Graphical Models

Lecture 16:

Maximum a Posteriori Inference

Andrew McCallum
mccallum@cs.umass.edu

Thanks to Noah Smith and Carlos Guestrin for some slide materials.

Probabilistic Inference

 Assume we are given a graphical model.

e Want:

PX | E = e) P(X,E = e)

P(E = e)
x P(X,E=¢e)

> P(X,E=eY =y)
yeVal(Y)

Lecture 9

Inference: Where We Have Been

9. Variable elimination
10.Variable elimination, continued

11.Clique trees, sum-product message passing, — exact
calibration

12.Sum-product-divide (belief update)
message passing

13.Mean field variational inference

14.Cluster graphs, generalized loopy belief
propagation

15.Sampling, Monte Carlo Markov chain

approximate

Probabilistic Inference: MAP

 Sometimes we are interested primarily in what is
most probable:

x* = arg max P(X =ux)
xcVal(X)
— A single, coherent explanation.

— “Decoding” metaphor

— Note that constant factors do not matter, so
unnormalized probabilities are okay!

*

x* = argwér\r}ﬁzcx) UX =x)

— Evidence?

MAP Inference

NP-hard in general.
 Sometimes called “max-product” problems:

o =g s P = @) =a e 1] o)

Can also be understood as “max-sum” or “min-
sum” (energy minimization):

— arg max Z logp(X) =arg min_ > —loge;(a;)

:BGVal(X) xecVal(X) o !

Marginal MAP (A Generalization)

* = arg max P(Y =
Y gyEVal?Y) (y)

P(X =
arg max), P(X = (y.2)
2EVal(X\Y)

* Find the most probable configuration of some
random variables, marginalizing out others.

* |Includes the case with evidence.

* |Involves a max, a sum, and a product (hard).

e Marginal MAP is in NPPP (contains the entire polynomial
hierarchy, of which NP is only the first level).

Max-Marginals

* A set of factors useful in intermediate steps of
MAP inference algorithms.

* Let f:Val(X) > R

 The max-marginal of f relative to variables YCX is:

Vy € Val(Y), oymax (Y, 2))

— Example: f =U, so that the max-marginal gives the
unnormalized probability of the most likely
configuration consistent with each .

Exact MAP Inference

Products of Factors

* Given two factors with different scopes, we can
calculate a new factor equal to their products.

¢product (213 U y) — ¢1 (CL‘) . ¢2 (y)

Lecture 9

Factor Marginalization

 Given Xand Y (Y ¢ X), we can turn a factor
®(X, Y) into a factor (X) via marginalization:

P(X) = > X,y

yeVal(Y)

» We can refer to this new factor by 5, ¢.

Lecture 9

Factor Maximization

 Given Xand Y (Y ¢ X), we can turn a factor
d(X, Y) into a factor Y(X) via maximization:

(X) = maxg(X,Y)

» We can refer to this new factor by max, ¢.

Factor Maximization

 Given Xand Y (Y ¢ X), we can turn a factor
d(X, Y) into a factor Y(X) via maximization:

P(X) = max¢(X,Y)
Y

A |B C |$(AB,CQ)
0 0 0 0.9 A |C l])(A,C)
0 0 1 0.3 ‘ 0 lo 11
0 1 0 1.1 g

y
0 1 1 1.7 0 |1 1.7
1 |o o 0.4 1 |0 1.1
1 0 1 07| ~mMaximizing out B 1 11 0.7
1 1 0 1.1
1 1 1 0.2

Distributive Property

* A useful property we exploited in variable
elimination:

X ¢ Scope(¢1) = qu $2) =1+ > b
X

 Under the same conditions, factor
multiplication distributes over max, too:

m)?x(% - ¢2) = @1 - Max P2

X

Max-Product Variable Elimination

* Exactly like before, with two changes:
— Replace sum with max

— Traceback to recover the most likely assignment

Eliminating One Variable
(Sum-Product Version)
Input: Set of factors @, variable Z to eliminate

Output: new set of factors W

Let @’ = {b € @ | Z € Scope(P)}
Let W ={p c D | Z & Scope(P)}
Let The 3, My P

Return W u {T}

I N =

Lecture 9

Eliminating One Variable
(Max-Product Version)
Input: Set of factors @, variable Z to eliminate

Output: new set of factors W

Let @’ ={p € D | Z € Scope(P)}
Let W ={p c D | Z & Scope(P)}
Let T be max, [Tpeqr P

I N =

Return W u {T}

Variable Elimination
(Sum-Product Version)

Input: Set of factors @, ordered list of variables Z
to eliminate

Output: new factor
1. ForeachZ € Z(in order):

— Let @ = Eliminate-One(®, Z,)

2. Return Tyeo P

(unnormalized marginal probabilities of
remaining variables)

Lecture 9

Variable Elimination
(Max-Product Version)

Input: Set of factors @, ordered list of variables Z
to eliminate

Output: new factor
1. ForeachZ € Z(in order):

— Let @ = Eliminate-One(®, Z,)

2. Return Tyeo P

(unnormalized max-marginal probabilities of
remaining variables)

Recovering the MAP Assignment

* Need to “trace back” and find values for all of
the variables that were eliminated.
— Requires us to remember the intermediate factors.

* Connection to dynamic programming: you do
not know the “answer” until you have
completed the process; your intermediate
calculations let you recover the answer at the
end.

