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Abstract

We are interested in constructing fast, prin-
cipled algorithms for scaling up decoding and
parameter estimation in probability mod-
els such as Hidden Markov Models (HMMs)
and linear-chain Conditional Random Fields
(CRFs) with large state spaces. In this
paper we present a principled extension of
beam search to beam inference and learn-
ing. We present a new approach for approxi-
mate inference based on approximating single
variable potentials with a constrained, lower
complexity, adaptively sized sum or mixture
of Kronecker delta functions. We present in-
ference and optimization results on synthetic
and real data for HMMs and CRFs. In a
number of cases, we demonstrate potential
speed increases of close to an order of magni-
tude with little or no degradation in accuracy
over exact methods for decoding and parame-
ter estimation. We also demonstrate speed,
accuracy and robustness improvements over
traditional, n-best and threshold based beam
methods. While we focus experiments on
HMMs and CRFs, these methods should be
widely applicable for inference in many fac-
torized representations of probability distrib-
utions with large state spaces.

1 Introduction

Viterbi beam search procedures represent critically im-
portant components of Hidden Markov Model (HMM)
based systems for large scale, real world speech recog-
nition systems [2, 12, 17]. Linear-chain Conditional
Random Fields (CRFs) [7] are conditional models
which, when constructed for sequence labeling prob-
lems involve similar computations as in HMMs. For
example, given a CRF with known parameters we are

often interested in computing an analog of the “Viterbi
parse” [15] which is often computed in an HMM. In
both HMMs and CRFs these computations determine
maximum probability configurations. When estimat-
ing the parameters of an HMM, one can use the sum-
product algorithm [6] to find pairwise marginals as a
step in the estimation procedure. In a CRF a similar
forward-backward, sum-product pass is used repeat-
edly during model optimization to compute expecta-
tions [7]. These computations are used to compute
the gradient of the log likelihood, have quadratic time
complexity and are thus is very expensive when state
spaces are large. We are interested in speeding up in-
ference so as to solve decoding and optimization prob-
lems in HMMs and CRFs with large state spaces.

Recently, a number of algorithms have been proposed
which involve incrementally computing approxima-
tions to probability distributions using “local” updates
of random variables in a graphical structure. Ex-
pectation Propagation [8] computes an approximation
to complex posteriors over random variables through
matching the expectations of moments. Other recent
related work on expectation consistent free energies
[11] has employed optimization methods which mini-
mize free energies subject to expectation constraints.
In these approaches free energies are defined by the KL
divergence between an approximate, tractable distrib-
ution q and an intractable distribution p and subject
the approximate distributions to constraints.

In the context of Bayesian networks and inference in
Expert Systems the work in [5] investigated the effect
of truncating small numbers and demonstrated signif-
icant gains in speed. Other more recent work has also
looked at approximations in terms of “message errors”
[3] in belief propagation. It has also been shown that
sum product messages of belief propagation [6] corre-
spond to the fixed point equations of the Lagrangian
formed from a free energy of an MRF when it is min-
imized subject to marginalization and normalization
constraints [18]. This analysis has led to some further



understanding of “loopy belief propagation” schemes
in probability models with cycles. Variational Meth-
ods have also been used to construct approximate dis-
tributions consisting of structured or factorized com-
ponents [4]. Variational message passing algorithms
extend “mean field” methods and can be constructed
such that one computes updates to clusters of factor-
ized approximations which involve only localized vari-
ables in graphical models [16].

In this paper we extend beam search to the notion
of beam inference and cast the procedure as a vari-
ational inference problem. Rather than constraining
expectations, constraining graphical structures or fac-
torizations of distributions, our approximations pre-
sented here involve constructing constrained, lower
complexity distributions formulated in terms of Kro-
necker deltas. Our constraints are based on finding
a minimal complexity approximate distribution with
Kullback-Leibler (KL) divergence from a full “beam”
within some ε and a minimum beam size constraint.
We show robustness and efficiency improvements over
simple beam search methods and present CRF opti-
mization results in which models are obtained in less
than 20% of the time required using exact forward
backward methods for learning with no loss in test set
accuracy. Using our method we are now able to train
CRFs with large state spaces in about 6 hours whereas
previously training took over a day.

