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ABSTRACT
Record deduplication is the task of merging database records
that refer to the same underlying entity. In relational data-
bases, accurate deduplication for records of one type is of-
ten dependent on the decisions made for records of other
types. Whereas nearly all previous approaches have merged
records of different types independently, this work models
these inter-dependencies explicitly to collectively dedupli-
cate records of multiple types. We construct a conditional
random field model of deduplication that captures these re-
lational dependencies, and then employ a novel relational
partitioning algorithm to jointly deduplicate records. For
two citation matching datasets, we show that collectively
deduplicating paper and venue records results in up to a
30% error reduction in venue deduplication, and up to a
20% error reduction in paper deduplication.

Categories and Subject Descriptors: H.3.3 [Informa-
tion Storage and Retrieval]: Information Search and
Retrieval—clustering

General Terms: Algorithms, Performance

Keywords: record linkage, deduplication, conditional ran-
dom fields

1. INTRODUCTION
A common prerequisite for knowledge discovery is accu-

rately combining data from multiple, heterogeneous sources
into a unified, mineable database. An important step in cre-
ating such a database is record deduplication: consolidating
multiple records that refer to the same abstract entity.

Most historical approaches have framed the deduplication
problem as a set of independent, pairwise decisions. More
recently, McCallum and Wellner [5] and Parag and Domin-
gos [6] have demonstrated that making multiple dedupli-
cation decisions collectively can provide better results than
historical approaches. These models are types of conditional
random fields (CRFs) [3], where the observed nodes are men-
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tions, and the predicted nodes are the deduplication deci-
sions for each pair of nodes. The models are “collective”
in the sense that mentions are clustered based not only on
their distance to each other, but also on their distance to
all other mentions. By treating deduplication decisions in
dependent relation to each other, inconsistencies and noise
in the similarity metric may be overcome.

We extend this work to the case of relational databases,
where the identity of a record often depends on the iden-
tities of related records. For example, consider a database
of research papers, where records can be of type paper or
venue. If two paper records are labeled as duplicates, then
it follows that the venue records corresponding to those pa-
pers should also be labeled as duplicates. The converse is
more subtly true: if two venues are duplicates, then this
may slightly increase the probability that their correspond-
ing papers are duplicates. We propose a CRF model that
leverages these subtle interdependencies to make deduplica-
tion decisions collectively across multiple record types, and
we validate its performance on two real-world datasets.

2. MODEL
The model is an instance of a conditional random field

that jointly models the conditional probability of multiple
deduplication decisions given an observed relational database.

CRFs [3] are undirected graphical models encoding the
conditional probability of a set of output variables Y given
a set of evidence variables X. Let X be a collection of
random variables representing observed record mentions in
a database. For clarity, assume there are only two types of
records, X = (Xa,Xb), where Xa = (Xa

1 , . . . , Xa
n), Xb =

(Xb
1 , . . . , Xb

m). The goal of deduplication is to partition X
into clusters of records that refer to the same abstract entity.

To this end, we define a collection of binary random vari-
ables Y = (Ya, Yb) indicating whether or not two records
are duplicates. For example, Y a

ij indicates whether or not
records Xa

i and Xa
j are coreferent. We also define the bi-

nary random variables R, where Rab
ij indicates whether some

relation R holds between record mentions Xa
i and Xb

j .
For example, in a research paper database, Xa represents

the set of paper records, Xb represents the set venue records,
Y a

ij indicates whether Xa
i and Xa

j are duplicates, and Rab
ij

indicates whether paper Xa
i was published at venue Xb

j . We

model the conditional distribution P (Ya,Yb|X,R).
Let xab

ij = 〈xa
i , xa

j , xb
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b
j〉 be a pair of observed paper

records and their corresponding venue records. To capture



the dependence between ya
ij and yb

ij , we factorize the poten-
tial functions to consider them jointly, resulting in:
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where fl are feature functions, f∗ are consistency checking
functions used to enforce transitivity among deduplication
decisions, and Zx is a normalizer. The parameters λ are
learned by maximizing a product of local marginals [5, 4].

MAP inference in this model corresponds to finding the
solution to y∗ = (ya∗,yb∗) = argmaxy pΛ(ya,yb|xa,xb, r)
that is, finding the most probable deduplication decisions
y∗ given xa,xb, r and the learned parameters Λ.

Because exact inference here is intractable, we follow re-
cent work which finds an equivalence between graph parti-
tioning algorithms and inference in certain undirected graph-
ical models [1, 5]. We first transform our graph to a weighted,
undirected graph that only contains vertices for variables x
and has edges weighted by the (log) clique potential for each
pair of vertices. The value on these edges depends on which
type of records they join.

For paper edges, we define the weight
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and similar weights wb

ij for venue edges: It can be shown
that the optimal partitioning of this graph corresponds to
the optimal configuration y∗ in the original undirected graph-
ical model. Here, the number of partitions is unknown, as
it corresponds to the number of unique records.

Because traditional partitioning algorithms do not account
for the known relations between clusters that exist in our
data, we develop a novel, relational agglomerative clustering
algorithm that exploits these dependencies. This algorithm
iteratively merges nodes, enforcing relations and adjusting
weights accordingly. For more details, we refer the reader
to our technical report [2]

3. EXPERIMENTS
We experiment on two datasets of research paper cita-

tions: Citeseer (1500 citations) and Cora1, (1800 cita-
tions). Feature functions include string matches and cosine
similarity of citation fields.

Table 1 shows the pairwise F1 performance of two systems:
joint is the system we have advocated in this paper, and
indep is the system which deduplicates records of different
types independently, although records of the same type are
deduplicated collectively as in McCallum and Wellner [5].

Venue performance improves considerably in the joint mo-
del, which is reasonable considering the strong influence pa-
per deduplication has on venue deduplication. The joint
model obtains a 5% absolute recall boost in Citeseer, and a
9% boost in Cora data. This is because the hard constraint
requiring the venues of duplicate papers to be merged often
correctly merges venues with dissimilar surface forms.
1http://www.cs.umass.edu/˜mccallum/data/cora-refs.tar.gz

Paper Venue
indep joint indep joint

constraint 88.9 91.0 79.4 94.1
reinforce 92.2 92.2 56.5 60.1

Citeseer face 88.2 93.7 80.9 82.8
reason 97.4 97.0 75.6 79.5

Micro Avg. 91.7 93.4 73.1 79.1
kibl 92.9 93.3 93.6 99.3

Cora fahl 95.5 95.0 87.3 99.7
utgo 79.9 84.0 51.7 60.4

Micro Avg. 89.4 90.8 77.5 84.5

Table 1: Pairwise F1 deduplication performance.

More interestingly, a noticeable improvement in paper
deduplication is attained by the collective model. Part of
this is due to the precision enhancement provided by the
clustering algorithm. Workshop and technical report ver-
sions of journal or conference papers with the same title are
correctly not merged when the venues are accurately iden-
tified. Also, error analysis suggests that papers that would
not have been otherwise merged were merged because their
venues were determined to be coreferent.

4. CONCLUSIONS
We have introduced a collective model for deduplication

of relational data and empirically demonstrated its advan-
tage over competing methods. Future work includes mod-
eling data where the relations R are unknown, for example
discovering AdvisorOf relations between authors.
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