Graphical Models

Lecture 9:

Variable Elimination

Andrew McCallum
mccallum@cs.umass.edu

Thanks to Noah Smith and Carlos Guestrin for some slide materials.

Probabilistic Inference

 Assume we are given a graphical model.

e Want:

PX | E = e) P(X,E = e)

P(E = e)
x P(X,E=¢e)

> P(X,E=eY =y)
yeVal(Y)

Example

* Query: or) () pay [
P(Flu | runny nose) -

P(S|F A) -

* Requires accounting

for all possibilities for PR159) @ P(H |)
A, S, and H.
by~ DED
S asm P(F.AS R H)

>orasuPFA S R H)

H.

Probabilistic Inference

In general it is intractable. ®

In practice we can often do it anyway.

Today: Exact inference via variable elimination.

Later:
— Approximate inference

— Maximum a posteriori inference (find the best
explanation, not necessarily the whole distribution)

Decision Version of Inference

Given a Bayesian network over X, and a value x
€ Val(X.) decide whether P(X. = x) > 0.

Witnhess is full set of random variables x such
that x. = x.

Can verify that P(X = x) > 0 in polynomial time.
Therefore this problem is in NP.

Reduction from 3-SAT

* Given a 3-SAT formula, construct a Bayesian
network and variable X such that the decision
inference solution yields a 3-SAT solution.

Remember what 3-SAT structure is?

3-SAT Bayesian Network

proposmonal variables; P

(Q=1)=

/ clause variables
@ @ (CPD is the clause)

But this requires exponential
space to construct last CPD!

OI1VCI2V0In

3-SAT Bayesian Network

propositional variables; P

9 (Q;=1)=0.5

clause variables
a @ @ (CPD is the clause)
: -D—0

binary chaining (AND)

3-SAT Bayesian Network

e P(X=1] Q=gq)if and only if q is a satisfying
assignment for the 3-SAT problem.

 P(X=1)is the number of satisfying
assignments divided by 2".

— If positive, the formula is satisfiable.

The Real Inference Problem

Given a Bayesian network over X, and a value x
€ Val(X.), compute P(X. = x).

Similar to problems of the form
“how many solutions satisfy the requirements?”

This problem is #P-complete.

— #P-complete problems: if a poly-time algorithm
exists, then P = PH and therefore P = NP.

PH contains P, NP and Co-NP.

Exact inference is hopeless
in general.

Approximations: Absolute Error

Let p denote an estimate:

P(X=z|E=e)—p| < ¢

Inappropriate for rare events!

Approximating P(X = x) up to some fixed
absolute error € has a randomized polynomial
time algorithm.

But this goes away with evidence for € < 0.5.

Approximations: Relative Error

0
1+ €

< PX=x|E=¢e) < p(l+¢)

* Given relative error g, the problem of finding
an estimate p with that relative error (i.e.,
satisfying the bounds above) is NP-hard.

Let’s just try it anyway.

Markov Chain ‘

e Let’s calculate P(B) from
things we have.

P(BIA) [0 |1
° o
1

P(C|B) |0 |1
0

PD|C) |0 |1 G
0
1

Markov Chain

* Let’s calculate P(B) from
things we have.

P(B) = Y PA=a)P(B|A=a)
acVal(A)

Markov Chain

* Let’s calculate P(B) from
things we have.

P(B) = > P(A=a)P(B|A=a)

acVal(A)

e Note that C and D do not
matter.

Markov Chain

* Let’s calculate P(B) from
things we have.

P(B) = Y PA=a)P(B|A=a)
acVal(A)

.
0 PB|A) |0 |1
0
1 0 =
. 1

Markov Chain

 We now have a Bayesian
network for the marginal
distribution P(B, C, D).

© 1=
O
S
o
R

Markov Chain

* We can repeat the same
process to calculate P(C).

P(C) =) P(B=bP(C|B=b)

beVal(B)

* We already have P(B)!

Markov Chain

* We can repeat the same
process to calculate P(C).

P(C) =) PB=bP(C|B=b)

beVal(B)

.
0 P(C|B) |0 |1
0
1 0 =
. 1

O0€

Markov Chain

* We now have P(C, D).

 Marginalizing out A and B
happened in two steps, and
we seem to be exploiting
the Bayesian network
structure.

PDIC) |0 |1 ||

Markov Chain

* Last step to get P(D):

P(D) = Z P(C P(D|C =c¢)
ceVal(C)
T
0 PD|C) |0 |1
_ 0
1 0 =
1 ! 7N
D

Markov Chain

* Notice that the same step happened for each
random variable:

— We created a new CPD over a variable and its
“successor”

— We summed out (marginalized) the variable.