Eliminating One Variable
(Max-Product Version with Bookkeeping)

Input: Set of factors @, variable Z to eliminate
Output: new set of factors W

1. Let @’ ={¢b € ® | Z e Scope()}
2. letW={pec®| Z¢gScope(d)}
3. Let T be max, [Ty P

— Let be TTy.o P (bookkeeping)
4. ReturnWu {1} U

Variable Elimination

(Max-Product Version with Decoding)

Input: Set of factors @, ordered list of variables Z
to eliminate

Output: new factor
1. ForeachZ € Z(in order):

— Let (D, Y,) = Eliminate-One(®, Z)
2. Return Ty P, Traceback({p,})

Traceback

Input: Sequence of factors with associated
variables: (¢, ..., U)

Output: z°

 Each {, is a factor with scope including Z and
variables eliminated after Z.

 Work backwards fromi=kto 1:

— Let z, = arg max, $,(z, z.,,, Z.,5, .-, Z;)

e Return z

About the Traceback

* No extra (asymptotic) expense.

— Linear traversal over the intermediate factors.

* The factor operations for both sum-product VE
and max-product VE can be generalized.

— Example: get the K most likely assignments

Variable Elimination for Marginal MAP

* = arg max P(Y =
Y gyEVal?Y) (y)

P(X =
arg max), P(X = (y.2)
2EVal(X\Y)

e Use sum-product to marginalize out X\ Y.
e Use max-product to maximize overY.

 For correctness, we must sum all variables in
X\ Y first, before maximizing overY.

— Restricts the variable elimination ordering; effects
on runtime?

Cligue Trees and Max-Product

* Recall that, after discussing VE, we
reinterpreted it as message passing in clique
trees.

 We can do the same thing here.
— Passing “max messages” instead of sum messages.

— Upward/downward passes
— Max-calibration: ghax o= max f; = pi(Sig)
— Re-parameterization and invariant

— Max-product and max-product-divide

Cligue Trees and Max-Product

e How to decode?

* Choose value of each random variable based
on local beliefs?

Cligue Trees and Max-Product

* How to decode?
* Choose value of each random variable based
on local beliefs?

— No! Might give an inconsistent assignment with
overall low probability.

— Example: P(X,Y)=0.1if X=Y, 0.4 otherwise.

0 0 0.1 max-marginal for X: 0

0 1 0.4 !
XYl o Joa

| 1 1 0.1 max-marginal for Y: 0

1

Cligue Trees and Max-Product

e How to decode?

* Choose value of each random variable based
on local beliefs?

— This is okay if the calibrated node beliefs are
unambiguous (no ties).

Cligue Trees and Max-Product

* Local optimality of a (complete) configuration:
x|C;] € argmax 3;(c;)

* Local optimality is satisfied for all clique tree
node beliefs if and only if x is globally optimal
(global MAP configuration).

— Use a traceback to get a consistent assighnment that
is locally optimal everywhere.

Exact MAP

 Sometimes you can do it.

e Often, the structure of your problem gives you
a specialized algorithm.
— Examples | have seen: dynamic programming

(really just VE); maximum weighted bipartite
matching, minimum spanning tree, max flow, ...

Approximate MAP Inference

Approximate MAP Inference

* Huge topic, getting a lot of attention.
* Key techniques:

— Max-product belief propagation in loopy cluster
graphs

— Linear programming formulations

Max-Product Belief Propagation
in Loopy Cluster Graphs

e Exactly the same, only use a max instead of a
sum when calculating the messages.

* No guarantees of convergence.

— Anecdotally, seems to converge less often than
sum-product.

— Calibration at convergence: pseudo-max-
marginals.

— How to decode?

Frustrated Loops

Max-Product Belief Propagation
in Loopy Cluster Graphs: Decoding

* When all node beliefs are unambiguous (no
ties), there is a unigue maximizing assignment
to the local clusters that is consistent.

* |t's possible to have ambiguous node beliefs
and a locally optimal joint assignment!

* |n general, finding the locally optimal
assignments that are consistent is a constraint
satisfaction problem.

— NP hard.

MAP as Optimization

 We got some traction out of treating marginal
inference as optimization (lecture 15 on mean
field variational inference).

 We can do the same thing for MAP inference.

— Special cases for exact inference | mentioned
earlier.

— General formulation: integer linear programming.

Linear Objective

» For each factor ®_with scope C, and for each

value of its random variables ¢, let there be a free
variable

z..=1iff C.=c, O otherwise

* One binary variable* for each row of each factor.

* Optimization probh.m:
max H br(c)*re = maXZTn

Pred 57 ceval(e,)

*Do not confuse with the random variables!

Constraints

 Eachz must bein {0, 1}.
— Integer constraints.
 Exactly one of the z_is equal to 1.

— Linear constraints.

* Factors must agree on their shared variables.

— Linear constraints; see assighment 5.

Integer Linear Programming

* Optimizing a linear function with respect to a
set of integer-valued variables (perhaps with
linear constraints) is called an integer linear
programming problem.

— NP-hard in general.
— Some special cases can be solved efficiently.

— There are some really good solvers for ILPs that
make this not as scary as it used to be.

Relaxation

* Relaxing the integer constraints from {0, 1} to
[0, 1] has useful effects:

— ILP becomes an LP; solvable in polynomial time.
— Feasible region of the LP is a polytope.

— Solve the relaxed LP; if solution is integer, you are
done. If not, go greedy, randomized rounding, etc.

* Can add more constraints to the LP, perhaps
getting a better approximation.

General Solvers

* General solvers are always tempting, but
algorithms that “know” about the special structure

of your problem are usually faster and/or more
accurate.

My advice: formulate the problem first,
understand the landscape of specialized
optimization techniques that might apply, and
resort to general techniques if you can’t find
anything.

— And be on the lookout for ways to improve the general
technique using your problem’s structure!

Final Note

* Finding the best consistent configuration is an
old problem; old solutions exist.
— Branch and bound, A*
— Local search methods (e.g., beam search, tabu)
— Randomized methods (e.g., simulated annealing)
 Some of the above can be better understood
or generalized using data structures developed
for inference (e.g., clique trees and cluster
graphs).