In the following sections we review message passing
algorithms to compute marginals and maximum prob-
ability configurations, we briefly review HMMs and
CRFs and discuss current methods for learning CRFs.
We then present a derivations of our new algorithms
based on constraining potentials to have the form of
a sum of Kronecker deltas. We then present decoding
and learning results.

2 Inference and Message Passing

Message passing algorithms can be used to compute
both marginals and maximum probability configura-
tions in probability models. Here, we briefly review
the sum-product and max-product algorithms.

2.1 Computing Marginals

Marginal distributions of variables in tree structured
graphical models can be efficiently computed using the
sum-product algorithm. The sum product algorithm
for Factor Graphs [6] can be written in terms of two
types of messages. These messages take the form of
variable to function messages, defined as:

µvi→fj (vi) =
∏

fk∈n(vi)\fj

µfk→vi(vi) (1)

and function to variable messages are defined as:

µfj→vi
(vi) =

∑

vk∈n(fj)\vi

(
fj(n(fj))

∏

vk∈n(fj)\vi

µvk→fj
(vk)

)

(2)

We can think of the messages from variable i to func-
tion j as local approximations to single variable mar-
ginals where we have excluded the impact of function
j and the rest of the graph connected through function
j. We can write this approximate marginal as

p̂i,j(vi) ≡ µvi→fk
(vi)∑

vi
µvi→fk

(vi)

=
1
Z

µvi→fk
(vi)

(3)

2.2 Computing Max-Configurations

An attractive aspect of the sum-product algorithm for
computing marginals in a tree structured network is
that a simple modification of the algorithm can be used
to compute the maximum probability configuration of
the joint assignment of variables in the model. The
function to variable messages of (2) in the message
passing algorithm of Section (2.1) can be modified such
that the sum is replaced by a maximum over the same
variables as the sum. The update can thus be written:

µfj→vi(vi) = max
vk∈n(fj)\vi

(
fj(n(fj))

∏

vk∈n(fj)\vi

µvk→fj (vk)
)

(4)

3 HMMs, CRFs and Inference

In the work here, we are particularly interested in in-
ference in chain structured probability models. Thus,
we briefly review HMMs and CRFs. We also briefly
review the current techniques for CRF parameter es-
timation.

3.1 HMMs

HMMs are a classical type of generative sequence
model. Define an observation sequence of random cat-
egorical variables as x = x1, . . . , xn and a sequence of
random categorical variables for the “label” variables
as y = y1, . . . , yn.

p(y,x) =
n∏

i=1

p(xi|yi)p(yi|yi−1) (5)

where for simplicity we define p(y1|y0) = p(y1). For
inference and estimation we are often interested in
computing posterior marginal distributions over hid-
den labels. For many decoding applications, we are
interested in quickly computing the most probable y.



3.2 CRFs

A Conditional Random Field (CRF) represents a con-
ditional probability distribution using a set of features.
Define subsets of our random variables of sequences as
x ⊂ x and y ⊂ y. For example yq and xq might spec-
ify the subsets yq = {x2, x3}, xq = {x1, x2, x3}. A
CRF represents the conditional probability of a label
sequence given an observation sequence as

p(y|x) =
1

Z(x)

∏

q∈Q

Ψq(yq, xq), (6)

where
Z(x) =

∑
y∈y

∏

q∈Q

Ψq(yq, xq) (7)

is a normalizing factor over all state sequences or all
states of y for each possible state sequence sequence
or configuration of x. In a CRF there are typically
additional factorizations of the potentials Ψq using k
feature functions {fk} for each q such that

Ψq(yq, xq) = exp
( ∑

k

λkfk(yq, xq)
)

, (8)

where λk are the parameters or feature weights for the
model.

