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Causation

“The paradigmatic assertion in causal relationships
is that manipulation of a cause
will result in the manipulation of an effect...

Causation implies that
by varying one factor,

| can make another vary.”
(Cook & Campbell 1979)

Probabilistic causation:

dz, 2" P(Y = y|do(X =x)) > P(Y = y|do(X = a'))
(Pearl 2000)
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Associational vs. Causal Models

Prediction :I— Association

Causation Action

Explanation
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Association underdetermines Causation

Direction @ﬁ@ ®<—®
Common Causes

offo
&



Propositional data representation

* Independent

e |dentically distributed
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Directed Acyclic Graph

e Random variables
V' = {year, genre, budget, gross}

e Conditional independencies
e.g., genre 1l gross | budget

e Joint probability distribution
p(V') = p(year)p(genre)p(budget|genre)p(gross|budget, year)

(Pearl 1988; 2000)
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Structure learning paradigms

Search-and-score: Perform global search across
model space, select one with highest likelihood

Constraint-based: Run /ocal tests of independence to
create constraints on space of possible models



Structure learning paradigms

Pros Cons

e Computationally intensive (NP-hard)

* No theoretical guarantees

* May choose single model from
equivalence class

e Approximates joint distribution

S&S * Smooth/Bayesian (not prone to
unstable errors)

e Separates structure learning from
parameter estimation
* Directly learns conditional
CB independence relations * |ndividual errors may propagate
Provably correct
e Can be efficient
* Extensible to other new operations
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Causal Assumptions
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Causal sufficiency

V) 1s causally sufficient if and only if
for all potential causal dependencies (X,Y) € V x V,
all common causes are measured and included in V

<
ofo

(Spirtes, Glymour, Scheines 1993; 2001)
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Causal Markov condition

1

Given that V is causally sufficient,

P is Markov to G if and only if

each variable X € V is conditionally independent
of its non-effects given its direct causes

- T
g TN
/ \

Splrtes Glymour, Scheines 1993; 2001)
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Faithfulness

P is faithful to G if and only if

5 entaillec

S

1nno
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&

there exist no conditional independencies in P
| by the causal Markov condition on ¢

T

(Spirtes, Glymour, Scheines 1993; 2001)



SGS
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The SGS algorithm

Phase |

Skeleton identification

Determine set of conditional
independencies among all
variables

(Spirtes, Glymour, Scheines 1993; 2001)

Monday, May 2, 2011



The SGS algorithm

C )
budget Il genre | {} budget Il vear | {genre} year 1l genre | {gross}
budget L gross | {} budget L year | {gross} year AL gross | {budget)
budget 1l year | {} genre 1l budget | {gross} year Il gross | {genre}
genre |l budget | {} genre 1l budget | {year} budget L genre | {gross, year}
genre 1l gross | {} genre 1L gross | {budget} budget AL gross | {genre, year}
genre 1L year | {} genre 1L gross | {year} budget 1L year | {genre, gross}
gross 1l budget | {} genre Il year | {budget} genre L budget | {gross, year}
gross L genre | {} genre Il year | {gross} genre Ll gross | {budget, year}
gross 1l year | {} gross 1l budget | {genre} genre L year | {budget, gross}
year 1L budget | {} gross 1l budget | {year} gross 1L budget | {genre, year}
year 1L genre | {} gross 1L genre | {budget} gross UL genre | {budget, year}
year 1l gross | {} gross 1l genre | {year} gross 1L year | {budget, genre}
budget 1L genre | {gross} gross 1l year | {budget} year 1l budget | {genre, gross}
budget 1L genre | {year} gross AL year | {genre} year U genre | {budget, gross}
budget 1l gross | {genre} year 1l budget | {genre} year Il gross | {budget, genre}
budget 1L gross | {year} year 1l budget | {gross}

year Il genre | {budget}

(Spirtes, Glymour, Scheines 1993; 2001)
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The SGS algorithm

Phase |

Skeleton identification

Determine set of conditional
independencies among all
variables

budget 1L year 7

(Spirtes, Glymour, Scheines 1993; 2001)
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The SGS algorithm

Phase |

Skeleton identification

Determine set of conditional
independencies among all
variables

(Spirtes, Glymour, Scheines 1993; 2001)
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The SGS algorithm

Phase |

Skeleton identification

Determine set of conditional
independencies among all
variables

genre I gross | budget ?

