Graphical Models

Lecture 19:

Partially Observed Data - Parameter Estimation

Andrew McCallum mccallum@cs.umass.edu

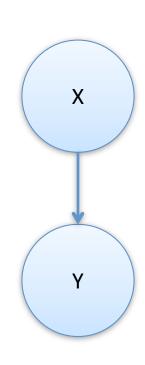
Thanks to Noah Smith and Carlos Guestrin for some slide materials.

Partially Observed, Incomplete Data

- Until now, we have always assumed during learning that the **data** are completely observed: $(\mathbf{x}^{(1)}, \mathbf{x}^{(2)}, ..., \mathbf{x}^{(T)})$.
- Today we consider learning when the data are incomplete.
 - Missing values
 - Truly hidden variables

Example

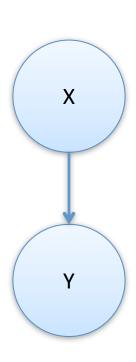
- Two binary variables, X and Y.
- Three binomial distributions: θ_{x} , $\theta_{Y|X=1}$, $\theta_{Y|X=0}$.
- Let #{...} be a sufficient statistic function that counts values in the data.



$$L(\theta_X, \theta_{Y|X=1}, \theta_{Y|X=0}) = (\theta_X)^{\#\{1,*\}} \times (1 - \theta_X)^{\#\{0,*\}} \times (\theta_{Y|X=1})^{\#\{1,1\}} \times (1 - \theta_{Y|X=1})^{\#\{1,0\}} \times (\theta_{Y|X=0})^{\#\{0,1\}} \times (1 - \theta_{Y|X=0})^{\#\{0,0\}}$$

Example

 log L is concave, with a unique global optimum, and we know we can solve for it in closed form.



$$L(\theta_X, \theta_{Y|X=1}, \theta_{Y|X=0}) = (\theta_X)^{\#\{1,*\}} \times (1 - \theta_X)^{\#\{0,*\}} \times (\theta_{Y|X=1})^{\#\{1,1\}} \times (1 - \theta_{Y|X=1})^{\#\{1,0\}} \times (\theta_{Y|X=0})^{\#\{0,1\}} \times (1 - \theta_{Y|X=0})^{\#\{0,0\}}$$

Example

- Consider observation of one additional example that is incomplete: (X = ?, Y = 1).
- Likelihood now has to sum over both assignments of the unknown variable.

$$L(\theta_{X}, \theta_{Y|X=1}, \theta_{Y|X=0}) = (\theta_{X})^{\#\{1,*\}+1} \times (1 - \theta_{X})^{\#\{0,*\}} \times (\theta_{Y|X=1})^{\#\{1,1\}+1} \times (1 - \theta_{Y|X=1})^{\#\{1,0\}} \times (\theta_{Y|X=0})^{\#\{0,1\}} \times (1 - \theta_{Y|X=0})^{\#\{0,0\}} + (\theta_{X})^{\#\{1,*\}} \times (1 - \theta_{X})^{\#\{0,*\}+1} \times (\theta_{Y|X=1})^{\#\{1,1\}} \times (1 - \theta_{Y|X=1})^{\#\{1,0\}} \times (\theta_{Y|X=0})^{\#\{0,1\}+1} \times (1 - \theta_{Y|X=0})^{\#\{0,0\}}$$



Missing Data

- In general, the likelihood function will now be a summation over all possible assignments to all missing (latent, hidden) variables.
- There could be exponentially many!
 - You shouldn't be too worried, though: this is really just marginalization, given some evidence.
- Note: every example could have a different set of variables that are observed or hidden.