3.3 Inference and Optimization in CRFs

In a CRF, when we observe the values of an obser-
vation or label sequence, we have an instantiation of
random variables, which we denoted by x̃ or ỹ respec-
tively. Given an instantiation of an observation se-
quence x̃ we can represent the conditional distribution
p(y|x̃) using an undirected graphical structure on the
potentials associated with the cliques q ∈ Q defined by
the dependency structure of the unobserved random
variables y. One can thus illustrate this conditional
distribution using a factor graph where the observa-
tions x̃ are “absorbed” into the potential functions of
the cliques of (8). The computation of Z(x̃) in (7)
also simplifies to the computation of a scalar quantity.
“Decoding” or finding the most probable y in a tree
or chain structured CRF can thus be computed using
the max-product messages of Section 2.2 with poten-
tial functions defined by (8).

It is possible to optimize the parameters of a CRF
by seeking the minimum of the gradient of the log-
likelihood of the CRF given a data set of observation
and label sequences, T = {x̃i, ỹi} for i = 1, . . . , N .
If we define λ as a parameter vector, F as a feature
function and F(y,x) =

∑
q F (yq, xq) as the global fea-

ture function, then the gradient of the log-likelihood L

with respect to the model parameters is given by

∇λL = ∇λ

( ∑

i

log p(ỹi|x̃i, λ)
)

=
∑

i

(
F(ỹi, x̃i)− Ep

〈
F(yi, x̃i)

〉)
,

(9)

where Ep〈·〉 denotes the expectation under the distri-
bution p = p(yi|x̃i, λ̃). For a chain structured CRF
this expectation can then be expressed as

Ep

〈
F(yi, x̃i)

〉
=

L−1∑

l=1

p(yl|x̃, λ̃) log F (yl, x̃, λ̃)

= Z(x̃, λ̃)−1
∑

l

αlΦlβ
T
l ,

(10)

where Φl = log F (yl, x̃, λ̃) and yl = {yl−1, yl} i.e. pair-
wise cliques and αl and βl are the variable to function
messages from (1). It is important to observe that (1)
thus requires forward backward inference once for each
sequence, per iteration. For data sets with large state
spaces, this procedure can take days of computation.

In practice, we use the approach in [14] to perform
gradient based optimization of CRFs. As such, (10)
and the messages of (1) are embedded within a limited
memory, quasi-Newton (L-BFGS) [10] optimizer. In
Section 4 we will construct algorithms to compute ap-
proximate conditional marginals so as run significantly
faster than the standard, exact forward backward algo-
rithm but minimize the impact of the approximation.
Further, we shall define this criterion more formally in
terms of KL divergences.

4 Inference and Learning with
Constrained Kronecker Deltas

An intuitive way to think of our goals in this work is in
terms of deriving efficient, principled method for de-
termining which states to neglect in max-propagation
and sum-propagation message passing schemes. Re-
call, we are interested in these goals so as to dramati-
cally improve the speed of inference for both decoding
and estimation tasks within optimization or “learning”
algorithms. To achieve these goals and derive such al-
gorithms, in the following sub-sections we derive the
following:

• The Kronecker delta distribution with N fixed
non-zero elements which minimizes KL(q||p) for
an arbitrary discrete distribution p.

• For any number of non-zero states N , the
Kronecker delta distribution which minimizes
KL(q||p).



• An efficient method to find the lowest complexity
q such that KL(q||p) ≤ ε

Using these results we then present new approximate
algorithms for asynchronous and beam versions of sum
and max propagation based on constraining Kronecker
delta potentials for variables with large state spaces.

