Graphical Models

Lecture 10:

Variable Elimination, continued

Andrew McCallum
mccallum@cs.umass.edu

Thanks to Noah Smith and Carlos Guestrin for some slide materials.



Last Time

* Probabilistic inference is the goal: P(X | E = e).
— #P-complete in general

Do it anyway! Variable elimination ...



Markov Chain Example ‘

P(B)| =

P(C)] =

P(D) =

Y P(A=a)P(B|A=a)

acVal(A)

> |PB=b
beVal(B)

Z P(C=c
c€Val(C)

P(C'| B =1b)

P(D | C =c¢)

P(BIA) [0 |1
° o
1

P(C|B) |0 |1
0

PD|C) |0 |1 G
0
1




Last Time

* Probabilistic inference is the goal: P(X | E = e).
— #P-complete in general

Do it anyway! Variable elimination ...

— Work on factors (algebra of factors)
— Generally: “sum-product” inference Z H ¢

7 ¢cd



Products of Factors

* Given two factors with different scopes, we can
calculate a new factor equal to their products.

A|B|C|ds(A, B, C)
0[{0]|0
0|01
A BI|C 0|10
0 0l 0 0|11
0 0l 1 = 11010
1 110 1101
1 111 11110
1111




Factor Marginalization

 Given Xand Y (Y ¢ X), we can turn a factor
®(X, Y) into a factor Y(X) via marginalization:

P(X) = > X,y

A [C |P(A, Q)
05 0.4 0 10 039
0.5 0.6 o 03
1 |0 1.1
“summing out” B 1 11 17




Last Time

* Probabilistic inference is the goal: P(X | E = e).
— #P-complete in general

Do it anyway! Variable elimination ...

— Work on factors (algebra of factors)

— How to eliminate one variable
(marginalize a product of factors)



Eliminating One Variable

Input: Set of factors @, variable Z to eliminate

Output: new set of factors W

Let @’ = {b € @ | Z € Scope(P)}
Let W ={p c D | Z & Scope(P)}
Let Y be 3, TTgeq P

Return W u {{}

s Wb



Last Time

* Probabilistic inference is the goal: P(X | E = e).
— #P-complete in general

Do it anyway! Variable elimination ...

— Work on factors (algebra of factors)
— Generally: “sum-product” inference Z H ¢

7 ¢ed
— How to eliminate one variable

(marginalize a product of factors)

— How to eliminate a bunch of variables



Variable Elimination

Input: Set of factors @, ordered list of variables Z
to eliminate

Output: new factor Y
1. ForeachZ € Z(in order):

— Let @ = Eliminate-One(®, Z,)
2. Return TTyee P



Today

* Variable elimination for inference
(with evidence)

 Complexity analysis of VE

* Elimination orderings



Probabilistic Inference

 Assume we are given a graphical model.

e Want:

PX | E = e) P(X,E = e)

P(E = e)
x P(X,E=¢e)

> P(X,E=eY =y)
yeVal(Y)




Adding Evidence

 Conditional distributions are Gibbs; can be
represented as factor graphs!

* Everything is essentially the same, but we
reduce the factors to match the evidence.

— Previously normalized factors may not be
normalized any longer, but this is not a problem.

* Prune anything not on an active trail to query
variables.



Example | ¢ b,

* Query: Gb‘d)ms
P(Flu | runny nose) @
d)SR/ \cl)SH

* Let’'sreducetoR = \
true (runny nose). @

P(R|]S) [0 |1
0
1




* Query:
P(Flu | runny nose)

Example

* Let’'sreducetoR =
true (runny nose).

P(R]S)

0

1

=

-

¢ (S, R)

PP OO W

R | O|=|[O| >

b

ba

L

d) FAS

d)SR /d>\ cI)SH

\

O



* Query:
P(Flu | runny nose)

Example

* Let’'sreducetoR =
true (runny nose).

P(R]S)

0

1

=

=

¢ (S, R)

PP OO W

R | O|=|[O| >

e

ba

Dt

\

O



* Query:
P(Flu | runny nose)

Example

* Let’'sreducetoR =
true (runny nose).

P(R]S)

0

1

=

-

¢ (S, R)

PP OO W

R | O|=|[O| >

b,

@ d)FAS
d)SR /d>\ cI)SH

ba

\

O

$’s (5)




Example

* Query:
P(Flu | runny nose)

* Let’'sreducetoR =
true (runny nose).

ba

e

Dt




Example | ¢

e Query: o )

P(Flu | runny nose)

 Now run variable
elimination all the way
down to one factor
(for F).

ba

Prasf Al

S.I.

d)SH

H can be pruned
for the same reasons
as before.



