et al., 1998). Bilenko and
Mooney (2003) use EM to train the probabilities in
a simple edit transducer for one of the duplicate de-
tection measures they evaluate. Eisner (2002) gives
a general algorithm for learning weights for transduc-
ers, and notes that the approach applies to transduc-
ers with transition scores given by globally normalized
log-linear models. These models are to CRFs as pair
HMMs are to HMMs.

The foregoing methods for training edit transduc-
ers or pair HMMs use positive examples alone, but
do not need to be given explicit alignments because
they do EM with alignment as a latent (structured)
variable. Joachims (2003) gives a generic maximum-
margin method for learning to score alignments from
positive and negative examples, but the training ex-
amples must include the actual alignments. In ad-
dition, he cannot solve the problem exactly because
he does not exploit factorizations of the problem that
yield a polynomial number of constraints and efficient
dynamic programming search over alignments.

While the basic models and algorithms are expressed
in terms of single letter edits, in practice it is con-
venient to use a richer application-specific set of edit
operations, for example for name abbreviation. For
example, Brill and Moore (2000) use edit operations
designed for spelling correction in a spelling correction
model trained by EM. Tejada et al. (2001) has edit op-
erations such as abbreviation and acronym for record
linkage.

7 Conclusions

We have presented a new dicriminative model for
learning finite-state edit distance from postive and
negative examples consisting of matching and non-
matching strings. It is not necessary to provide se-
quence alignments during training. Experimental re-
sults show the method to outperform previous ap-
proaches.

The model is an interesting member of a family of
models that use a discriminative objective function
to discover latent structure. The latent edit opera-
tion sequences that are learning by EM are indeed the
alignments that help discriminate matching from non-
matching strings.

We have described in some detail the finite-state ver-
sion of this model. A context-free grammar version of
the model could, through edit operations defined on
trees, handle swaps of arbitrarily-sized substrings.

Acknowledgments

We thank Charles Sutton and Xuerui Wang for help-
ful conversations. This work was supported in part
by the Center for Intelligent Information Retrieval,
the National Science Foundation under NSF grant
#IIS-0326249, and by the Defense Advanced Research
Projects Agency, through the Department of the Inte-
rior, NBC, Acquisition Services Division, under con-
tract #NBCHD030010.

References

Altschul, S. F., Madden, T. L., Schaffer, A. A., Zhang,
J., Zhang, Z., Miller, W., & Lipman, D. J. (1997).
Gapped BLAST and PSI-BLAST: a new generation
of protein database search programs. Nucleic Acids
Research, 25.

Bilenko, M., & Mooney, R. J. (2003). Adaptive dupli-
cate detection using learnable string similarity mea-
sures. In Proceedings of the 9th ACM SIGKDD In-
ternational Conference on Knowledge Discovery and
Data Mining (KDD) (pp. 39–48). Washington, DC.

Brill, E., & Moore, R. C. (2000). An improved error
model for noisy channel spelling correction. Proceed-
ings of the 38th Annual Meeting of the ACL.

Cohen, W. W. (2000). Data integration using similar-
ity joins and a word-based information representa-
tion language. ACM Transactions on Information
Systems, 18, 288–321.

Cohen, W. W., Ravikumar, P., & Fienberg, S. (2003).
A comparison of string metrics for matching names

and records. KDD Workshop on Data Cleaning and
Object Consolidation.

Cohen, W. W., & Richman, J. (2002). Learning to
match and cluster large high-dimensional data sets
for data integration. KDD (pp. 475–480). ACM.

Durbin, R., Eddy, S., Krogh, A., & Mitchison, G.
(1998). Biological sequence analysis: Probabilistic
models of proteins and nucleic acids. Cambridge
University Press.

Eilenberg, S. (1974). Automata, languages and ma-
chines, vol. A. Academic Press.

Eisner, J. (2002). Parameter estimation for proba-
bilistic finite-state transducers. Proceedings of the
40th Annual Meeting of the Association for Compu-
tational Linguistics.

Hernandez, M. A., & Stolfo, S. J. (May 1995). The
merge/purge problem for large databases. Proceed-
ings of the 1995 ACM SIGMOD International Con-
ference on Management of Data (SIGMOD-95) (pp.
127–138). San Jose, CA.

Jaro, M. A. (1989). Advances in record-linkage
methodology as applied to matching the 1985 census
of tampa, florida. Journal of the American Statisti-
cal Association, 84, 414–420.

Jelinek, F., Bahl, L. R., & Mercer, R. L. (1975).
The design of a linguistic statistical decoder for the
recognition of continuous speech. IEEE Transac-
tions on Information Theory, 3, 250–256.

Joachims, T. (2003). Learning to align sequences: A
maximum-margin approach (Technical Report). De-
partment of Computer Science, Cornell University.

Koh, J. L. Y., Lee, M. L., Khan, A. M., Tan, P. T. J., &
Brusic, V. (2004). Duplicate detection in biological
data using association rule mining. Proceedings of
the Second European Workshop on Data Mining and
Text Mining in Bioinformatics.

LeCun, Y., Bottou, L., Bengio, Y., & Haffner, P.
(1998). Gradient-based learning applied to doc-
ument recognition. Proceedings of the IEEE, 86,
2278–2324.

Levenshtein, L. I. (1966). Binary codes capable of cor-
recting deletions, insertions and reversals. Soviet
Physics Doklady, 10, 707–710.

Mohri, M., Pereira, F., & Riley, M. (2000). The Design
Principles of a Weighted Finite-State Transducer Li-
brary. Theoretical Computer Science, 231, 17–32.

Monge, A. E., & Elkan, C. (1997). An efficient domain-
independent algorithm for detecting approximately
duplicate database records. DMKD. Tuscan, Ari-
zona.

Needleman, S. B., & Wunsch, C. D. (1970). A general
method applicable to the search for similarities in
the amino acid sequence of two proteins. Journal of
Molecular Biology, 48, 443–453.

Quattoni, A., Collins, M., & Darrell, T. (2005). Con-
ditional random fields for object recognition. In
L. K. Saul, Y. Weiss and L. Bottou (Eds.), Advances
in neural information processing systems 17, 1097–
1104. Cambridge, MA: MIT Press.

Riley, M. D., & Ljolje, A. (1996). Automatic gener-
ation of detailed pronunciation lexicons. In C. H.
Lee, F. K. Soong and E. K. K. Paliwal (Eds.), Au-
tomatic speech and speaker recognition: Advanced
topics, chapter 12. Boston: Kluwer Academic.

Ristad, E. S., & Yianilos, P. N. (1996). Finite growth
models (Technical Report TR-533-96). Department
of Computer Science, Princeton University.

Ristad, E. S., & Yianilos, P. N. (1998). Learning string
edit distance. IEEE Transactions on Pattern Anal-
ysis and Machine Intelligence, 20, 522–532.

Sankoff, D., & Kruskal, J. (Eds.). (1999). Time warps,
string edits, and macromolecules. Stanford, Cali-
fornia: CSLI Publications. Reissue edition edition,
Originally published by Addison-Wesley, 1983.

Tejada, S., Knoblock, C. A., & Minton, S. (2001).
Learning object identification rules for information
integration. Information Systems, 26, 607–633.

Woodland, P. C., & Povey, D. (2002). Large scale
discriminative training of hidden Markov models for
speech recognition. Computer Speech and Language,
16, 25–47.