4.1 Kronecker Deltas and KL Divergences

Consider computing the KL Divergence KL(q||p) be-
tween a discrete probability distribution p and q where
p is some arbitrary discrete probability distribution
and q is a weighted sum of Kronecker deltas placing
probability mass over some subset of the state space.
If x is a discrete state index x = {1, . . . , n} we will
write q as

q(x) =
∑

i∈I

qiδi(x), (11)

where I = {1, . . . , k}, i.e. a set of indices for the non-
zero states and δi(xj) = δij = 1 for j = i. We also
have the additional constraint that

∑

i∈I

qi = 1 (12)

Now, given distribution p and approximate Kronecker
distribution q with some arbitrary indices I, consider
the task of minimizing the KL divergence between q
and p subject to a normalization constraint. We can
express this as the task of minimizing a Lagrangian of
the form

∑

i∈I

qi log qi −
∑

i∈I

qi log pi + λ

( ∑

i∈I

qi − 1
)

(13)

Differentiating this Lagrangian with respect to qi al-
lows us to determine the relationship

qi = exp(log pi − 1− λ). (14)

Then, substituting this back into the normalization
constraint we can derive that

λ = log
( ∑

i∈I

pi

)
− 1 (15)

and the somewhat intuitive result that

qi =
pi∑
i∈I pi

(16)

Thus, we can write our approximating distribution as
the sum of weighted, normalized Kronecker deltas

q(x) =
∑

i∈I

qiδi(x) (17)

4.2 Minimizing the KL divergence

We are interested in the optimal set of indices I which
minimize KL(q||p). We would like to show that the
divergence is minimized when I = {i1, . . . , ik} consists
of the indices of the largest k values of the discrete
distribution p. First, define

Z(I) =
∑

i∈I

pi (18)

then Z∗ and I∗ defined as

Z∗ = max
I

Z(I), I∗ = arg max
I

Z(I), (19)

are clearly given by indices of the top k values of p.
Given these definitions we can thus derive that

arg min
q

KL(q||p)

= arg min
I

{
arg min

{qi}

∑
x

q(x) log
q(x)
p(x)

}

= arg min
I

{
arg min

{qi}

∑

i∈I

qi log
qi

pi

}

(20)

which we know from (16) in section 4.1

= arg min
I

{ ∑

i∈I

pi

Z(I)
log

pi/Z(I)
pi

}

= arg min
I

{
1

Z(I)

∑

i∈I

pi log
1

Z(I)

}

= arg max
I

{
log Z(I)

}

= I∗

(21)

4.3 The Lowest Complexity q with
KL(q||p) ≤ ε

We wish to find the minimal complexity q with
KL(q||p) ≤ ε. From Section 4.2 we know we that
the minimum divergence of q for any desired number
of non-zero entries can be encoded by sorting the el-
ements pi and representing the first j indices by the
set Ij . If we let Zj = Z(Ij) be the partition func-
tion for each distribution in the set of distributions
Q = {q1, q2, . . . , qN}, then using the result in sec-
tion 4.2 we know that the KL divergence between p
and distribution qj with minimal divergence for each
j = 1 . . . N is given by

KL(qj ||p) = − log Z(Ij). (22)

Since we can easily compute Zj+1 from Zj , we per-
form a single pass across the sorted state space of p
and easily find the minimal complexity q such that
KL(q||p) ≤ ε. We write the set of indices satisfying
this property as

I∗KL≤ε = Ij | KL(qj ||p) ≤ ε (23)



4.4 New Constrained Beam Algorithms

One can use our approach of finding the minimal
complexity q with KL(q||p) ≤ ε in the context of
“loopy” [9] local message passing algorithms and in
the context of approximate “forward backward” and
“sum-product” algorithms consisting of a single for-
ward beam pass followed by a single backward beam
message passing scheme. In the case of loopy updates
we have q(vi) approximating p̂(vi) which can be writ-
ten

q(vi) ≈ p̂(vi) =
1
Z

∏

fk∈n(vi)

µfk→vi
(vi) (24)

In the constrained beam algorithms investigated in
this paper we are interested in chain structure mod-
els with large state spaces. The algorithms presented
here generalize easily to tree structured graphs. For
learning we compute approximate “forward” marginal
probabilities p̂f (vi) = α̂i sequentially from (24) in a
forward pass such that n(vi) are restricted to the se-
quential predecessors in the chain. In the backward
pass p̂b(vi) = β̂i we use the neighbors n(vi) which are
successors. In the forward pass we use (24) and (23)
to determine the non-zero element indices I∗i|KL≤ε then
eliminate or “zero out” states effectively constructing
our beam for p̂f (vi) = α̂i. The backward pass of our
algorithm operates only upon states in the forward
beam defined by I∗i|KL≤ε.

