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ABSTRACT
Coreference analysis, also known as record linkage, object
consolidation or identity uncertainty, is a difficult and im-
portant problem in natural language processing, databases,
citation matching and many other tasks. This paper intro-
duces several discriminative, conditional-probability models
for coreference analysis, all examples of undirected graph-
ical models. Unlike many historical approaches to corefer-
ence, the models presented here are relational—they do not
assume that pairwise coreference decisions should be made
independently from each other. Unlike other relational mod-
els of coreference that are generative, the conditional model
here can incorporate a great variety of features of the input
without having to be concerned about their dependencies—
paralleling the advantages of conditional random fields over
hidden Markov models. We present positive results on noun
coreference in two standard text data sets.

1. INTRODUCTION
In many domains—including computer vision, databases

and natural language processing—we find multiple views,
descriptions, or names for the same underlying object. Cor-
rectly resolving these references is a necessary precursor to
further processing and understanding of the data. In com-
puter vision, solving object correspondence is necessary for
counting or tracking. In databases, performing record link-
age or de-duplication creates a clean set of data that can
be accurately mined. In natural language processing, coref-
erence analysis finds the nouns, pronouns and general noun
phrases that refer to the same entity, enabling the extraction
of relations among entities as well as more complex propo-
sitions.

Consider, for example, the text in a news article that dis-
cusses the entities George Bush, Colin Powell, and Donald
Rumsfeld. The article contains multiple mentions of Colin
Powell by different strings—“Secretary of State Colin Pow-
ell,” “he,” “Mr. Powell,” “the Secretary”—and also refers to
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the other two entities with sometimes overlapping strings.
The coreference task is to use the content and context of
all the mentions to determine how many entities are in the
article, and which mention corresponds to which entity.

This task is most frequently solved by examining indi-
vidual pair-wise distance measures between mentions inde-
pendently of each other. For example, database record-
linkage and citation reference matching has been performed
by learning a pairwise distance metric between records, and
setting a distance threshold below which records are merged
[13, 11, 2, 4]. Coreference in NLP has also been performed
with distance thresholds or pairwise classifiers [12, 7, 19, 15].

But these distance measures are inherently noisy and the
answer to one pair-wise coreference decision may not be in-
dependent of another. For example, if we measure the dis-
tance between all of the three possible pairs among three
mentions, two of the distances may be below threshold,
but one above—an inconsistency due to noise and imper-
fect measurement. For example, “Mr. Powell” may be cor-
rectly coresolved with “Powell,” but particular grammatical
circumstances may make the model incorrectly believe that
“Powell” is coreferent with a nearby occurrence of “she”.
Inconsistencies might be better resolved if the coreference
decisions are made in dependent relation to each other, and
in a way that accounts for the values of the multiple dis-
tances, instead of a threshold on single pairs independently.

Recently [16] have proposed a formal, relational approach
to the problem of identity uncertainty using a type of Bayesian
network called a Relational Probabilistic Model [6]. A great
strength of this model is that it explicitly captures the de-
pendence among multiple coreference decisions. However, it
is a generative model of the entities, mentions and all their
features, and thus has difficulty using many features that
are highly overlapping, non-independent, at varying levels of
granularity, and with long-range dependencies. For exam-
ple, we might wish to use features that capture the phrases,
words and character n-grams in the mentions, the appear-
ance of keywords anywhere in the document, the parse-tree
of the current, preceding and following sentences, as well
as 2-d layout information. To produce accurate generative
probability distributions, the dependencies between these
features should be captured in the model; but doing so can
lead to extremely complex models in which parameter esti-
mation is nearly impossible.

Similar issues arise in sequence modeling problems. In this
area significant recent success has been achieved by replacing
a generative model—hidden Markov models—with a condi-
tional model—conditional random fields (CRFs) [10]. CRFs



have reduced part-of-speech tagging errors by 50% on out-
of-vocabulary words in comparison with HMMs, matched
champion noun phrase segmentation results [18], and signif-
icantly improved the segmentation of tables in government
reports [17]. Relational Markov networks [20] are similar
models, and have been shown to significantly improve clas-
sification of Web pages.

