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Partially Observed, Incomplete Data

* Until now, we have always assumed during
learning that the data are completely
observed: (x1), x2), ..., x(T),

* Today we consider learning when the data are
incomplete.

— Missing values
— Truly hidden variables



Example

 Two binary variables, X and Y.

* Three binomial distributions:

ex' ev|x=1l ev|x=o-

e Let #{...} be a sufficient statistic
function that counts values in the

data.

L(@X,9y|X:1,9Y|X=0) —

(QX)#{L*} X (1 _ QX)#{O,*} X



Example

* log Lis concave, with a unique
global optimum, and we know we
can solve for it in closed form.

L(0x,0v|x=1,0v|x=0)

(QX)#{L*} X (1 _ QX)#{O,*} X



Example

 Consider observation of one
additional example that is
incomplete: (X=7,Y=1).

* Likelihood now has to sum over
both assighments of the unknown
variable.

L(0x,0y x=1,0y|x=0) = (Ox)F (1 —0x)# 0 «

)#{1,1}—|—1 > (1 o (9Y|X:1)#{1’0} %

(

(

(9Y|X:0)#{0’1} x (1 - 9Y|X:0)#{O’O} +
(9X)#{1’*} X (1— HX)#{O,*}H v
(9Y|X:1)#{1’1} x (1 - 9Y|X:1)#{1’0} X
(

)#{O,l}-l—l > (1 o @YlX:O)#{O,O}



Missing Data

* |n general, the likelihood function will now be a
summation over all possible assignments to all
missing (latent, hidden) variables.

 There could be exponentially many!

— You shouldn’t be too worried, though: this is really
just marginalization, given some evidence.

* Note: every example could have a different set
of variables that are observed or hidden.



Effects of Missing Data

L0 = [[P@erea!6)

t

- H Z P(w(otb)servewwmissmg ‘ 9)

t Lmissing EVal(X S‘rfi)ssing)

e Each term in the summation is log-concave
(unimodal; there is a single optimal value of 0).

 The sum of these terms may be multimodal!



L(O|D)

Sum of Concave Terms




Effects of Missing Data

e Likelihood decomposability was really helpful
in both MLE and Bayesian estimation when our
data were fully observed.

— Also in structure learning.

— Recall that this went away when learning Markov
networks.



Simple Example

e Consider two binary
random variables.

e Step 1: Global
parameter
independence.

P(H) = HP(HX”ParentS(X?;))
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Simple Example

e Step 2: Local
parameter
independence.

P(9X¢|Parents(Xi)) — H P(9X1~|Parents(Xi):u)
ueVal(Parents(X;))
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Simple Example

* Does local parameter
independence cause
problems for global

-
parameter §
independence?

By x- By jx- b 4
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Simple Example

* Does local parameter
independence cause
problems for global
parameter
independence?

‘ eY|x=1 f eY|X=O
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Simple Example

 Good news: given
X ., one of the edges

becomes inactive.

— Context-sensitive
independence!

- - Oyxeo |
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Simple Example

 Global and local

parameter

independence hold.

ro-T1 I

P(HXz |ParentS(Xi):u)

t weVal(Parents(X;))
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Local Decomposability

e But now, suppose X _is

hidden, and (for simplicity)
that 8, is known.

— V-structure! X depends on

parameters and vice versa.

— Context-sensitive
independence is lost; the two
Oy x distributions now depend

on each other because of X.



Global Decomposability

* Also lost, since estimates
of all parameters depend
on how we “reconstruct”
H for each example.

| H - O



In General

 More missing information implies more active
trails.

— Conditional independence assumptions weaken.

* Once data go missing, we lose the closed-form
solution, the global concavity of log L, and
decomposition.

e Learning just got harder.



Some Other Issues

 Sometimes data are missing at random, and the
probability of a random variable’s value being
missing is independent of the value itself.

* |f not, then things get harder, because the
observation pattern may tell us something about
the missing data.

— See K&F 19.1.
* Often the data are of one kind (all missing the

same parts) or two kinds (some complete data,
some incomplete data all missing the same parts).



Naive Bayes Model






ldentifiability

* |s there a single parameter setting that maximizes
likelihood?

 |dentifiability: changing the parameters changes
the likelihood.
— Single global maximum.

* Local identifiability: within a small neighborhood,
changing the parameters changes the likelihood.

— But there could be different models in different parts of
the parameter space that achieve equal likelihood.



Dealing with Missing Data is Hard

e All kinds of challenges.

* This doesn’t mean we shouldn’t attempt to do
it!

— Consider the payoff if we get it to work.

 We'll consider two approaches to optimizing
log L with respect to the parameters:

— gradient ascent (and related)
— expectation-maximization (EM)



Log-Likelihood Objective

— log P(z")
O\LE argmgx; 0g P(T ) erpeq | 0)

_ ()
= alg meax zt: log Z P(mobserved7 Lmissing | 0)

Lmissing S Val ( X grfi)ssing )

* Taking the derivative with respect to one
parameter, P(x | u) =0,_, (assume nonzero) ...