Example | ¢ b,

o Query: ) Pras [
P(Flu | runny nose) |
| S.I.
| ¢’
* Now run variable
Eliminate S.

elimination all the way
down to one factor
(for F).



Example | ¢ b,

* Query: rFIu\; Wea ( an
P(Flu | runny nose) |

Eliminate A.

 Now run variable
elimination all the way
down to one factor
(for F).



Example | ¢

. Query: ~ v
P(Flu | runny nose) |

Take final product.

 Now run variable
elimination all the way
down to one factor
(for F).



Example

* Query:
P(Flu | runny nose)

* Now run variable
elimination all the way
down to one factor.

Elussssl

d)F' P



= Variable Elimination for
Conditional Probabilities

Qe

Input: Graphical model, set of query variables Q,
evidenceE=e

Output: factor ¢ and scalar a

@ = factors in the model

Reduce factorsin @ by E=e

Choose variable orderingonZ =X\ Q\E
¢ = Variable-Elimination(®, 2)

a= Zze\,a|(z) ¢(Z)

Return ¢, a

o Uk whE



Note

* For Bayesian networks, the final factor will be
P(Q, E =e) and the sum a = P(E = e).

* This equates to a Gibbs distribution with
partition function = a.



Complexity of
Variable Elimination



Complexity of Variable Elimination

n = humber of random variables
m = humber of factors

In step i, we multiply all factors relating to X,
resulting in Y, and sum out X,
giving a new factor t..

— N. = number of entries in .
—N_. =max. N.

If we eliminate everything,
m initial factors plus n new ones (the t).



Complexity of Variable Elimination

* m + n factors

* Each is multiplied once, then removed.



Recall: Eliminating One Variable

Input: Set of factors @, variable Z to eliminate

Output: new set of factors W

Let @’ = {b € @ | Z € Scope(P)}
Let W ={p c D | Z & Scope(P)}
Let Y be 3, TTgeq P

Return W u {{}

s Wb



Complexity of Variable Elimination

* m + n factors
 Each is multiplied once to produce some {,
then removed to produce t.
— (m + n) N. multiplications for X
— O(mN
* Marginalization (summing) touches each entry
in each . once:
— N, additions for X
— O(nN

max)

max)



Complexity of Variable Elimination

e Overall: O(mN

— Bayesian network: m =n

max)

— Markov network: m = n



Complexity of Variable Elimination

e Overall: O(mN

max)

« The size N__ of the intermediate factors .
Is what makes this blow up.
— v values per random variable

— k. variables for factor .

— Ni = ki

e But really, how bad is it?



Analyzing VE via the Graph

* Assume a factor graph representation.
e One step of VE, on X::

— Create a single factor Y that includes X. and its
neighbors (Y that share factors with X).

— Marginalize X, out of ), giving new factor T.

— |If we go back to a Markov network, we have now
introduced new edges!



Example

e Factor graph.




Example

* Markov network.




Example

e Eliminate S.




Example

e Eliminate S.

+ = CI)FAS ' cIDSR' d)SH

b,

ba

L

d) FAS

d)SR /d>\ cI)SH

\

O



Example

e Eliminate S.

+ = CI)FAS ' cIDSR' d)SH

Flu

ba

All.




Example

e Eliminate S.




Example

e Eliminate S.

b

ba

All.




Example

e Eliminate S.

e Back to Markov net?



Example

O—

i

.
&
¢ e

removed stuff



Insight

* Each VE step is a transformation on the graph.

— We’ve been drawing it on slides this way all along!

 We can put the full sequence of graphs
together into a single structure.



Union of the Graphs ...

&
¢ e




Union of the Graphs




Induced Graph

e Take the union over all of the undirected
graphs from each step: induced graph.
(1) The scope of every intermediate factor is a clique
in this graph.

(2) Every maximal clique in the graph is the scope of
some intermediate factor.

* Important:
different ordering - different induced graph ...



Proof (1)

* The scope of every intermediate factor is a
clique in the induced graph.

— Consider Y(X,, ..., X,), an intermediate factor.

— In the corresponding Markov network,
all of the X are connected (they share a factor).

— Hence they form a clique.



Proof (2)

* Every maximal clique in the induced graph is the
scope of some intermediate factor.

— Consider maximal clique Y ={Y,, ..., Y}

— Let Y, be the first one eliminated, with resulting
product-of-factors .

— All edges relating to Y, are introduced before it is
eliminated.

— Y, and Y. share an edge, so they share a factor that gets
multiplied into ; so Y includes all of Y.

— Any other variable X can’t be in the scope of {,
because it would have to be linked to all of Y, so that Y
wouldn’t be a maximal clique.

KF p 309



Ordering: {S, ...}




Ordering: {H, R, S, A, F}

\ Flu } { All. |

. Sl

R.N. H.