This paper introduces three conditional undirected graph-
ical models for identity uncertainty. The models condition
on the mentions, and generate the coreference decisions,
(and in some cases also generate attributes of the entities).
In the first most general model, the dependency structure is
unrestricted, and the number of underlying entities explic-
itly appears in the model structure. The second and third
models have no structural dependence on the number of en-
tities, and fall into a class of Markov random fields in which
inference corresponds to graph partitioning [3].

We show experimental results using the third model on a
noun coreference problem in two different standard newswire
text domains: broadcast news stories from the DARPA Au-
tomatic Content Extraction (ACE) program, and newswire
articles from the MUC-6 corpus. In both domains we take
advantage of the ability to use arbitrary, overlapping fea-
tures of the input, including multiple grammatical features,
string equality, substring, and acronym matches. Using the
same features, in comparison with an alternative natural
language processing technique, we reduce error by 33% and
28% in the two domains on proper nouns and by 10% on all
nouns in the MUC-6 data.

2. THREE CONDITIONAL MODELS OF IDEN-
TITY UNCERTAINTY

We now describe three conditional models of identity un-
certainty, each progressively simpler and more specific than
its predecessor. All three are based on conditionally-trained,
undirected graphical models also known as Markov networks
or Markov random fields. These models excel at capturing
interdependent data in which causality among attributes is
not apparent. We begin by introducing notation for men-
tions, entities and attributes of entities, then in the following
subsections describe the likelihood, inference and estimation
procedures for the specific models.

Let E = (E1, ...Em) be a collection of classes or “entities”.
Let X = (X1, ...Xn) be a collection of random variables over
observations or “mentions”; and let Y = (Y1, ...Yn) be a col-
lection of random variables over integer identifiers, unique
to each entity, specifying to which entity a mention refers.
Thus the y’s are integers ranging from 1 to m, and if Yi = Yj ,
then mention Xi is said to refer to the same underlying en-
tity as Xj . For example, some particular entity e4, U.S. Sec-
retary of State, Colin L. Powell, may be mentioned multiple
times in a news article that also contains mentions of other
entities: x6 may be “Colin Powell”; x9 may be “he”; x17 may
be “the Secretary of State.” In this case, the unique integer
identifier for this entity, e4, is 4, and y6 = y9 = y17 = 4.

Furthermore, entities may have attributes. Let A be a
random variable over the collection of all attributes for all
entities. Borrowing the notation of Relational Markov Net-
works [20], we write the random variable over the attributes
of entity Es as Es.A = {Es.A1, Es.A2, Es.A3, ...}. For ex-
ample, these three attributes may be gender, birth year,
and surname. Continuing the above example, then e4.a1

= MALE, e4.a2 = 1937, and e4.a3 = Powell. One can inter-

pret the attributes as the values that should appear in the
fields of a database record for the given entity. Attributes
such as surname may take on one of the finite number of
values that appear in the mentions of the data set.

We may examine many features of the mentions, x, but
since a conditional model doesn’t generate them, we don’t
need random variable notation for them. Separate mea-
sured features of the mentions and entity-assignments, y,
are captured in different feature functions, f(·), over cliques
in the graphical model. Although the functions may be
real-valued, typically they are binary. The parameters of
the model are associated with these different feature func-
tions. Details and example feature functions and parame-
terizations are given for the three specific models below.

The task is then to find the most likely collection of entity-
assignments, y, (and optionally also the most likely entity
attributes, a), given a collection of mentions and their con-
text, x. A generative probabilistic model of identity un-
certainty is trained to maximize P (Y,A,X). A conditional
probabilistic model of identity uncertainty is instead trained
to maximize P (Y,A|X), or simply P (Y|X).