X|u



First Derivative of Marginal w.r.t. A

ap(w observed)

00z, |

Parameter

9
D

E P<mobse1‘ved7 Cc’missing)

missing

0
E P<mobse’r‘veda wmissing)
80:1:1 |w

Lmissing

P(x yLmissi : . :
Z ( Ob“g:fl'u ssing)  if T observed  Tmissing are compatible with x and u
1
— 0 otherwise

wmzsszng

1
0 E P(mobserveda wmissing)

i |’LL xmissing:Compatible(xmissing;xau)

The division is really just a shorthand for dividing out the parameter; if leu =0, the

first derivative just involves multiplying the other probabilities together.



First Derivative of log L w.r.t. leu

OviLp = arg mnglog P(:B(Otgsemed | 9)
t
— arg mngZlog Z P(m(otgserved’wmissmg | 0)

t wmissing eva’l(Xfrfi)ssing )

OlogL Z 0log P(wggsemed | 9)

90,1 t 0o

_ Z 1 aP(mE)tb)se'r’ved ‘ 0)
t
t P(w(ob)served ‘ 9) aex‘u

observed’

S, Pla,u| 2l . 6)
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Gradient and Inference

* The gradient depends on (scaled) marginal
probabilities.

e This is a key application of inference: for each
example, and for each variable X,, we need to

infer
P(X., Parents(X) | x

 We can do this with one clique tree calibration
per example! (Exploiting family preservation
property.)

observed )



Gradient Ascent on Log-Likelihood

* Need to do a little work to deal with the
constraints on parameters (e.g., summing to
one, nonnegativity).

— Reparameterize, or use Lagrange multipliers.

* |f parameters are not multinomials, use the
chain rule:

Olog L OlogL OP(z |u

00 B OP(x|u 06

T, U




Expectation-Maximization



Expectation-Maximization

* Gradient ascent and friends are general
algorithms.

 EM is specifically for maximizing likelihood in
the presence of incomplete data!

— Not a general technique for non-convex problems.



Intuition Behind EM

* |f only we had complete data, parameter
estimation would be easy!
— Sufficient statistics.
— Idea: randomly fill in missing values! (What'’s

wrong?)

 We are really solving two problems at the
same time:
— estimating parameters
— hypothesizing missing values



Chicken and Egg

* If we had the complete ¢ If we had the

data, parameter parameters, inferring an
estimation by MLE assignment for the
would be easy. missing information

would be easy:
probabilistic inference.



Expectation Maximization

* |nitialize parameters: 60
* Repeat:

— E step: Infer distribution over missing values
(inference); gather expected sufficient statistics.
For discrete distributions, this looks like
fractional” counting. s (1 ZP vzl g

— M step: Estimate parameters using the complete

data distribution just inferred. |
g+l _ ess'd (z,u)
e S ess()(af u)




Behavior of EM

« EM works: the log-likelihood will improve on
each iteration.

e Easiest way to understand it: coordinate
ascent.

— E step finds missing data distribution to match
current value of P: “best Q” (really expected
sufficient statistics) for fixed 0.

— M step: fix Q, find 0.



M Step: Maximizing a
Lower Bound on log L

1881

log L(O) = Zlog Z P(fl?gtgsemed,fl?mz‘ssmﬂg)
t T missing

P(w(t) wmissing ‘ 0)

observed’

— ZlOg Z Q(wmissing wobserved(t)>
t

Lmissing

— Z log ]EQt [ft]

Q(wmissz’ng ‘ mobsefr‘ved(t))

Jensen’s > ZEQt[logft]
inequality t

P(w(t) wmz’ssing ‘ 9)

observed’

- Z Z Q(wmissz’ng ‘ mobserved(t)>log

t Lmissing

t
— Z Z Q(Tmissing | T ppserved® ) 108 P(wgzzsemedemissmg | 0) 4+ constant
t Lmissing
“complete data” distribution as
stand-in for empirical distribution

Q(wmz’ssz’ng ’ L observed®) )



Local Optima

* Both gradient ascent and EM will converge only on
a local optimum.

— But that’s often pretty good.

— Some techniques exist to try to avoid this problem,
e.g., multiple runs at random initial points.

— Clever initialization can go a long way.

 Numerical convergence is always an issue.

— In practice, pick a threshold for relative change in log-
likelihood.

— Training too long can lead to overfitting.



Variations

* For some kinds of priors, we can alter EM to do
Bayesian estimation.

* |f we use MAP inference instead of marginal
inference on the E step, we get “hard” EM.
— Example: K-means clustering.

— Sometimes works well; different objective
function.

e EM for Markov networks? Yes.