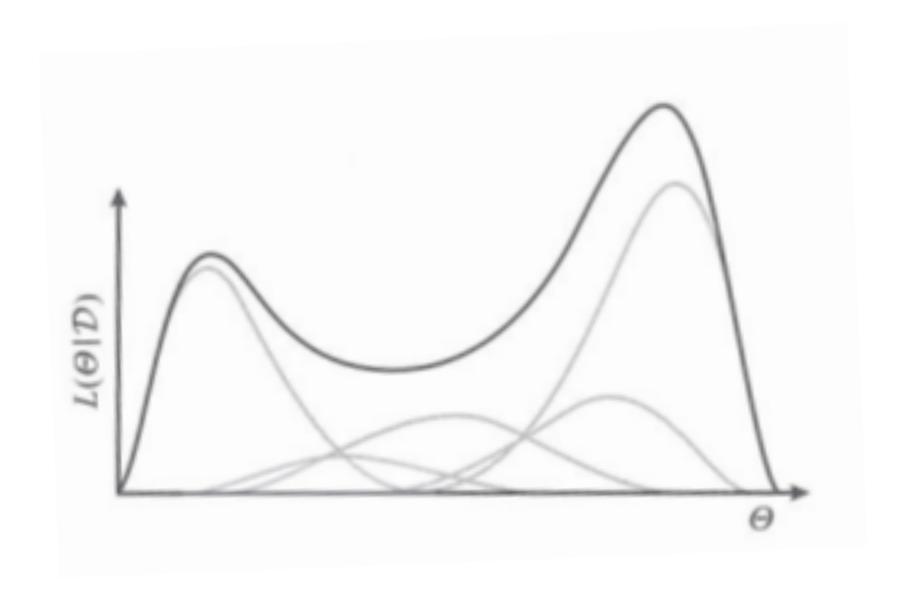
Effects of Missing Data

$$L(\boldsymbol{\theta}) = \prod_{t} P(\boldsymbol{x}_{observed}^{(t)} \mid \boldsymbol{\theta})$$

$$= \prod_{t} \sum_{\boldsymbol{x}_{missing} \in Val(\boldsymbol{X}_{missing}^{(t)})} P(\boldsymbol{x}_{observed}^{(t)}, \boldsymbol{x}_{missing} \mid \boldsymbol{\theta})$$

- Each term in the summation is log-concave (unimodal; there is a single optimal value of θ).
- The sum of these terms may be multimodal!

Sum of Concave Terms

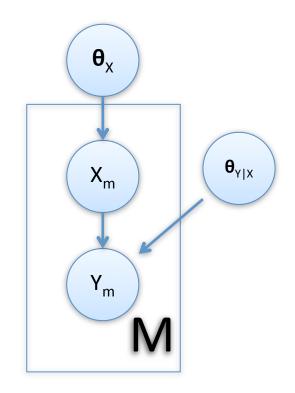


Effects of Missing Data

- Likelihood decomposability was really helpful in both MLE and Bayesian estimation when our data were fully observed.
 - Also in structure learning.
 - Recall that this went away when learning Markov networks.

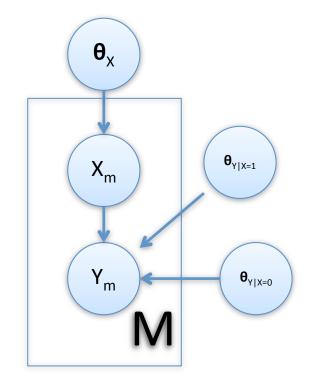
- Consider two binary random variables.
- Step 1: Global parameter independence.

$$P(\boldsymbol{\theta}) = \prod_{i} P(\boldsymbol{\theta}_{X_i | \text{Parents}(X_i)})$$

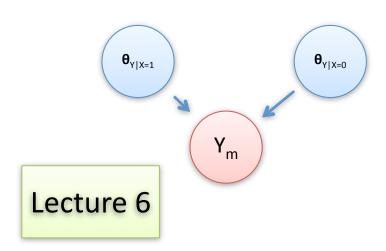


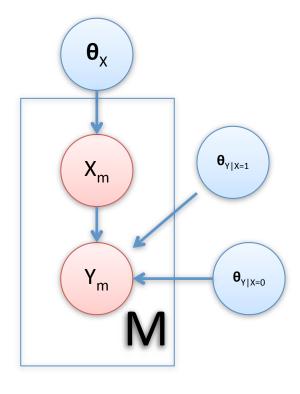
 Step 2: Local parameter independence.