2.1 Model 1: Groups of nodes for entities
First we consider an extremely general undirected graph-

ical model in which there is a single node for all of the men-
tions, x,1 a node for the entity-assignment of each men-
tion, y, and a node for each of the attributes of each entity,
e.a. These nodes are connected by edges in some unspecified
structure, where an edge indicates that the values of the two
connected random variables are dependent on each other.

The parameters of the model are defined over cliques in
this graph. Typically the parameters on many different
cliques would be tied in patterns that reflect the nature
of the repeated relational structure in the data. Patterns
of tied parameters are common in many graphical mod-
els, including HMMs and other finite state machines [10],
where they are tied across different positions in the input
sequence, and by more complex patterns based on SQL-
like queries, as in Markov Relational Networks [20]. Follow-
ing the nomenclature of the later, these parameter-tying-
patterns are called clique templates; each particular instance
of a template in the graph we call a hit.

For example, one clique template may specify a pattern
consisting of two mentions, their entity-assignment nodes,
and an entity’s surname attribute node. The hits would
consist of all possible combinations of such nodes. Multi-
ple feature functions could then be run over each hit. One
feature function might have value 1 if, for example, both
mentions were assigned to the same entity as the surname
node, and if the surname value appears as a substring in
both mention strings (and value 0 otherwise).

The Hammersley-Clifford theorem stipulates that the prob-
ability of a particular set of values on the random variables
in an undirected graphical model is a normalized product
of potential functions over cliques of the graph. Our cliques
will be the hits, h = {h, ...}, resulting from a set of clique
templates, t = {t, ...}. In typical fashion, we will write the
probability distribution in exponential form, with each po-

1Even though there are many mentions in x, because we
are not generating them, we can represent them as a single
node. This helps show that feature functions can ask arbi-
trary questions about various large and small subsets of the
mentions and their context. We will still use xi to refer to
the content and context of the ith mention.



tential function calculated as a dot-product of feature func-
tions, f , and learned parameters, λ,

P (y,a|x) =
1

Zx
exp

 X
t∈t

X
ht∈ht

X
l

λlfl(y,a,x : ht)

!
,

where (y,a,x : ht) indicates the subset of the entity-assignment,
attribute, and mention nodes selected by the clique template
hit ht; and Zx is a normalizer to make the probabilities over
all y sum to one (also known as the partition function).

The parameters, λ, can be learned by maximum likeli-
hood from labeled training data. Calculating the partition
function, Zx, is problematic because there are a very large
number of possible y’s and a’s. Loopy belief propagation
or Gibbs sampling sampling have been used successfully in
other similar situations, e.g. [20].

However, note that both loopy belief propagation and
Gibbs sampling only work over a graph with fixed struc-
ture. But in our problem the number of entities (and thus
number of attribute nodes, and the domain of the entity-
assignment nodes) is unknown. Inference in these models
must determine for us the highest-probability number of en-
tities.

In related work on a generative probabilistic model of
identity uncertainty, [16], solve this problem by alternating
rounds of Metropolis-Hastings sampling on a given model
structure with rounds of Metropolis-Hastings to explore the
space of new graph structures. Our desire to avoid the com-
plexity and low scalability of this approach motivates our
Model 2.

2.2 Model 2: Nodes for mention pairs, with
attributes on mentions

To avoid the need to change the graphical model structure
during inference, we now remove any parts of the graph that
depend on the number of entities, m: (1) The per-mention
entity-assignment nodes, Yi, are random variables whose do-
main is over the integers 0 through m; we remove these
nodes, replacing them with binary-valued random variables,
Yij , over each pair of mentions, (Xi, Xj) (indicating whether
or not the two mentions are coreferent); although it is not
strictly necessary, we also restrict the clique templates to
operate over no more than two mentions (for efficiency). (2)
The per-entity attribute nodes A are removed and replaced
with attribute nodes associated with each mention; we write
xi.a for the set of attributes on mention xi.

