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Abstract

Information extraction techniques automati-
cally create structured databases from un-
structured data sources, such as the Web or
newswire documents. Despite the successes of
these systems, accuracy will always be imper-
fect. For many reasons, it is highly desirable to
accurately estimate the confidence the system
has in the correctness of each extracted field.
The information extraction system we evalu-
ate is based on a linear-chain conditional ran-
dom field (CRF), a probabilistic model which
has performed well on information extraction
tasks because of its ability to capture arbitrary,
overlapping features of the input in a Markov
model. We implement several techniques to es-
timate the confidence of both extracted fields
and entire multi-field records, obtaining an av-
erage precision of 98% for retrieving correct
fields and 87% for multi-field records.

1 Introduction
Information extraction usually consists of tagging a se-
quence of words (e.g. a Web document) with semantic
labels (e.g. PERSONNAME, PHONENUMBER) and de-
positing these extracted fields into a database. Because
automated information extraction will never be perfectly
accurate, it is helpful to have an effective measure of
the confidence that the proposed database entries are cor-
rect. There are at least three important applications of
accurate confidence estimation. First, accuracy-coverage
trade-offs are a common way to improve data integrity in
databases. Efficiently making these trade-offs requires an
accurate prediction of correctness.

Second, confidence estimates are essential for inter-
active information extraction, in which users may cor-
rect incorrectly extracted fields. These corrections are

then automatically propagated in order to correct other
mistakes in the same record. Directing the user to
the least confident field allows the system to improve
its performance with a minimal amount of user effort.
Kristjannson et al. (2004) show that using accurate con-
fidence estimation reduces error rates by 46%.

A third use of confidence estimation is to improve per-
formance of data mining algorithms that depend upon
databases created by information extraction systems (Mc-
Callum and Jensen, 2003). Confidence estimates provide
data mining applications with a richer set of “bottom-up”
hypotheses, resulting in more accurate decisions. An ex-
ample of this occurs in the task of citation co-reference
resolution. An information extraction system is built to
label each field of a paper citation (e.g. AUTHOR, TI-
TLE), and then co-reference resolution is performed to
merge disparate references to the same paper. Normally,
errors in labeling the citation fields will carry over to er-
rors in co-reference resolution. However, attaching a con-
fidence value to each field allows the system to examine
alternate labelings for less confident fields and give more
importance to matching fields that have high confidence.

Sound probabilistic extraction models are most con-
ducive to accurate confidence estimation because of their
intelligent handling of uncertainty information. In this
work we use conditional random fields (Lafferty et al.,
2001), a type of undirected graphical model, to automat-
ically label fields of contact records. Here, a record is an
entire block of a person’s contact information, and a field
is one element of that record (e.g. COMPANYNAME). We
implement several techniques to estimate both field con-
fidence and record confidence, obtaining an average pre-
cision of 98% for fields and 87% for records.

2 Conditional Random Fields

Conditional random fields (Lafferty et al., 2001) are undi-
rected graphical models to calculate the conditional prob-
ability of values on designated output nodes given val-



ues on designated input nodes. In the special case in
which the designated output nodes of the graphical model
are linked by edges in a linear chain, CRFs make a
first-order Markov independence assumption among out-
put nodes, and thus correspond to finite state machines
(FSMs). In this case CRFs can be roughly understood as
conditionally-trained hidden Markov models, with addi-
tional flexibility to effectively take advantage of complex
overlapping features.

Let o � �
o1 � o2 ������� oT � be some observed input data se-

quence, such as a sequence of words in a document (the
values on T input nodes of the graphical model). Let �
be a set of FSM states, each of which is associated with a
label (such as COMPANYNAME). Let s � �

s1 � s2 �	����� sT � be
some sequence of states (the values on T output nodes).
CRFs define the conditional probability of a state se-
quence given an input sequence as

pΛ 
 s � o � � 1
Zo

exp



T

∑
t � 1

∑
k

λk fk 
 st � 1 � st � o � t ��� � (1)

where Zo is a normalization factor over all state se-
quences, fk 
 st � 1 � st � o � t � is an arbitrary feature function
over its arguments, and λk is a learned weight for each
feature function. Even though the normalization factor,
Zo, nominally involves a sum over an exponential number
of different possible state sequences, because these nodes
with unknown values are connected in a graph without
cycles (a linear chain in this case), it can be efficiently cal-
culated via belief propagation using dynamic program-
ming. Inference (very much like the Viterbi algorithm in
this case) is also a matter of dynamic programming.

Maximum aposteriori training of these models is ef-
ficiently performed by hill-climbing methods such as
conjugate gradient, or its improved second-order cousin,
limited-memory BFGS (Sha and Pereira, 2003).