(Spirtes, Glymour, Scheines 1993; 2001)
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The SGS algorithm

Phase |

Skeleton identification

Determine set of conditional
independencies among all
variables

(Spirtes, Glymour, Scheines 1993; 2001)
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The SGS algorithm

Phase |

Skeleton identification

Determine set of conditional
independencies among all
variables

(Spirtes, Glymour, Scheines 1993; 2001)
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Conditional independence

On0
St

Y| W, Z¢W



The SGS algorithm

Phase ||

Edge orientation

Apply rules to uniquely
determine causal structure
consistent with patterns of

association from Phase |
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The SGS algorithm

Phase ||
Collider Detection Rule
Constraints In Constraints Out

>R
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The SGS algorithm

Phase ||

Edge orientation

Apply rules to uniquely
determine causal structure
consistent with patterns of

association from Phase |

year Il budget | {W}
gross ¢ W
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The SGS algorithm

Phase ||

Edge orientation

Apply rules to uniquely
determine causal structure
consistent with patterns of

association from Phase |

year Il budget | {W}
gross ¢ W



Collider Detection Rule
Constraints In Constraints Out
Ed Known Non-Colliders Rule
gE Constraints In Constraints Out
determi d
consistq \ J\ J genre
dSSOCI{ Cycle Avoidance Rule
Constraints In Constraints Out
—0 o—0

|18
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The SGS algorithm

Phase ||

Edge orientation

Apply rules to uniquely
determine causal structure
consistent with patterns of

association from Phase |

SGS correctly identifies a class of
statistically indistinguishable causal models

19
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PC

20



The PC algorithm

Phase |

Skeleton identification

Determine set of conditional
independencies among all
variables

(Spirtes, Glymour, Scheines 1993; 2001)
21
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The PC algorithm

C )
budget Il genre | {} budget Il vear | {genre} year 1l genre | {gross}
budget L gross | {} budget L year | {gross} year AL gross | {budget)
budget 1l year | {} genre 1l budget | {gross} year Il gross | {genre}
genre |l budget | {} genre 1l budget | {year} budget L genre | {gross, year}
genre 1l gross | {} genre 1L gross | {budget} budget AL gross | {genre, year}
genre 1L year | {} genre 1L gross | {year} budget 1L year | {genre, gross}
gross 1l budget | {} genre Il year | {budget} genre L budget | {gross, year}
gross L genre | {} genre Il year | {gross} genre Ll gross | {budget, year}
gross 1l year | {} gross 1l budget | {genre} genre L year | {budget, gross}
year 1L budget | {} gross 1l budget | {year} gross 1L budget | {genre, year}
year 1L genre | {} gross 1L genre | {budget} gross UL genre | {budget, year}
year 1l gross | {} gross 1l genre | {year} gross 1L year | {budget, genre}
budget 1L genre | {gross} gross 1l year | {budget} year 1l budget | {genre, gross}
budget 1L genre | {year} gross AL year | {genre} year U genre | {budget, gross}
budget 1l gross | {genre} year 1l budget | {genre} year Il gross | {budget, genre}
budget 1L gross | {year} year 1l budget | {gross}

year Il genre | {budget}

(Spirtes, Glymour, Scheines 1993; 2001)
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The PC algorithm

Phase |

Skeleton identification

Determine set of conditional
independencies among all
variables

budget 1L year 7

(Spirtes, Glymour, Scheines 1993; 2001)
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The PC algorithm

Phase |

Skeleton identification

Determine set of conditional
independencies among all
variables

budget 1L year 7

(Spirtes, Glymour, Scheines 1993; 2001)
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The PC algorithm

( )
budget Il genre | {} et —veart{senrel year 1l genre | {gross}
budget L gross | {} ‘udpet—t—year——{gro=+ e
budset—tyeas—{1 genre 1L budget | {gross} year Il gross | {genre}
genre 1l budget | {} —senre—t—budeet—year] B = T nr e
genre 1L gross | {} genre 1L gross | {budget} —_—
genre 1l year | {} genre 1L gross | {year} T e A Tt B
gross 1l budget | {} genre L year | {budget} senre Ul budget | Loross vearl
gross 1L genre | {} genre L year | {gross} et el
gross 1l year | {} gross 1l budget | {genre} genre—tlvear L lhudeet cross)
year 1L genre | {} gross 1L genre | {budget} A L i
year 1l gross | {} gross 1l genre | {year} TSNS EEFIIED § TV AR RIS |
budget L genre | {gross} —sross—yeas T Lhadeeatl ~ear U budget | lgenre grossl
Hodpet—t—renre—{yeart gross AL year | {genre} —
budget Il gross | {genre} —ear—tibudeat L loonzal year I oross | fhadaet conrel
—~ear—tlzenre L fhudeot]
pudget year !