Even though the clique templates are now restricted to
pairs of mentions, this does not imply that pairwise corefer-
ence decisions are made independently of each other—they
are still highly dependent. Many pairs will overlap with each
other, and constraints will flow through these overlaps. This
point is reiterated with an example in the next subsection.

Notice, however, that it is possible for the model as thus
far described to assign non-zero probability to an inconsis-
tent set of entity-assignments, y. For example, we may
have an “inconsistent triangle” of coreference decisions in
which yij and yjk are 1, while yik is 0. We can enforce
the impossibility of all inconsistent configurations by adding
inconsistency-checking functions f∗(yij , yjk, yik) for all men-
tion triples, with the corresponding λ∗’s fixed at negative
infinity—thus assigning zero probability to them. (Note that
this is simply a notational trick; in practice the inference im-
plementation simply avoids any configurations of y that are

inconsistent.) Thus we have

P (y,a|x) =
1

Zx
exp

0@X
i,j,l

λlfl(xi, xj , yij , xi.a, xj .a)

+
X
i,j,k

λ∗f∗(yij , yjk, yik)

1A .

We can also enforce consistency among the attributes of
coreferent mentions by similar means. There are many widely-
used techniques for efficiently and drastically reducing the
number of pair-wise comparisons, e.g. [13, 11]. In this case,
we could also restrict fl(xi, xj , yij) ≡ 0,∀yij = 0.

2.3 Model 3: Nodes for mention pairs, graph
partitioning with learned distance metric

When gathering attributes of entities is not necessary, we
can avoid the extra complication of attributes by removing
them from the model. What results is a straightforward,
yet highly expressive, discriminatively-trained, undirected
graphical model that can use rich feature sets and relational
inference to solve identity uncertainty tasks. Determining
the most likely number of entities falls naturally out of in-
ference. The model is

P (y|x) =
1

Zx
exp

0@X
i,j,l

λlfl(xi, xj , yij) (1)

+
X
i,j,k

λ∗f∗(yij , yjk, yik)

1A .

Recently there has been interest in study of the equiva-
lence between graph partitioning algorithms and inference in
certain kinds of undirected graphical models, e.g. [3]. This
graphical model is an example of such a case. With some
thought, one can straightforwardly see that finding the high-
est probability coreference solution, y? = arg maxy P (y|x),
exactly corresponds to finding the graph partitioning of a
(different) graph in which the entities are the nodes and
the edge weights are the (log) clique potentials on the pair
of nodes 〈xi, xj〉 involved in their edge:

P
l λlfl(xi, xj , yij),

where fl(xi, xj , 1) = −fl(xi, xj , 0), and edge weights range
from −∞ to +∞. Unlike classic mincut/maxflow binary
partitioning, here the number partitions (corresponding to
entities) is unknown, but a single optimal number of par-
titions exists; negative edge weights encourage more parti-
tions.

Graph partitioning with negative edge weights is NP-hard,
and we are forced to make use of approximation algorithms.
Our current experiments use a variation of the minimizing-
disagreements clustering algorithm in [1]. It works by mea-
suring the degree of inconsistency incurred by including a
node in a partition, and making repairs.

The resulting solution does not make pairwise coreference
decisions independently of each other. It has a significant
“relational” nature because the assignment of a node to a
partition (or, mention to an entity) depends not just on a
single low distance measurement to one other node, but on
its low distance measurement to all nodes in the partition
(and furthermore on its high distance measurement to all
nodes of all other partitions). For example, the “Mr. Pow-
ell”/“Powell”/“she” problem discussed in the introduction



would be prevented by this model because, although the
distance between “Powell” and “she” might grammatically
look low, the distance from “she” to another member of the
same partition, (“Mr. Powell”) is very high.

