Graphical Models

Lecture 16:

Maximum a Posteriori Inference

Andrew McCallum mccallum@cs.umass.edu

Thanks to Noah Smith and Carlos Guestrin for some slide materials.

Probabilistic Inference

- Assume we are given a graphical model.
- Want:

$$P(X \mid E = e) = \frac{P(X, E = e)}{P(E = e)}$$
 $\propto P(X, E = e)$
 $= \sum_{y \in Val(Y)} P(X, E = e, Y = y)$

Inference: Where We Have Been

9. Variable elimination 10. Variable elimination, continued 11. Clique trees, sum-product message passing, exact calibration 12.Sum-product-divide (belief update) message passing 13. Mean field variational inference 14. Cluster graphs, generalized loopy belief approximate propagation 15. Sampling, Monte Carlo Markov chain

Probabilistic Inference: MAP

• Sometimes we are interested primarily in what is *most probable*:

$$\boldsymbol{x}^* = \arg \max_{\boldsymbol{x} \in Val(\boldsymbol{X})} P(\boldsymbol{X} = \boldsymbol{x})$$

- A single, coherent explanation.
- "Decoding" metaphor
- Note that constant factors do not matter, so unnormalized probabilities are okay!

$$\boldsymbol{x}^* = \arg \max_{\boldsymbol{x} \in Val(\boldsymbol{X})} U(\boldsymbol{X} = \boldsymbol{x})$$

– Evidence?

MAP Inference

- NP-hard in general.
- Sometimes called "max-product" problems:

$$\boldsymbol{x}^* = \arg\max_{\boldsymbol{x} \in Val(\boldsymbol{X})} P(\boldsymbol{X} = \boldsymbol{x}) = \arg\max_{\boldsymbol{x} \in Val(\boldsymbol{X})} \prod_{\phi_i \in \boldsymbol{\Phi}} \phi_i(\boldsymbol{x}_i)$$

Can also be understood as "max-sum" or "min-sum" (energy minimization):

$$= \arg \max_{\boldsymbol{x} \in \operatorname{Val}(\boldsymbol{X})} \sum_{\phi_i \in \boldsymbol{\Phi}} \log \phi(\boldsymbol{X}) = \arg \min_{\boldsymbol{x} \in \operatorname{Val}(\boldsymbol{X})} \sum_{\phi_i \in \boldsymbol{\Phi}} -\log \phi_i(\boldsymbol{x}_i)$$

Marginal MAP (A Generalization)

$$y^* = \arg \max_{y \in Val(Y)} P(Y = y)$$

= $\arg \max_{y \in Val(Y)} \sum_{z \in Val(X \setminus Y)} P(X = \langle y, z \rangle)$

- Find the most probable configuration of *some* random variables, marginalizing out others.
- Includes the case with evidence.
- Involves a max, a sum, and a product (hard).
 - Marginal MAP is in NP^{PP} (contains the entire polynomial hierarchy, of which NP is only the first level).

Max-Marginals

- A set of factors useful in intermediate steps of MAP inference algorithms.
- Let $f: Val(X) \rightarrow \mathbb{R}$
- The max-marginal of f relative to variables Y⊆X is:

$$\forall \boldsymbol{y} \in \text{Val}(\boldsymbol{Y}), \quad \max_{\boldsymbol{z} \in \text{Val}(\boldsymbol{X} \setminus \boldsymbol{Y})} f(\langle \boldsymbol{y}, \boldsymbol{z} \rangle)$$

 Example: f = U, so that the max-marginal gives the unnormalized probability of the most likely configuration consistent with each y.

Exact MAP Inference

Products of Factors

 Given two factors with different scopes, we can calculate a new factor equal to their products.

$$\phi_{product}(\boldsymbol{x} \cup \boldsymbol{y}) = \phi_1(\boldsymbol{x}) \cdot \phi_2(\boldsymbol{y})$$

Factor Marginalization

Given X and Y (Y ∉ X), we can turn a factor
 φ(X, Y) into a factor ψ(X) via marginalization:

$$\psi(\boldsymbol{X}) = \sum_{y \in Val(Y)} \phi(\boldsymbol{X}, y)$$

• We can refer to this new factor by $\sum_{\gamma} \Phi$.