In the case of approximate, beam “Viterbi decoding”
or “max-product” updates, we can similarly define
loopy variants of our algorithm for which updates of
the max marginal φ̂(vi), analogous to p̂(vi) can be
written using ψ(vi) ≈

φ̂(vi) =
∏

fk∈n(vi)

max
vk∈n(fj)\vi

(
fj(n(fj))

∏

vk∈n(fj)\vi

µvk→fj (vk)
)

(25)

where we compute a local Z and apply (24) to de-
termine (23). In the results in Section 5 we use a
fixed beam sized version of the loopy updates (25) as
a comparison algorithm. However, most experiments
are performed with a one pass, max forward beam with
potentials ψf (vi) and I∗i .

5 Results and Analysis

Here we present results for inference in the context
of Viterbi decoding for synthetic data for HMMs and
CRFs. We also present results from the NetTalk
dataset for decoding in CRFs. We present inference
results in the context of learning for parameter esti-
mation in CRFs using synthetic data and the NetTalk

dataset. Our initial experiments and the results pre-
sented here have also lead us to introduce an additional
minimum beam size constraint when determining both
sum and max beam indices I∗i such that KL ≤ ε and
|Ii| ≥ N .

5.1 Decoding Experiments

For our decoding experiments we generated synthetic
data from an HMM for sequences of length 75. Transi-
tion matrix entries were sampled from a Dirichlet with
α = .1 and emission matrices were generated from a
mixture of a low entropy, sparse conditional distrib-
ution with 10 non-zero elements and a high entropy
Dirichlet with α = 104, with priors of .75 and .25 re-
spectively. The goal was to simulate mostly highly
informative states and some less informative states.
In the following experiments of Tables 1, 2 and 3, to
examine the behavior of traditional beams and our
new approach, we have performed recognition accu-
racy tests using an HMM with the parameters we used
to generate the data.

In Table 1 we present results where we implemented
beam search in an HMM based on a threshold and
only expanding states with a current log score within
the factor shown of the best log score. In Table 2 we
present results using fixed sized beams of varying sizes.
In Table 3 we present results consisting of our KL ≤ ε,
|Ii| ≥ N algorithm and a simple backward corrective
beam algorithm.

Our simple backward beam algorithm consists of ex-
ploring at each variable the single state from the
known forward Viterbi path and the single state with
the best log score in the backward path which was not
included in the forward path. The backward beam
algorithm is also constrained to always explore any
states which have a log score that is better than the
known forward Viterbi path, a quantity easily deter-
mined by the forward and backward log scores.

Beam Thresholds
1.05 1.1 1.25 1.5 2

Accuracy 85.8 90.1 93.0 95.4 95.4
Avg. Beam Size 10.3 17.1 26.2 30.4 32.2

Table 1: Threshold Viterbi Beam Search in an HMM :
Recognition accuracy using a threshold based on a fac-
tor of the best paths log score for a given time step.
Recognition accuracy is shown for synthetic data gen-
erated as described above. Exact Viterbi accuracy is
95.4%.

Analysis of these results reveals that the thresholds
in Table 1 can achieve the exact Viterbi accuracy of



Fixed Beam Sizes
2 3 4 5 6 7

Accuracy 65.8 76.0 83.5 86.5 89.0 90.6
8 9 10 15 20 25

Accuracy 91.6 92.3 93.3 94.2 95.2 95.4

Table 2: N-best Viterbi Beam Search in an HMM :
Recognition accuracy on synthetic data for an N-best
Viterbi Beam Search. Exact Viterbi accuracy is 95.4%.