Interestingly, in our model, the distance measure between
nodes is learned from labeled training data. That is, we
use data, D, in which the correct coreference partitions are
known in order to learn a distance metric such that, when
the same data is clustered, the correct partitions emerge.
This is accomplished by maximum likelihood—adjusting the
weights, λ, to maximize the product of Equation 1 over all
instances 〈x,y〉 in the training set. Fortunately this objec-
tive function is concave—it has a single global maximum—
and there are several applicable optimization methods to
choose from, including gradient ascent, stochastic gradient
ascent and conjugate gradient; all simply require the deriva-
tive of the objective function. The derivative of the log-
likelihood, L, is

∂L

∂λl
=

X
〈x,y〉∈D

0@X
i,j,l

fl(xi, xj , yij)

−
X
y′

PΛ(y′|x)
X
i,j,l

fl(xi, xj , y
′
ij)

1A ,

where PΛ(y′|x) is defined by Equation 1, using the current
set of λ parameters, Λ, and

P
y′ is a sum over all possible

partitionings.
The number of possible partitionings is exponential in the

number of mentions, so for any reasonably-sized problem,
we obviously must resort to approximate inference for the
second expectation. A simple option is stochastic gradient
ascent in the form of a voted perceptron [5]. Here we calcu-
late the gradient for a single training instance at a time, and
rather than use a full expectation in the second line, simply
using the single most likely (or nearly most likely) partition-
ing as found by a graph partitioning algorithm, and make
progressively smaller steps in the direction of these gradients
while cycling through the instances, 〈x,y〉 in the training
data. Neither the full sum,

P
y′ , or the partition function,

Zx, need to be calculated in this case. Further details are
given in [5].

3. GRAPH PARTITIONING
In our model, inference, or more precisely, finding the

highest probability set of coreference decisions, can be per-
formed by graph partitioning in which the edges of the graph
have weight wij =

P
l(λlfl(xi, xj). The objective function

is:

Obj =
X
ij

wijf(i, j)

wheref(i, j) =


1 if xi and xj are in the same partition
−1 otherwise

This problem is a general case of the problem discussed in
[1] where results for various graph partitioning algortihms
are discussed when the edge weights are in −1, 1 or in [−1, 1];
in our case edge weights are in [−∞, +∞]. The algorithm for
minimizing disagreements discussed there works as follows.
Choose a vertex, v, at random. Form an initial cluster, C

around v which consists of all the neighbors whose incident
edge with v is +1. Then, randomly choose vertices from C
and remove them if the ratio of positive edges to negative
edges with other vertices within C is below some threshold.
This continues until no vertices in C can be removed. A
second pass considers all the remaining vertices outside C
and adds them to the cluster if the ratio of positive negative
incident edges with vertices in C is above a second threshold.
At this point C is decided and its vertices removed from the
graph.

As mentioned in the previous section, we use a variant of
the above algrotihm with a couple of key differences. First,
the selection of an initial vertex from which to form the ini-
tial cluster is chosen with probability proportional to the
sum of the absolute value of each of its incident edges, in-
stead of at random. The motivation behind this is to choose
initial vertices whose incident edge-weights have the highest
variance. These are the vertices that the model, in some
sense, has the most confidence in. The initial cluster C is
populated with neighboring vertices whose incident edges
are positive. The second major difference is to select the
vertices to remove with probability proportional to the sum
of incident edges with other vertices within C. This is in
contrast to choosing which vertices to remove at random. If
the sum is negative for the chosen vertex, it is removed. This
process tends to remove the worst (i.e. most incompatible
with C) vertices first. The order of removal is imporant as C
is updated at each iteration. The second phase adds vertices
to C, but in this case C is not updated after each addition
and so the order of addition is irrelevant. In summary, we
have modified the criterion for vertex addition and removal,
and we have introduced stochastic processes which tend to
pick initial vertices that have high incident edge-variance
and pick the worst vertices for removal first.

We use this algorithm to produce a sample of partitions for
a given graph. Because a partition can be quickly evaluated
using the objective function above, we can simply select the
best partition of a large number of samples. This algorithm
has running time O(n2) where n is the number of vertices.
In practice, we have found that our largest graphs of 350
vertices or so take roughly 2-3 seconds to partition with
times much shorter on smaller graphs. This makes samples
of 1000s of partitions feasible on all but the largest of graphs.