Factor Maximization

• Given **X** and Y (Y $\not\in$ **X**), we can turn a factor $\phi(\mathbf{X}, \mathbf{Y})$ into a factor $\psi(\mathbf{X})$ via maximization:

$$\psi(\boldsymbol{X}) = \max_{Y} \phi(\boldsymbol{X}, Y)$$

• We can refer to this new factor by $\max_{\gamma} \phi$.

Factor Maximization

• Given **X** and Y (Y \notin **X**), we can turn a factor φ (**X**, Y) into a factor ψ (**X**) via maximization:

$$\psi(\boldsymbol{X}) = \max_{\boldsymbol{Y}} \phi(\boldsymbol{X}, \boldsymbol{Y})$$

Α	В	С	ф (А, В, С)
0	0	0	0.9
0	0	1	0.3
0	1	0	1.1
0	1	1	1.7
1	0	0	0.4
1	0	1	0.7
1	1	0	1.1
1	1	1	0.2

"maximizing out" B

Α	С	ψ(A, C)
0	0	1.1
0	1	1.7
1	0	1.1
1	1	0.7

Distributive Property

 A useful property we exploited in variable elimination:

$$X \notin \text{Scope}(\phi_1) \Rightarrow \sum_{X} (\phi_1 \cdot \phi_2) = \phi_1 \cdot \sum_{X} \phi_2$$

 Under the same conditions, factor multiplication distributes over max, too:

$$\max_{X}(\phi_1 \cdot \phi_2) = \phi_1 \cdot \max_{X} \phi_2$$

Max-Product Variable Elimination

- Exactly like before, with two changes:
 - Replace sum with max
 - Traceback to recover the most likely assignment

Eliminating One Variable (Sum-Product Version)

Input: Set of factors Φ , variable Z to eliminate

Output: new set of factors Ψ

- 1. Let $\Phi' = \{ \varphi \in \Phi \mid Z \in Scope(\varphi) \}$
- 2. Let $\Psi = \{ \varphi \in \Phi \mid Z \notin Scope(\varphi) \}$
- 3. Let τ be $\sum_{Z} \prod_{\Phi \in \Phi'} \Phi$
- 4. Return $\Psi \cup \{\tau\}$

Eliminating One Variable (Max-Product Version)

Input: Set of factors Φ , variable Z to eliminate

Output: new set of factors Ψ

- 1. Let $\Phi' = \{ \varphi \in \Phi \mid Z \in Scope(\varphi) \}$
- 2. Let $\Psi = \{ \varphi \in \Phi \mid Z \notin Scope(\varphi) \}$
- 3. Let τ be $\max_{\mathbf{Z}} \prod_{\phi \in \mathbf{\Phi}'} \phi$
- 4. Return $\Psi \cup \{\tau\}$

Variable Elimination (Sum-Product Version)

Input: Set of factors Φ , ordered list of variables Z to eliminate

Output: new factor

- 1. For each $Z_i \in \mathbf{Z}$ (in order):
 - Let Φ = Eliminate-One(Φ , Z_i)
- 2. Return $\prod_{\phi \in \Phi} \Phi$ (unnormalized marginal probabilities of remaining variables)

Lecture 9

Variable Elimination (Max-Product Version)

Input: Set of factors Φ, ordered list of variables Z to eliminate

Output: new factor

- 1. For each $Z_i \in \mathbf{Z}$ (in order):
 - Let Φ = Eliminate-One(Φ , Z_i)
- 2. Return $\prod_{\phi \in \Phi} \phi$ (unnormalized max-marginal probabilities of remaining variables)

Recovering the MAP Assignment

- Need to "trace back" and find values for all of the variables that were eliminated.
 - Requires us to remember the intermediate factors.
- Connection to dynamic programming: you do not know the "answer" until you have completed the process; your intermediate calculations let you recover the answer at the end.