PD) = >) > P B=b|A=a)P(C=c|B=0bPD|C =c)

a€Val(A) beVal(B) c€Val(C)

= Y PD|C=c¢ Y P(C=c|B=b) Y PA=aPB=>b|A=a)

ceVal(C) beVal(B) a€Val(A)

That Was Variable Elimination

We reused computation from previous steps and
avoided doing the same work more than once.

— Dynamic programming!

We exploited the Bayesian network structure (each
subexpression only depends on a small number of
variables).

Exponential blowup avoided!

But: is there a general technique for any graphical
model?

What’s Next?

 Some machinery
* Variable elimination algorithm

* Analysis

Lecture 5!

Factor Graphs

e Bipartite graph
— Variable nodes (circles)
— Factor nodes (squares)
— Edge between variable and

factor if the factor depends R ®

on that variable. x) | ¥1

* Makes the factors more O b
obvious. " »'\,

O s

 CPDs can be seen as factors. P\

Products of Factors

* Given two factors with different scopes, we can
calculate a new factor equal to their products.

¢product (213 U y) — ¢1 (CL‘) . ¢2 (y)

Products of Factors

* Given two factors with different scopes, we can
calculate a new factor equal to their products.

A|B|C|ds(A, B, C)
0[{0]|0
0|01
A BI|C 0|10
0 0l 0 0|11
0 0l 1 = 11010
1 110 1101
1 111 11110
1111

Factor Marginalization

 Given Xand Y (Y ¢ X), we can turn a factor
®(X, Y) into a factor (X) via marginalization:

P(X) = > X,y

yeVal(Y)

Factor Marginalization

 Given Xand Y (Y ¢ X), we can turn a factor
®(X, Y) into a factor Y(X) via marginalization:

P(X) = > X,y

A [C |Y(A, Q)
05 0.4 0 |0 0.9
05 0.6 0 |1 1.1
c 1 (0 0.3
S e e R “summing out” B 1 1 17

Factor Marginalization

 Given Xand Y (Y ¢ X), we can turn a factor
®(X, Y) into a factor Y(X) via marginalization:

P(X) = > X,y

A (B [Y(A, B)
0.5 04 0 |0 1
05 0.6 0 2 1
B | 1 (0 1
S e e R “summing out” C 1 1 1
0 1 0 0
1 1

Factor Marginalization

 Given Xand Y (Y ¢ X), we can turn a factor
®(X, Y) into a factor (X) via marginalization:

P(X) = > X,y

yeVal(Y)

» We can refer to this new factor by 5, ¢.

Marginalizing Everything?

* Take a Markov network’s “product factor” by
multiplying all of its factors.

* Sum out all the variables (one by one).

 What do you get?

Factors Are Like Numbers

e Products are commutative: ¢, - ¢, =P, - P,

* Products are associative:
(¢1' cl)z) | ¢3 = ¢1' (cl)z C|)3)
 Sums are commutative: 3,5 . $=53,5, P

* Distributivity of multiplication over summation:

X ¢ Scope(¢1) = qu $2) =1+ > b
X

6@“6(3\

«=* Eliminating One Variable

Input: Set of factors @, variable Z to eliminate

Output: new set of factors W

Let @’ = {b € @ | Z € Scope(P)}
Let W ={p c D | Z & Scope(P)}
Let Y be 3, TTgeq P

Return W u {{}

s Wb

Example

e Query: s a
P(Flu | runny nose)

S.I. |

e Let’s eliminate H.

Example

* Query:
P(Flu | runny nose)

e Let’s eliminate H.

b

b,

d) FAS

L

d)SR /Gb\ d)SH

\

O

Example | ¢, o

* Query: o) b B
P(Flu | runny nose) |

S.I.

* Let’s eliminate H. Psn Psn

1. (D’ - {¢SH} ;/R.N.\;
_/

2- LIJ = {d)FI cl)Ai ¢FAS) cI)SR}

3' l'IJ = ZH ﬂ(l)e([)' d)

4. Return W u {Y}

Example | ¢, o

* Query: o) b B
P(Flu | runny nose) |

S.I.

* Let’s eliminate H. Psn Psn

1. (D’ - {¢SH} ;/R.N.\;
\aer’

2- LIJ = {d)FI cl)Ai ¢FAS) cI)SR}

3. LIJ = ZH cI)s|-|

4. Return W u {Y}

Example ¢,

e

* Query:
P(Flu | runny nose)

e Let’s eliminate H.