$$P(\boldsymbol{\theta}_{X_i|\text{Parents}(X_i)}) = \prod_{\boldsymbol{u} \in \text{Val}(\text{Parents}(X_i))} P(\boldsymbol{\theta}_{X_i|\text{Parents}(X_i) = \boldsymbol{u}})$$

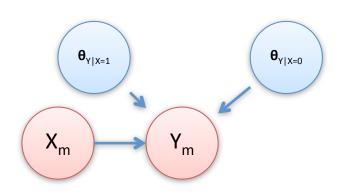


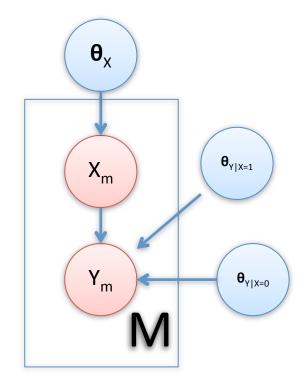
 Does local parameter independence cause problems for global parameter independence?



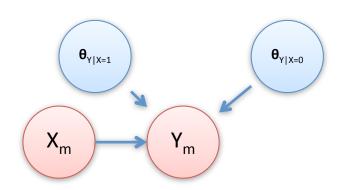


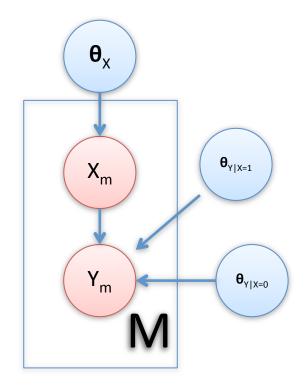
 Does local parameter independence cause problems for global parameter independence?





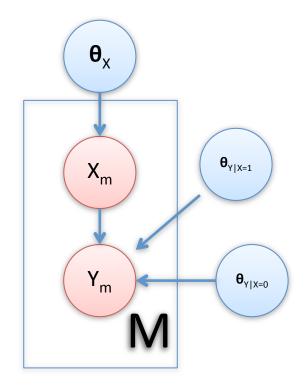
- Good news: given X_m , one of the edges becomes *inactive*.
 - Context-sensitive independence!





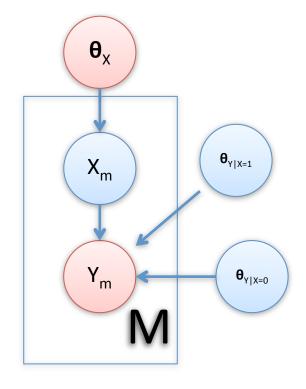
 Global and local parameter independence hold.

$$P(\boldsymbol{\theta}) = \prod_{i} \prod_{\boldsymbol{u} \in \text{Val}(\text{Parents}(X_i))} P(\boldsymbol{\theta}_{X_i | \text{Parents}(X_i) = \boldsymbol{u}})$$



Local Decomposability

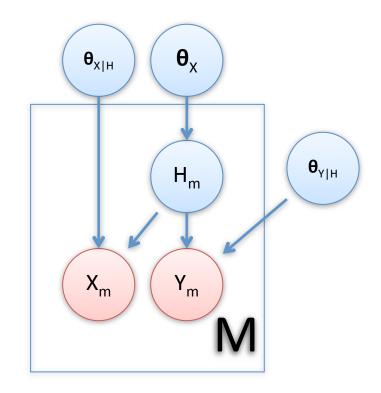
- But now, suppose X_m is hidden, and (for simplicity) that θ_x is known.
 - V-structure! X_m depends on parameters and vice versa.
 - Context-sensitive independence is lost; the two $\theta_{Y|X}$ distributions now depend on each other because of X.