Eliminating One Variable (Max-Product Version with Bookkeeping)

Input: Set of factors Φ , variable Z to eliminate

Output: new set of factors Ψ

- 1. Let $\Phi' = \{ \varphi \in \Phi \mid Z \in Scope(\varphi) \}$
- 2. Let $\Psi = \{ \varphi \in \Phi \mid Z \notin Scope(\varphi) \}$
- 3. Let τ be $\max_{Z} \prod_{\Phi \in \Phi'} \Phi$
 - Let ψ be $\prod_{\Phi \in \Phi'} \Phi$ (bookkeeping)
- 4. Return $\Psi \cup \{\tau\}$, ψ

Variable Elimination (Max-Product Version with Decoding)

Input: Set of factors Φ , ordered list of variables Z to eliminate

Output: new factor

- 1. For each $Z_i \in \mathbf{Z}$ (in order):
 - Let (Φ, ψ_{Z_i}) = Eliminate-One (Φ, Z_i)
- 2. Return $\prod_{\Phi \in \Phi} \Phi$, Traceback($\{\psi_{Z_i}\}$)

Traceback

Input: Sequence of factors with associated variables: $(\psi_{71}, ..., \psi_{7k})$

Output: z*

- Each ψ_Z is a factor with scope including Z and variables eliminated *after* Z.
- Work backwards from i = k to 1:
 - Let $z_i = arg max_z \psi_{z_i}(z, z_{i+1}, z_{i+2}, ..., z_k)$
- Return z

About the Traceback

- No extra (asymptotic) expense.
 - Linear traversal over the intermediate factors.
- The factor operations for both sum-product VE and max-product VE can be generalized.
 - Example: get the K most likely assignments

Variable Elimination for Marginal MAP

$$y^* = \arg \max_{y \in Val(Y)} P(Y = y)$$

$$= \arg \max_{y \in Val(Y)} \sum_{z \in Val(X \setminus Y)} P(X = \langle y, z \rangle)$$

- Use sum-product to marginalize out X \ Y.
- Use max-product to maximize over Y.
- For correctness, we must sum all variables in
 X \ Y first, before maximizing over Y.
 - Restricts the variable elimination ordering; effects on runtime?

- Recall that, after discussing VE, we reinterpreted it as message passing in clique trees.
- We can do the same thing here.
 - Passing "max messages" instead of sum messages.
 - Upward/downward passes
 - Max-calibration: $\max_{\boldsymbol{C}_i \setminus \boldsymbol{S}_{i,j}} \beta_i = \max_{\boldsymbol{C}_j \setminus \boldsymbol{S}_{i,j}} \beta_j = \mu_{i,j}(\boldsymbol{S}_{i,j})$
 - Re-parameterization and invariant
 - Max-product and max-product-divide

- How to decode?
- Choose value of each random variable based on local beliefs?

- How to decode?
- Choose value of each random variable based on local beliefs?
 - No! Might give an inconsistent assignment with overall low probability.
 - Example: P(X, Y) = 0.1 if X = Y, 0.4 otherwise.

0	0	0.1
0	1	0.4
1	0	0.4
1	1	0.1

max-marginal for X:

0	0.4
1	0.4

max-marginal for Y:

0	0.4	
1	0.4	

- How to decode?
- Choose value of each random variable based on local beliefs?
 - This is okay if the calibrated node beliefs are unambiguous (no ties).

Local optimality of a (complete) configuration:

$$x[C_i] \in \arg \max_{c_i} \beta_i(c_i)$$

- Local optimality is satisfied for all clique tree node beliefs if and only if x is globally optimal (global MAP configuration).
 - Use a traceback to get a consistent assignment that is locally optimal everywhere.

