CS 585: Natural Language Processing
Fall 2004
Programming Assignment 2: Naive Bayes Classifier

Out: Tue, September 28, 2004
Due: Tue, October 12, 2004

Spam Filtering using Naive Bayes

Naive Bayes is a simple, effective machine learning solution to the problem
of document classification. For this assignment, you will implement a
Naive Bayes classifier to classify email messages as spam (junk mail) or
ham (legitimate messages).

Data

The data was collected from http://spamassassin.org/publiccorpus/.
For this assignment, use the slightly modified version found at
http://canberra.cs.umass.edu/ culotta/csb85/assl-data.tgz
(8.3M). The data consists of 4150 ham messages and 1897 spam messages,
with original header information intact.

Tasks

Read data: Read in all messages and store them in some efficient

manner. You must decide how to tokenize each message — i.e. designate

which characters indicate the start of a new “word.” See
http://www.paulgrahm.com/spam.html for one way of doing this (You

will probably also assign each unique word an integer index you can use as

an index into arrays of word counts and word probabilities). If you choose

to do this assignment in Java, you can use the skeleton code for this task from
http://www.cs.umass.edu/ mccallum/courses/inlp2004/pa2-skeleton.tgz



Spam | Ham
Spam | TP FP
Ham FN TN

Table 1: Confusion Matrix: TP = “true positive”, TN = “true negative”,
FP = “false positive”, ‘FN = “false negative”.

Split Data: Randomly split the data into a training set (70% of the
messages) and a testing set (30%).

Train Classifier: Using the training set only, estimate and store the prior
class distributions P(spam) and P(ham), as well as the conditional
probability distributions P(w|spam) and P(w|ham). It is crucial that you
store probability measures as log-probabilities to avoid running out of
floating-point resolution. This also means you need to do arithmetic in
log-space. I.e., multiplications of probabilities become additions of
log-probabilities.

Test Classifier: Classify each message in the testing set as spam or ham
according to the Naive Bayes formulation.

Evaluate Classifier: Evaluate the performance of your classifier using
two methods: a confusion matriz and a precision recall graph. A confusion
matriz summarizes the types of errors your classifier makes, as in Table ?77.
Here, TP is the number of spam messages classified as spam, TN is the
number of ham messages classified as ham, FP is the number of ham
messages misclassified as spam, and FN is the number of spam messages
misclassified as ham.

A precision-recall graph plots the classifier’s precision at various points of
recall, where precision = (TP + TN) / testingSetSize, and recall = TP /
(TP + FN). To construct a precision-recall graph, sort the predicted
messages in decreasing order of the posterior probability of the predicted
class (i.e. in decreasing order of confidence that the classification is
correct). Next, iterate through the list in descending order, and at each
message, calculate the precision and recall of the classifications of the
current message and messages already iterated through. Plot these (recall,
precision) points on the graph.

Additional Experiments

Perform 2 of the following 4 experiments, using the same evaluation
techniques as in the spam experiment.



- Effects of train/test split: Split data into 50% training, 50% testing
(instead of 70-30).

- Different word feature sets: Try some different word features and
investigate their accuracies. Try at least two different word features. Some
examples include: (1) Parse each document to extract the TO, FROM, CC,
and SUBJECT fields, and use only the tokens from these fields to represent
each message, (2) Downcase all the words so that case information is lost,
(3) Remove MIME attachments, (4) remove HTML tags, and (5) Remove
words with fewer than two occurrences in your training set.

- Alternate priors: Instead of using “plus one” smoothing, try numbers
different than one. Does performance degrade if you use numbers much
smaller than one? How about larger than one? Is there some number other
than one that gives higher classification accuracy than “plus one”?

- Prune vocabulary size by information gain: Instead of using all the
words in the training data, use only the top 1000 words with the highest
information gain (mutual information with the class label) found from the
training set. Try the top 1000, 100, and 10 words, plus some others. Does
the test set accuracy change? Why do you think so?

What to turn in

Code: Print out all source code written for the project.
Report: Write a 2 page report that includes the following:

1. Problems encountered - What difficulties did you have and how did
you resolve them?

2. Tokenization method - If you did not use the Java skeleton or if you
performed experiments with different word feature sets, how did you
tokenize the input and why?

3. Experimental results - In addition to the confusion matrix and
precision-recall graphs for each experiment, also include the overall
accuracy for each.

4. Discussion - Explain your results. What additional experiments do
you think would improve your performance?