Global Decomposability

Also lost, since estimates
 of all parameters depend
 on how we "reconstruct"
 H for each example.

$$L(\boldsymbol{\theta}) = \prod_{x,y} \left(\sum_{h} P(h) P(x \mid h) P(y \mid h) \right)^{\#\{x,y\}}$$



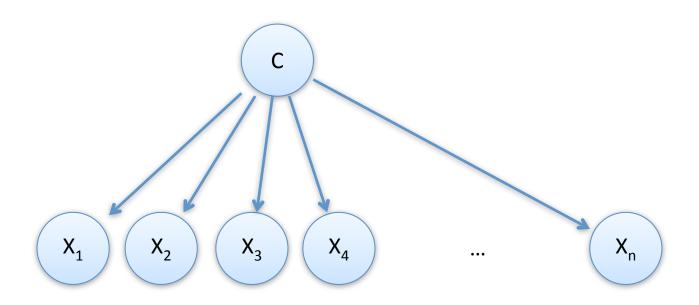
In General

- More missing information implies more active trails.
 - Conditional independence assumptions weaken.
- Once data go missing, we lose the closed-form solution, the global concavity of log L, and decomposition.
- Learning just got harder.

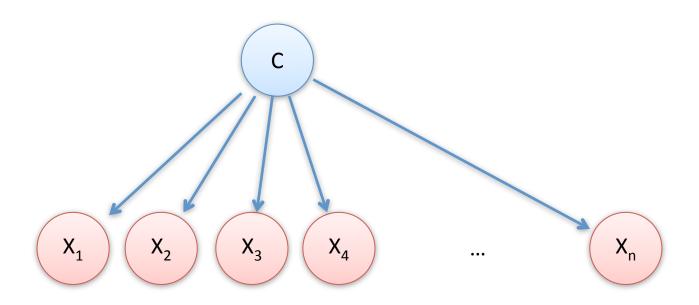
Some Other Issues

- Sometimes data are missing at random, and the probability of a random variable's value being missing is independent of the value itself.
- If not, then things get harder, because the observation *pattern* may tell us something about the missing data.
 - See K&F 19.1.
- Often the data are of one kind (all missing the same parts) or two kinds (some complete data, some incomplete data all missing the same parts).

Naïve Bayes Model



Clustering



Identifiability

- Is there a single parameter setting that maximizes likelihood?
- Identifiability: changing the parameters changes the likelihood.
 - Single global maximum.
- Local identifiability: within a small neighborhood, changing the parameters changes the likelihood.
 - But there could be different models in different parts of the parameter space that achieve equal likelihood.

Dealing with Missing Data is Hard

- All kinds of challenges.
- This doesn't mean we shouldn't attempt to do it!
 - Consider the payoff if we get it to work.
- We'll consider two approaches to optimizing log L with respect to the parameters:
 - gradient ascent (and related)
 - expectation-maximization (EM)

Log-Likelihood Objective

$$\begin{aligned} \boldsymbol{\theta}_{\text{MLE}} &= \arg \max_{\boldsymbol{\theta}} \sum_{t} \log P(\boldsymbol{x}_{observed}^{(t)} \mid \boldsymbol{\theta}) \\ &= \arg \max_{\boldsymbol{\theta}} \sum_{t} \log \sum_{\boldsymbol{x}_{missing} \in \text{Val}(\boldsymbol{X}_{missing}^{(t)})} P(\boldsymbol{x}_{observed}^{(t)}, \boldsymbol{x}_{missing} \mid \boldsymbol{\theta}) \end{aligned}$$

• Taking the derivative with respect to one parameter, $P(x \mid \mathbf{u}) = \theta_{x|\mathbf{u}}$ (assume nonzero) ...