(Spirtes, Glymour, Scheines 1993; 2001)
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Other propositional algorithms

e Relax/decompose faithfulness condition
e (Conservative PC (CPC) (Ramsey, Zhang, Spirtes 2006)
e Remove causal sufficiency assumption
e (ausal Inference (ClI)
e Fast Causal Inference (FCI) (Spirtes, Glymour, Scheines 1993; 2001)
e Practical modifications
e Modified PC (Abellan, Gomez-Olmedo, Moral 2006)
e POWER (Fast, Hay, Jensen 2008)
e Hybrid algorithms
e MMHC (Tsamardinos, Brown, Aliferis 2006)

e RELAX (Fast 2009)

22
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RPC
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Relational data

-8 8
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Relational database

I
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Relational data representation

. Tl

/
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Directed Acyclic Probabilistic
Entity-Relationship (DAPER) Model

(Heckerman, Meek, Koller 2007)
28



DAPER ground graph

29
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Relational extension of PC

iﬁ Relational PC

(Maier, Taylor, Oktay, Jensen 2010)
30



Consequences of relational data

[ Studio L _4[ Critic ] [Movie].budget

MODE([Movie Directs Director Directs Movie]).genre

Director ]

COUNT([Movie Stars-In Actor])

EXISTS([Rates])

1. Increased space of potential dependencies
e Variables from multiple entities and relationships
* Aggregates
e Structural variables
2. New constraints derived from relationship existence

31
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Evaluating causal algorithms

1. Higher power yields more dependencies.
2. Chain reactions occur.
3. At best, identifies the class of statistically

indistinguishable models.

32
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Causal Model of Moviel ens

STARS-IN
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Relational
Blocking

34
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Relational blocking defined

* Let A and B be two entity sets in a k-partite network
* A block contains a set of B entities linked to a common A entity

e Let /D be the unique identifier of a block, and let X and Y be
two attributes of B

e Relational blocking is a process that evaluates

X 1ULY |ID
by grouping B entities into disjoint blocks

(Rattigan, Maier, Jensen 2011)
35
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Blocking vs Conditioning

B
MO0 7010 OO OO
OO . OO
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Conditioning Blocking
p=0.009 p=0.033
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L atent common causes

[ype T Error
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Strength of Latent Effect H
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Common effects

1.0

Conditioning on Z
"Q

Blocking on A

0.8

0.6

Proportion of Significant p—values
0.2 0.4
I

I I I I I
0.0 0.5 1.0 1.5 2.0

Strength of Effect X, Y
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D-separation

Let X, Y, and W be three disjoint sets of vertices in DAG G.
Let Det(V) be the set of all variables determined by V.
Then, X and Y are d-separated by W if and only if
for all undirected paths P between X and Y either

(1) dv € colliders(P) such that v A descendants(v) € W or
(2) dv € noncolliders(P) such that v € Det(W).

o

39
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Example of relational blocking

Domain: Wikipedia

Question: Do “many eyes” cause quality?

Treatment: Number of ¢
Outcome: Assessed qua

Monday, May 2, 2011
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Istinct editors
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(Rattigan, Maier, Jensen 2010)



Relational Blocking Design

Constraints In Constraints Out

o

0 Efl> X »Y

Y » X

@A‘
S
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QEDs

42
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Quasi-Experimental Design

e Techniques developed and used by social scientists
Quasi-Experimentation

Desmon & Analysis issues

e Provide causal conclusions ok Setrce

e Devise local hypothesis tests

experimental and

vesigns

e Enabled by temporal and
relational representation

e | ack a formalization

e Relational blocking: twin study, matching design

e Temporal blocking: interrupted time series design,
non-equivalent control group design

(Cook & Campbell 1979;
Shadish, Cook, Campbell 2002)
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Example of temporal blocking

Domain: Stack Overflow

Question: Do badges influence participation?
Treatment: User receives “epic” badge
Outcome: Posting frequency over time

Number of Posts

Badge Received

0 10 20 30 40 50 60
Days

(Oktay, Taylor, Jensen 2010)
44
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Temporal Blocking Design

Constraints In Constraints Out

:AX
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Thank you!

Questions?

maier@cs.umass.edu
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