Exact MAP

- Sometimes you can do it.
- Often, the structure of your problem gives you a specialized algorithm.
 - Examples I have seen: dynamic programming (really just VE); maximum weighted bipartite matching, minimum spanning tree, max flow, ...

Approximate MAP Inference

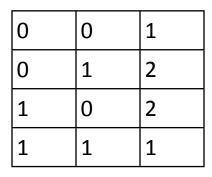
Approximate MAP Inference

- Huge topic, getting a lot of attention.
- Key techniques:
 - Max-product belief propagation in loopy cluster graphs
 - Linear programming formulations

Max-Product Belief Propagation in Loopy Cluster Graphs

- Exactly the same, only use a max instead of a sum when calculating the messages.
- No guarantees of convergence.
 - Anecdotally, seems to converge less often than sum-product.
 - Calibration at convergence: pseudo-max-marginals.
 - How to decode?

Frustrated Loops



	0	0	1
	0	1	2
AB	1	0	2
	1	1	1

AC

0	0	1
0	1	2
1	0	2
1	1	1

Max-Product Belief Propagation in Loopy Cluster Graphs: Decoding

- When all node beliefs are unambiguous (no ties), there is a unique maximizing assignment to the local clusters that is consistent.
- It's possible to have ambiguous node beliefs and a locally optimal joint assignment!
- In general, finding the locally optimal assignments that are consistent is a constraint satisfaction problem.
 - NP hard.

MAP as Optimization

- We got some traction out of treating marginal inference as optimization (lecture 15 on mean field variational inference).
- We can do the same thing for MAP inference.
 - Special cases for exact inference I mentioned earlier.
 - General formulation: integer linear programming.

Linear Objective

• For each factor ϕ_r with scope \mathbf{C}_r , and for each value of its random variables \mathbf{c} , let there be a free variable

$$z_{r,c} = 1$$
 iff $C_r = c$, 0 otherwise

One binary variable* for each row of each factor.

• Optimization problem:
$$\max_{\{z_{r,c}\}} \prod_r \prod_{\boldsymbol{c} \in \operatorname{Val}(\boldsymbol{C}_r)} \phi_r(\boldsymbol{c})^{z_{r,c}} = \max_{\mathbf{z}} \mathbf{z}^\top \boldsymbol{\eta}$$

*Do not confuse with the random variables!

Constraints

- Each z_{r,c} must be in {0, 1}.
 - Integer constraints.
- Exactly one of the \mathbf{z}_r is equal to 1.
 - Linear constraints.
- Factors must agree on their shared variables.
 - Linear constraints; see assignment 5.

Integer Linear Programming

- Optimizing a linear function with respect to a set of integer-valued variables (perhaps with linear constraints) is called an integer linear programming problem.
 - NP-hard in general.
 - Some special cases can be solved efficiently.
 - There are some really good solvers for ILPs that make this not as scary as it used to be.

Relaxation

- Relaxing the integer constraints from {0, 1} to
 [0, 1] has useful effects:
 - ILP becomes an LP; solvable in polynomial time.
 - Feasible region of the LP is a polytope.
 - Solve the relaxed LP; if solution is integer, you are done. If not, go greedy, randomized rounding, etc.
- Can add more constraints to the LP, perhaps getting a better approximation.

General Solvers

- General solvers are always tempting, but algorithms that "know" about the special structure of your problem are usually faster and/or more accurate.
- My advice: formulate the problem first, understand the landscape of specialized optimization techniques that might apply, and resort to general techniques if you can't find anything.
 - And be on the lookout for ways to improve the general technique using your problem's structure!

Final Note

- Finding the best consistent configuration is an old problem; old solutions exist.
 - Branch and bound, A*
 - Local search methods (e.g., beam search, tabu)
 - Randomized methods (e.g., simulated annealing)
- Some of the above can be better understood or generalized using data structures developed for inference (e.g., clique trees and cluster graphs).