First Derivative of Marginal w.r.t. A Parameter

$$\frac{\partial P(\boldsymbol{x}_{observed})}{\partial \theta_{x_i|\boldsymbol{u}}} = \frac{\partial}{\partial \theta_{x_i|\boldsymbol{u}}} \sum_{\boldsymbol{x}_{missing}} P(\boldsymbol{x}_{observed}, \boldsymbol{x}_{missing})$$

$$= \sum_{\boldsymbol{x}_{missing}} \frac{\partial}{\partial \theta_{x_i|\boldsymbol{u}}} P(\boldsymbol{x}_{observed}, \boldsymbol{x}_{missing})$$

$$= \sum_{\boldsymbol{x}_{missing}} \left\{ \frac{P(\boldsymbol{x}_{observed}, \boldsymbol{x}_{missing})}{\theta_{x_i|\boldsymbol{u}}} \quad \text{if } \boldsymbol{x}_{observed}, \boldsymbol{x}_{missing} \text{ are compatible with } \boldsymbol{x} \text{ and } \boldsymbol{u} \right.$$

$$= \frac{1}{\theta_{x_i|\boldsymbol{u}}} \sum_{\boldsymbol{x}_{missing}: \text{compatible}(\boldsymbol{x}_{missing}; \boldsymbol{x}, \boldsymbol{u})} P(\boldsymbol{x}_{observed}, \boldsymbol{x}_{missing})$$

The division is really just a shorthand for dividing out the parameter; if $\theta_{x|u} = 0$, the first derivative just involves multiplying the other probabilities together.

First Derivative of log L w.r.t. $\theta_{x|u}$

$$\begin{aligned} \boldsymbol{\theta}_{\text{MLE}} &= \arg \max_{\boldsymbol{\theta}} \sum_{t} \log P(\boldsymbol{x}_{observed}^{(t)} \mid \boldsymbol{\theta}) \\ &= \arg \max_{\boldsymbol{\theta}} \sum_{t} \log \sum_{\boldsymbol{x}_{missing} \in \text{Val}(\boldsymbol{X}_{missing}^{(t)})} P(\boldsymbol{x}_{observed}^{(t)}, \boldsymbol{x}_{missing} \mid \boldsymbol{\theta}) \end{aligned}$$

$$\frac{\partial \log L}{\partial \theta_{x|\mathbf{u}}} = \sum_{t} \frac{\partial \log P(\mathbf{x}_{observed}^{(t)} \mid \boldsymbol{\theta})}{\partial \theta_{x|\mathbf{u}}}$$

$$= \sum_{t} \frac{1}{P(\mathbf{x}_{observed}^{(t)} \mid \boldsymbol{\theta})} \frac{\partial P(\mathbf{x}_{observed}^{(t)} \mid \boldsymbol{\theta})}{\partial \theta_{x|\mathbf{u}}}$$

$$= \frac{\sum_{t} P(x, \mathbf{u} \mid \mathbf{x}_{observed}^{(t)}, \boldsymbol{\theta})}{\theta_{x|\mathbf{u}}}$$

Gradient and Inference

- The gradient depends on (scaled) marginal probabilities.
- This is a key application of inference: for each example, and for each variable X_i, we need to infer

$$P(X_i, Parents(X_i) | \mathbf{x}_{observed})$$

 We can do this with one clique tree calibration per example! (Exploiting family preservation property.)

Gradient Ascent on Log-Likelihood

- Need to do a little work to deal with the constraints on parameters (e.g., summing to one, nonnegativity).
 - Reparameterize, or use Lagrange multipliers.
- If parameters are not multinomials, use the chain rule:

$$\frac{\partial \log L}{\partial \theta} = \sum_{x, \boldsymbol{u}} \frac{\partial \log L}{\partial P(x \mid \boldsymbol{u})} \frac{\partial P(x \mid \boldsymbol{u})}{\partial \theta}$$

Expectation-Maximization

Expectation-Maximization

- Gradient ascent and friends are general algorithms.
- EM is specifically for maximizing likelihood in the presence of incomplete data!
 - Not a general technique for non-convex problems.