3 Field Confidence Estimation
We wish to estimate the probability that an extracted field
is labeled correctly. The well-known Viterbi algorithm
finds the most likely state sequence matching the ob-
served word sequence. The word that Viterbi matches
with a particular FSM state is extracted as belonging to
the database field corresponding to that state. We can triv-
ially obtain a numeric score for an entire sequence, and
then turn this into a probability for the entire sequence by
normalizing. However, to predict the confidence of an in-
dividual field, we desire the probability of a subsequence,
marginalizing out the state selection for all other parts
of the sequence. A specialization of Forward-Backward,
termed Constrained Forward-Backward (CFB), gives us
exactly this probability.

In hidden Markov models (Rabiner, 1989), the Viterbi
algorithm is an efficient dynamic programming solution

to the problem of finding the state sequence most likely to
have generated the observation sequence. Because CRFs
are conditionally trained, the CRF Viterbi algorithm in-
stead finds the most likely state sequence given an obser-
vation sequence, defined as

s � � argmax
s

pΛ 
 s � o � �
To avoid an exponential-time search over all possible

settings of s, Viterbi stores the probability of the most
likely path at time t that accounts for the first t obser-
vations and ends in state si. Following the notation of
(Rabiner, 1989), we define this probability to be δt 
 si � ,
where δ0 
 si � is the probability of starting in each state si,
and the recursive formula is:

δt � 1 
 si � � max
s ��� δt 
 s ��� exp � ∑

k
λk fk 
 s � � si � o � t ����� � (2)

The recursion terminates in

s � � argmax
s1 � si � sN � δT 
 si ���

The Forward-Backward algorithm can be viewed as a
generalization of the Viterbi algorithm: instead of choos-
ing the optimal state sequence, Forward-Backward eval-
uates all possible state sequences given the observation
sequence. The “forward values” αt � 1 
 si � are recursively
defined similarly as in Eq. 2, except the max is replaced
by a summation. Thus we have

αt � 1 
 si � � ∑
s � � αt 
 s � � exp � ∑

k
λk fk 
 s � � si � o � t ����� � (3)

Furthermore, the recursion terminates to define Zo
�

∑i αT 
 si � from Eq. 1.
To estimate the probaility that a field is extracted cor-

rectly, we constrain the Forward-Backward algorithm
such that each path conforms to some subpath of con-
straints C � �

sq ���	� sr � from time step q to r. Here, sq  C
can be either a positive constraint (the sequence must pass
through sq) or a negative constraint (the sequence must
not pass through sq).

In the context of information extraction, C corresponds
to an automatically extracted field. The positive con-
straints specify the observation tokens labeled inside the
field, and the negative constraints specify the boundary
of the field. For example, if the system labels observation
sequence

�
o2 ���	���!� o5 � as a JOBTITLE field, then C � �

s1 "�
JOBTITLE, s2

� �	��� � s5
� JOBTITLE � s6 "� JOBTITLE � .

The calculations of the forward values can be made to
conform to C by the recursion α �q 
 si � �#

∑s � � α �q � 1 
 s � � exp � ∑k λk fk 
 s � � si � o � t ���$� if si % sq

0 otherwise
(4)



for all sq  C, where the operator si % sq means si con-
forms to constraint sq. For time steps not constrained by
C, Eq. 3 is used instead.

If α �t � 1 
 si � is the constrained forward value, then Z �o �
∑i α �T 
 si � is the value of the constrained lattice, the set of
all paths that conform to C. Our confidence estimate is
obtained by normalizing Z �o using Zo.

We also implement an alternative method that uses
the state probability distributions for each state in the
extracted field. Let γt 
 si � � p 
 si � o1 �	�����!� oT � be the
probability of being in state i at time t given the
observation sequence (analogous to the γ variable in
Rabiner (1989)). We define the confidence measure
GAMMA to be ∏v

i � u γi 
 si � , where u and v are the start and
end indices of the extracted field.

4 Record Confidence Estimation

We can similarly use CFB to estimate the probability that
an entire record is labeled correctly. The procedure is
the same as in the previous section, except that C now
specifies the labels for all fields in the record.

We also implement three alternative record confidence
estimates. FIELDPRODUCT calculates the confidence of
each field in the record using CFB, then multiplies these
values together to obtain the record confidence. FIELD-
MIN instead uses the minimum field confidence as the
record confidence. VITERBIRATIO uses the ratio of the
probabilities of the top two Viterbi paths, capturing how
much more likely s � is than its closest alternative.