This algorithm tends to work well in practice on the graphs
involved in the coreference task. Along the way we have ex-
plored a number of existing partitioning algorithms as well
as some original modifications to such algorithms. Many
popular graph partitioning algorithms work when edge weights
are greater than zero or simply binary. They typically try to
produce balanced bi-partitions over a graph. This amounts
to finding the minimal cut of the graph with a bias to-
wards each partition having the same number of vertices.
We explored using these algorithms to find coarse partitions
within the graph and then made use of an exhaustive par-
titioning algorithm once the sub-graphs were small enough.
We also developed a variation of the Fidduccia-Mattheyses
partitioning algorithm that works for negative edge-weights.
In all of these algorithms and variations we recursively bi-
sect the graph to form our partitions. The recursion stops
when the bisection of the graph results in a drop in the ob-
jective function for that sub-graph. In all cases, we found
that the more traditional algorithms and our variations on
them performed better than our algorithm here on randomly
generated graphs that have roughly equal numbers of posi-



Given a graph, G

• choose a vertex, vi ∈ G with probability proportional to
the sum:

P
j |wi,j |

• form an initial cluster, C, that includes vi and all vertices
connected to vi with edge-weight greater than zero.

• repeat

– select vj ∈ C with probability proportional toP
k∈C wij

∗ if
P

k wjkf(j, k) < 0 (where f(j, k) = 1 if vk ∈ C
and f(i, j) = −1 otherwise)

∗ then remove vj

– until ∀vj ∈ C
P

k wjkf(j, k) ≥ 0

• for all vj /∈ C such that
P

k wjkf(j, k) > 0 (where f(j, k) =
1 if vk ∈ C and f(i, j) = −1 otherwise)

– add vj to C

• let G = G \ C

• repeat until G is empty

Figure 1: Stochastic graph partitioning algorithm.

tive and negative edges. However, our algorithm perfromed
better on the graphs for the coreference task discussed here
where negative edges greatly outnumber positive ones. From
inspection, the recursive bisectioning of the graph appears
to cause disastrous errors as large coreference clusters can
be split early on due to a few low-valued edge-weights.

The performance of the graph partitioning algorithm is
crucial to our approach. Besides having high accuracy (i.e.
the ability to find a partitioning close to the optimal one) it
is desirable to have a stable algorithm in the sense that it will
tend to have low variance in performance - i.e. the difference
between the value of the objective function for the found
partition and the objective value for the optimal partition
has low variance on different graphs. The reason for this
is clear: we compute our model expectations using the best
partitioning found and the updating of model parameters is
very sensistive to this. An erratic partitioning algorithm -
even one with good expected performance - may therefore
make learning within the voted perceptron difficult or slow
to converge.

Many extensions are possible to our approach. One pos-
sible extension is to run the algorithm as is and then refine
partitions by moving vertices to other partitions or mak-
ing them singletons based on various criteria. By defining
a set of moves possible at each step, we can make use of
techniques such as simluated annealing. Altogether differ-
ent approaches might make use of linear programming ap-
proximations of an integer programming formulation of the
objective function [9]. Finally, more combinations of var-
ious techniques are worth exploring. For example, finding
a good bi-partitioning first using known fast methods and
then switching to a different, perhaps more epensive, algo-
rithm may prove useful on very large graphs.

4. EXPERIMENTS WITH NOUN COREF-
ERENCE

We test our approach to identity uncertainty without at-
tributes (Model 3) on natural language noun coreference,
using two different data sets: the DARPA MUC-6 corpus,
and a set of 117 stories from the broadcast news portion of

ACE MUC-6 MUC-6
(Proper) (Proper) (All)

best-previous-match 90.98 88.83 70.41
single-link-threshold 91.65 88.90 60.83
Model 3 93.96 91.59 73.42

Table 1: F1 results on three data sets.

the DARPA ACE data set. Both data sets have annotated
coreferences. We pre-process both data sets with the Brill
part-of-speech tagger.