Beam / Constraint Size
2 3 4 5 6

Std. N-best 65.8 76.0 83.5 86.5 89.0
Bkwd. Corr. 86.1 87.7 91.9 93.9 94.1

KL ≤ ε 94.2 94.8 95.4 95.4 95.4
Average Beam Size

Bkwd. Corr. 9.4 6.1 4.2 4.4 2.7
KL ≤ ε 8.8 8.9 9.6 10.3 11.1

Table 3: Comparing New Algorithms with N-best
Viterbi Beam Search in an HMM : Recognition accu-
racy on synthetic data for an n-best Forward Viterbi
Beam Search, the n-best Forward Viterbi Beam with a
backward corrective beam, and our adaptive forward
beam based on KL ≤ ε = .001 and a minimum beam
size constraint. Exact Viterbi accuracy is 95.4%.

95.4% but explore an average of 30.4 states per vari-
able. Table 2 illustrates how a fixed beam of size
between 20 and 25 could also produce the the exact
Viterbi accuracy. While Table 3 shows that the exact
Viterbi accuracy can be achieved while exploring an
average of only 9.6 states using a minimal complex-
ity KL ≤ .001 criterion with an additional |Ii| ≥ 4
constraint. Consider again the results in Table 1. To
compare with our new algorithm, we introduced an ad-
ditional minimum beam size constraint of 4 and 10 re-
spectively for the beams obtained with threshold 1.05.
These experiments resulted in an accuracy of 91.9%
and 94.5% with an average beam size of 9.9 and 13.5
respectively.

In the experiments of Tables 4 and 5 we generated
synthetic data from an HMM with 100 hidden states
and 100 observed states. The model we used here
had sparse transition and emission matrices such that
there were 5 transitions per state and 5 emission val-
ues per states. We used 50 sequences of length 75 for
optimizing the model and 50 examples for testing the
model. Using standard Viterbi decoding, the CRF for
this data had a recognition accuracy of 87.3%. Table 4
present the beam results based on thresholds. In Table
5 we compare the forward, fixed beam results with:

Beam Thresholds
.99 .98 .97 .95 .9 .5

Accuracy 77.4 83.2 84.7 85.9 87.1 87.3
Avg. Size 7.3 37.7 57.6 74.3 85.7 95.2

Table 4: Threshold Viterbi Beam Search in a CRF :
Recognition accuracy using a threshold based on a fac-
tor of the best paths log score for a given time step.
Recognition accuracy is shown for synthetic data gen-
erated as described above. Exact Viterbi accuracy is
87.3%.

Beam / Constraint Size
3 5 10 15 20

Std. N-best 57.8 72.4 82.3 85.4 86.2
Loopy Max-P 59.1 74.1 84.3 86.3 86.6
Bkwd. Corr. 62.4 73.1 83.2 85.8 86.4

KL ≤ .5 79.7 80.5 83.2 85.8 86.3
KL ≤ .15 87.2 87.2 86.9 87.1 87.1

Average Beam Size
KL ≤ .5 4.9 6.2 10.2 15.0 20.0
KL ≤ .15 22.3 22.6 24.0 25.9 28.3

Table 5: Comparing CRF recognition accuracy on syn-
thetic HMM data for Viterbi Beam Search, our con-
strained max field algorithm in a CRF. Exact Viterbi
decoding had an accuracy of 87.3%.

1. A single backward pass of the loopy max product
updates of (25) in Section 4.4 with the beam width
fixed.

2. Our backward corrective beam algorithm.

3. Our KL ≤ ε, |Ii| ≥ N adaptive forward beam
with a relatively low and a relatively high ε for
the model.

We have also optimized a CRF for the NetTalk data
[13] and performed decoding experiments. The CRF
we constructed had 52 states, and was optimized using
19075 examples and tested using 934 examples. Stan-
dard Viterbi parses of the optimized CRF produced
an accuracy of 91.6%. Table 6 summarizes accuracy
results for fixed beam sizes. Our other experiments
found that both the KL < ε method and the thresh-
old methods produced the exact Viterbi accuracy when
the average number of states explored was 14.