Ordering: {H, R, S, A, F}

@\ /® @\ /®
o -

SN/
© @




Ordering: {H, R, S, A, F}

00 @00

= o =
g @

/



Ordering: {H, R, S, A, F}

O 0 @0 e—©
(=) o =

/" N\ /
vE e




Ordering: {H, R, S, A, F}

O 0 @0 e—©
(=) o =

/" N\ /
vE e

O



Ordering: {H, R, S, A, F}

. Flu | AL

- Sl

R.N. H.

induced graph = original graph



“Induced Width”

 Number of nodes in the largest clique of the
induced graph, minus one.

— Relative to an ordering!




“Induced Width”

 Number of nodes in the largest clique of the
induced graph, minus one.

— Relative to an ordering!

* “Tree width” = minimum width over all
possible orderings.

— Bound on the best performance we can hope for ...
VE runtime is exponential in treewidth!

Why minus one?



Treewidth Example

O—O—0O—0



Treewidth Example



Treewidth Example



Treewidth Example



Treewidth Example




Treewidth Example




Finding Elimination Orderings

 NP-complete:
“Is there an elimination ordering such that
induced width < K?”

* Nonetheless, some convenient cases arise.



You'd like to be able to look at the
original graph and easily say something
about the difficulty of inference



Chordal Graphs

* Undirected graph whose minimal cycles are
not longer than 3.

: A an : A
A
B — o B
¢ B — )
T C

- ) 1 :' D
- D N h I Chordal
ot chorda s chordsal orda
Lecture 5

(MN = BN)



Chordal Graphs

* Induced graphs are always chordal!



Chordal Graphs

* Induced graphs are always chordal!

Lemma: cannot add any edges

incident on X, after it is

- eliminated.

B ,

I C When we
eliminate C,

° edges A-C and C-

D must exist.

induced graph? not chordal After elimination A-D

will exist.



Chordal Graphs

* Induced graphs are always chordal!

Lemma: cannot add any edges
incident on X, after it is

eliminated.

fill edge

induced graph? not chordal



Theorem

 Chordal graphs always admit an elimination
ordering that doesn’t introduce any fill edges
into the graph.
— No fill edges: no blowup.

— Inference becomes linear in size of the factors
already present!



Lecture 5

Cligue Tree

Every maximal
cligue becomes a
vertex.

Tree structure.



Lecture 5

Cligue Tree

For each edge,
intersection of r.v.s
separates the rest

in H.

sep,(A, D | B, C)

sep,(B, E | C, D)

sep,(C, F | D, E)



Cligue Tree

* Does a clique tree exist?
— Yes, if the undirected graph JH is chordal!

Lecture 5



Theorem

* Chordal graphs always admit an elimination

ordering that doesn’t introduce any fill edges
into the graph.

* Proof by induction on the number of nodes in
the tree:

— Take a leaf C. in the clique tree.

— Eliminate a variable in C, (but not Cs neighbor).

* No fill edges.
* Still chordal.



Heuristics for
Variable Elimination Ordering



Alternative Ordering Heuristic:
Maximum Cardinality

e Start with undirected graph on X, all nodes
unmarked.

* Fori=|X]| to 1:

— Let Y be the unmarked variable in X with the
largest number of marked neighbors

—1(Y) =i

— Mark Y.

* Eliminate using permutation .

— i.e. m maps each variable to an integer;
eliminate the variables in order of those integers 1, 2, 3...



Alternative Ordering Heuristic:
Maximum Cardinality

e “Maximum Cardinality” permutation will not
introduce any fill edges for chordal graphs.

 Don’t need the clique tree.

e Can also use it on non-chordal graphs!

— Better ideas exist, though;
greedy algorithms that try to add a small number
of edges at a time.



Bayesian Networks Again

* Recall: If undirected graph J is chordal, then
there is a Bayesian network structure G that is
a P-map for H.

* Chordal graphs correspond to Bayesian
networks with a polytree structure.

— At most one trail between any pair of nodes.

“polytree” = directed graph with at most one undirected path between any two vertices;
equiv: directed acyclic graph (DAG) for which there are no undirected cycles either.



Example Polytree



Inference in Polytrees

* Linear in conditional probability table sizes!
— Consider the skeleton.
— Pick a root; form a tree.

— Work in from “leaves.”

* |n the corresponding undirected graph, no fill
edges are introduced.



Variable Elimination Summary

* |n general, exponential requirements in induced
width corresponding to the ordering you choose.

* |t’s NP-hard to find the best elimination ordering.

* |If you can avoid fill edges (or “big” intermediate
factors), you can make inference linear in the size
of the original factors.

— Chordal graphs

— Polytrees