We compare our Model 3 against two other techniques rep-
resenting typical approaches to the problem of identity un-
certainty. The first is single-link clustering with a threshold,
(single-link-threshold), which is universally used in database
record-linkage and citation reference matching [13, 2, 11, 4].
It forms partitions by simply collapsing the spanning trees of
all mentions with pairwise distances below some threshold.
For each experiment, the threshold was selected by cross
validation.

The second technique, which we call best-previous-match,
has been used in natural language processing applications
[14, 7, 15]. It works by scanning linearly through a docu-
ment, and associating each mention with its best-matching
predecessor—best as measured with a single pairwise dis-
tance.

In our experiments, both single-link-threshold and best-
previous-match implementations use a distance measure based
on a binary maximum entropy classifier—matching the prac-
tice of [14] and [4].

We use an identical feature set for all techniques, including
our Method 3. The features, typical of those used in many
other NLP coreference systems, are modeled after those in
[15]. They include tests for string and substring matches,
acronym matches, parse-derived head-word matches, gen-
der, WordNet subsumption, sentence distance, distance in
the parse tree; etc., and are detailed in an accompanying
technical report. They are quite non-independent, and op-
erate at multiple levels of granularity.

Table 1 shows standard MUC-style F1 scores for three ex-
periments. In the first two experiments, we consider only
proper nouns, and perform five-fold cross validation. In the
third experiment, we perform the standard MUC evaluation,
including all nouns—pronouns, common and proper—and
use the standard 30/30 document train/test split; further-
more, as in [8], we consider only mentions that have one or
more coreferents. Model 3 out-performs both the single-link-
threshold and the best-previous-match techniques, reducing
error by 28% over single-link-threshold on the ACE proper
noun data, by 24% on the MUC-6 proper noun data, and
by 10% over the best-previous-match technique on the full
MUC-6 task. Historically, these data sets have been heavily
studied, and even small gains have been celebrated.

Our overall results on MUC-6 are slightly better (with
unknown statistical significance) than the best published re-
sults of which we are aware with a matching experimental
design, [8], who reach 72.3% using the same training and
test data.

5. RELATED WORK AND CONCLUSIONS
There has been much related work on identity uncertainty

in various specific fields. Traditional work in de-duplication
for databases or reference-matching for citations measure
the distance between two records by some metric, and then



collapse all records at a distance below a threshold, e.g. [13,
11]. This method is not relational, that is, it does not ac-
count for the inter-dependent relations among multiple de-
cisions to collapse. Most recent work in the area has fo-
cused on learning the distance metric [2, 4] not the clustering
method.

Natural language processing has had similar emphasis and
lack of emphasis respectively. Pairwise coreference learned
distance measures have used decision trees [12, 15], SVMs
[21], maximum entropy classifiers [14], and generative proba-
bilistic models [7]. But all use thresholds on a single pairwise
distance, or the maximum of a single pairwise distance to
determine if or where a coreferent merge should occur.

[16] introduce a generative probability model for identity
uncertainty based on Probabilistic Relational Networks net-
works [6]. Our work is an attempt to gain some of the same
advantages that CRFs have over HMMs by creating condi-
tional models of identity uncertainty. The models presented
here, as instances of conditionally-trained undirected graph-
ical models, are also instances of relational Markov networks
[20] and conditional Random fields [10]. [20] briefly discuss
clustering of dyadic data, such as people and their movie
preferences, but not identity uncertainty or inference by
graph partitioning.

Identity uncertainty is a significant problem in many fields.
In natural language processing, it is not only especially dif-
ficult, but also extremely important, since improved coref-
erence resolution is one of the chief barriers to effective data
mining of text data. Natural language data is a domain that
has particularly benefited from rich and overlapping feature
representations—representations that lend themselves bet-
ter to conditional probability models than generative ones
[10, 5, 14]. Hence our interest in conditional models of iden-
tity uncertainty.
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