5.2 Learning Experiments

For our learning experiments we have optimized CRFs
using synthetic HMM data generated from a 100 state
HMM with the same parameters as the CRF decoding



Beam / Constraint Size
2 3 4 5 6 12

Accuracy 82.7 88.3 90.4 91.2 91.4 91.6

Table 6: Comparing recognition accuracy on the
NetTalk data set using a CRF with a Viterbi accu-
racy of 91.6%.

experiments. Again, we use 50 sequences for optimiza-
tion and 50 sequences for testing accuracy. In all cases
we use exact Viterbi decoding for to compute our ac-
curacy. Figure 1 illustrates learning curves comparing
our KL ≤ ε, |Ii| ≥ N , forward backward algorithm for
ε = .5, N = 30 with an fixed beam with an average size
the same as the average number of states in the KL
beam and the exact forward backward optimization.

From Figure 1 we see that our L-BFGS optimizer ter-
minates in less than a quarter of the time with the
beam methods. The fixed beam method reaches its
best log likelihood in approximately half the time of
the exact forward backward optimizer and our con-
strained KL beam algorithm reaches its convergence
in roughly on third of the time. Further, our KL beam
also achieves the same accuracy on our test set as the
exact algorithm.
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Figure 1: Accuracy for: 1. KL ≤ ε, (88.5) 2. Fixed
Beam of Avg. KL Size, (87.8) 3. Exact Forward Back-
ward (88.5)

Figure 2 shows a re-scaled version of Figure 1 but also
adds the results of training with a fixed beam of the
minimum beam size for the KL beam and a thresh-
old based beam which explores on average roughly the
same number of states as the KL beam. In the case
of the smaller, fixed beam of size N , our L-BFGS op-

timizer terminated with an error as a result of the
noisy gradient computation. In the case of the thresh-
old beam, the gradients of the optimization were er-
ratic, but L-BRFS did terminate normally. However
the recognition accuracy of the final model was low, at
67.1%.
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Figure 2: A re-scaled version of the curves from Fig-
ure 1 with the introduction of a fixed beam of size N
optimization and a threshold beam which explored an
average of 45 states.

Finally, in Figure 3 we present run time, model likeli-
hood and accuracy results for the 52 state CRF opti-
mized using the NetTalk data with training and test-
ing partitions as described in Section 5.1. Our opti-
mization routine used a fast initialization procedure
in which only 12% of the data was used to initialize
CRF parameters. We used the beam methods during
the complete optimization run and during this initial-
ization period. During these subset initializations, our
experiments with a threshold beam set such that it
explored an average of 36 states produced initial pa-
rameter estimates which had a test set accuracy of
67%. Our KL method, a fixed size beam of average
KL size and exact forward backward all had accura-
cies of 74%. Further, during the complete run, the
threshold beam gradient estimates were so noisy that
our L-BFGS optimizer was unable to take a complete
step. In the experiments of Figure 3, ε = .005 and
N = 10. Exact forward backward training produced a
test set accuracy of 91.6%. In these experiments fixed
beam optimization using the average size of our KL
beam (N = 20) terminated normally but very noisy
intermediate gradients were found in the terminating
iteration. The result was a much lower accuracy of
85.7%. In contrast, our KL beam achieved an accu-
racy of 91.7% in a less than 20% of the time it took to



optimize the CRF using exact forward backward.
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Figure 3: Comparing Different Forward Backward
Beam Learning Algorithms for NetTalk. Accuracy for:
1. Fixed Beam of Avg. KL Size, (85.7) 2. KL ≤ ε,
(91.7) 3. Exact Forward Backward (91.6)

6 Conclusions

We have presented a principled method for signifi-
cantly speeding up decoding and learning tasks in
HMMs and CRFs. We also have presented experi-
mental work illustrating the utility of our approach.
As future work, we believe a promising avenue of ex-
ploration would be to explore adaptive strategies in-
volving interaction of our L-BFGS optimizer, detecting
excessively noisy gradients and automatically setting ε
values. While the results we have presented here were
applied to experiments with HMMs and chain struc-
tured CRFs, we believe this approach should be more
generally applicable.
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