5 Reranking with Maximum Entropy

We also trained two conditional maximum entropy clas-
sifiers to classify fields and records as being labeled cor-
rectly or incorrectly. The resulting posterior probability
of the “correct” label is used as the confidence measure.
The approach is inspired by results from (Collins, 2000)
that show discriminitive classifiers can improve the rank-
ing of parses produced by a generative sentence parser.

After experimenting with many different features, the
most informative inputs for the field confidence classi-
fier were field length, the predicted label of the field,
whether or not this field has been extracted elsewhere
in this record, and the CFB confidence estimate for this
field. For the record confidence classifier, we incorpo-
rated the following features: record length, whether or
not two fields were tagged with the same label, and the
CFB confidence estimate.

6 Experiments

We collected 2187 contact records (27,560 words) from
Web pages and email and hand-labeled 25 classes of data

Token Acc. F1 Prec Rec
CRF 87.32 84.11 85.43 82.83

Table 1: Token accuracy and field extraction performance
for CRF.

fields.1

The features for the CRF consist of the token text, cap-
italization features, 24 regular expressions over the to-
ken text (e.g. CONTAINSHYPHEN), and offsets of these
features within a window of size 5. We also use 19 lexi-
cons, including “US Last Names,” “US First Names,” and
“State Names.” Feature induction is not used in these
experiments. The CRF is trained on 60% of the data,
and the remaining 40% is split evenly into development
and testing sets. The development set is used to train the
maximum entropy classifiers, and the testing set is used
to measure the accuracy of the confidence estimates. The
for extraction results for CRF are shown in Table 1.

To evaluate confidence estimation, we use three meth-
ods. The first is Pearson’s r, a correlation coefficient
ranging from -1 to 1, that measures the correlation be-
tween a confidence score and whether or not the field
(or record) is correctly labeled. The second is average
precision, borrowed from the Information Retrieval com-
munity. Average precision is normally used to evaluate
the ordering of a ranked list of retrieved documents. In-
stead of ranking documents by their relevance score, here
we rank fields (and records) by their confidence score.
WORSTCASE is the average precision obtained by rank-
ing all incorrect instances above all correct instances. Ta-
bles 2 and 3 show that CFB and MAXENT are statisti-
cally similar, and that both outperform competing meth-
ods.

The third measure is a precision-recall graph. Better
confidence estimates push the curve to the upper-right of
the graph. Figure 1 shows that CFB and MAXENT dra-
matically outperform GAMMA.

7 Related Work
To the best of our knowledge, this paper is the first to use
confidence estimation for information extraction. Confi-
dence estimation has been studied in document classifi-
cation (Bennett et al., 2002), where classifiers are built
using meta-features of the document, such as the distri-
bution of features across classes and the mean and vari-
ance of classifier-specific weights. Confidence measures
are also used in speech recognition (Gunawardana et al.,

1The 25 fields are: FIRSTNAME, MIDDLENAME, LAST-
NAME, NICKNAME, SUFFIX, TITLE, JOBTITLE, COMPA-
NYNAME, DEPARTMENT, ADDRESSLINE, CITY1, CITY2,
STATE, COUNTRY, POSTALCODE, HOMEPHONE, FAX, COM-
PANYPHONE, DIRECTCOMPANYPHONE, MOBILE, PAGER,
VOICEMAIL, URL, EMAIL, INSTANTMESSAGE



Pearson’s r Avg. Prec
CFB .573 .976

MaxEnt .571 .976
Gamma .418 .912
Random .012 .858

WorstCase – .672

Table 2: Evaluation of confidence estimates for field
confidence. CFB and MAXENT outperform competing
methods.

Pearson’s r Avg. Prec
CFB .626 .863

MaxEnt .630 .867
FieldProduct .608 .858

FieldMin .588 .843
ViterbiRatio .313 .842

Random .043 .526
WorstCase – .304

Table 3: Evaluation of confidence estimates for record
confidence. CFB, MAXENT again perform best.

1998) to estimate the confidence of a recognized word
by considering a list of commonly confused words. Fi-
nally, confidence measures have been calculated in ma-
chine translation (Gandrabur and Foster, 2003) by using
a neural network to learn the probability of a correct word
translation using text features and knowledge of alternate
translations.

8 Conclusion

We have shown that CFB is a mathematically and em-
pirically sound confidence estimator for finite state in-
formation extraction systems, providing strong correla-
tion with correctness and obtaining an average precision
of 97.6% for estimating field correctness. Interestingly,
discriminitive reranking by MAXENT does not seem to
improve performance, despite the benefit Collins (2000)
has shown discriminiave reranking to provide generative
parsers. We hypothesize this is because CRFs are already
discriminative (not generative) models; furthermore, this
may suggest that future discriminative parsing techniques
will also have the benefits of discriminative reranking
built-in directly.
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