Intuition Behind EM

- If only we had complete data, parameter estimation would be easy!
 - Sufficient statistics.
 - Idea: randomly fill in missing values! (What's wrong?)
- We are really solving two problems at the same time:
 - estimating parameters
 - hypothesizing missing values

Chicken and Egg

- If we had the complete data, parameter estimation by MLE would be easy.
- If we had the parameters, inferring an assignment for the missing information would be easy: probabilistic inference.

Expectation Maximization

- Initialize parameters: **θ**⁽⁰⁾
- Repeat:
 - **E step:** Infer distribution over missing values (inference); gather *expected* sufficient statistics. For discrete distributions, this looks like "fractional" counting. $esc^{(i)}(x, u) = \sum_{t} P(x, u \mid x_{observed}^{(t)}, \theta^{(i)})$
 - M step: Estimate parameters using the complete data distribution just inferred.

$$\theta_{x|\boldsymbol{u}}^{(i+1)} = \frac{\operatorname{ess}^{(i)}(x,\boldsymbol{u})}{\sum_{x'} \operatorname{ess}^{(i)}(x',\boldsymbol{u})}$$

Behavior of EM

- EM works: the log-likelihood will improve on each iteration.
- Easiest way to understand it: coordinate ascent.
 - E step finds missing data distribution to match current value of P: "best Q" (really expected sufficient statistics) for fixed $\boldsymbol{\theta}$.
 - M step: fix Q, find θ .

M Step: Maximizing a Lower Bound on log L

$$\begin{split} \log L(\boldsymbol{\theta}) &= \sum_{t} \log \sum_{\boldsymbol{x}_{missing}} P(\boldsymbol{x}_{observed}^{(t)}, \boldsymbol{x}_{missing} \mid \boldsymbol{\theta}) \\ &= \sum_{t} \log \sum_{\boldsymbol{x}_{missing}} Q(\boldsymbol{x}_{missing} \mid \boldsymbol{x}_{observed^{(t)}}) \frac{P(\boldsymbol{x}_{observed}^{(t)}, \boldsymbol{x}_{missing} \mid \boldsymbol{\theta})}{Q(\boldsymbol{x}_{missing} \mid \boldsymbol{x}_{observed^{(t)}})} \\ &= \sum_{t} \log \mathbb{E}_{Q_t}[f_t] \\ \text{Jensen's} &\geq \sum_{t} \mathbb{E}_{Q_t}[\log f_t] \\ &= \sum_{t} \sum_{\boldsymbol{x}_{missing}} Q(\boldsymbol{x}_{missing} \mid \boldsymbol{x}_{observed^{(t)}}) \log \frac{P(\boldsymbol{x}_{observed}^{(t)}, \boldsymbol{x}_{missing} \mid \boldsymbol{\theta})}{Q(\boldsymbol{x}_{missing} \mid \boldsymbol{x}_{observed^{(t)}})} \\ &= \sum_{t} \sum_{\boldsymbol{x}_{missing}} Q(\boldsymbol{x}_{missing} \mid \boldsymbol{x}_{observed^{(t)}}) \log P(\boldsymbol{x}_{observed}^{(t)}, \boldsymbol{x}_{missing} \mid \boldsymbol{\theta}) + \text{constant} \\ \text{"complete data" distribution as} \\ &\text{stand-in for empirical distribution} \end{split}$$

Local Optima

- Both gradient ascent and EM will converge only on a local optimum.
 - But that's often pretty good.
 - Some techniques exist to try to avoid this problem,
 e.g., multiple runs at random initial points.
 - Clever initialization can go a long way.
- Numerical convergence is always an issue.
 - In practice, pick a threshold for relative change in loglikelihood.
 - Training too long can lead to overfitting.

Variations

- For some kinds of priors, we can alter EM to do Bayesian estimation.
- If we use MAP inference instead of marginal inference on the E step, we get "hard" EM.
 - Example: K-means clustering.
 - Sometimes works well; different objective function.
- EM for Markov networks? Yes.