. (D’ - {¢SH}

W= {¢F' cl)A' ¢FAS' ¢SR}

1
2.
3. LIJ = ZH cIDSH
4. Return W u {Y}

b,

b /GD\

Dt

P(H | S)

0

1

0 1
08 0.1 > 0 1.0
02 09 1 1.0

\

O

S P(S)

Examp|e Oof b,

* Query:
P(Flu | runny nose)

e Let’s eliminate H.

. (D’ - {¢SH}

W= {¢F' cl)A' ¢FAS' ¢SR}

1
2.
3. LIJ = ZH cIDSH
4. Return W u {Y}

Bl
Py /®\ b

P(H | S)

b(S)

0

1.0

1

0 1 S
0.8 0.1 > 0
0.2 0.9 1

1.0

Example | ¢, b,

o Query: ‘,/ N ; d)FAS ‘ o
P(Flu | runny nose) ~—" f

S.I. |

e Let’s eliminate H. ¢AA5R

 We can actually ignore the
new factor, equivalently just "

deleting H!

— Why? S b(S)

— In some cases eliminating a 0 1.0
variable is really easy! 1 1.0

e‘a\

aeS® Variable Elimination

Input: Set of factors @, ordered list of variables Z
to eliminate

Output: new factor Y
1. ForeachZ € Z(in order):

— Let @ = Eliminate-One(®, Z,)
2. Return TTyee P

Example ¢,

* Query:
P(Flu | runny nose)

* His already eliminated.
e Let’s now eliminate S.

Flu , d)FAS ; .

=T
Dy
7\
| RAN.

b,

All

Example | ¢,

° Query: F|u Pras
P(Flu | runny nose) |
* Eliminating S. Psr
. @ = {Pgp, P} / o)
__/

1
2. W= {d)Fr CI)A}

3. Ppar =25 ﬂcl)eCD’ ¢
4. Return W u {Y .}

b,

All.

Example | ¢,

* Query:
P(Flu | runny nose)

e Eliminating S.
. D= {¢SR’ ¢FAS}
W= {d)Fr CI)A}

1

2

3. Wear = 25 Pog - Pras
4. Return W u {Y . .}

Flu

Do

o
. RN. |

N

d)FAS ;

S.I.

b,

All.

Example | ¢,

* Query:
P(Flu | runny nose)

e Eliminating S.
. D= {¢SR’ ¢FAS}
W= {d)Fr CI)A}

1

2

3. Wear = 25 Pog - Pras
4. Return W u {Y . .}

Flu |

l'|JFAR

b,

All.

Example | ¢, b,

e Query: o -
P(Flu | runny nose) — Y.

* Finally, eliminate A.

Example | ¢,

e Query: B
P(Flu | runny nose) e

e Eliminating A.

. @ ={D,, Pragt / o)
W={d

1
2
3. l-|J|:R = ZA cI)A ' LIJFAR
4. Return W U {Y}

b,

All.

Example | ¢,

* Query: -
P(Flu | runny nose)
LIJFR
e Eliminating A. |
. (D’ —) { RN\I
CNEI 0

W={¢p}

1
2
3. l-|J|:R = ZA cI)A ' LIJFAR
4. Return W U {Y}

Markov Chain, Again ‘

e Earlier, we eliminated
A, then B, then C.

P(BIA) [0 |1
° o
1

P(C|B) |0 |1
0

PD|C) |0 |1 G
0
1

Markov Chain, Again ‘

* Now let’s start by

eliminating C. z(BlA) 0 1 G
1

P(C|B) |0 |1

0

PD|C) [0 |1 G
0
1

 Now let’s start by

Markov Chain, Again G

eliminating C.

P(C |B)

0

1

0 |1

P(D |C)

0

1

B|c|D| &'B,C D)
o|o|o
0o(0]|1
0o[1]0
0|1]1
1|0]o0
1101
1|10
1111

-
o
O

Markov Chain, Again

 Now let’s start by
eliminating C.

B|C|D| ¢'(BC D)
0/0]0
z 0ol0]|1 B|D y(B, D)
Cloj1]o _ 0|0
011 01
1/01]0 110
1/0|1 111
1110
1011

n Oan e O

e Eliminating B will be
similarly complex.

(B, D)

Variable Elimination: Comments

* Can prune away all non-ancestors of the query
variables.

* Ordering makes a difference!

* Works for Markov networks and Bayesian
networks.

— Factors need not be CPDs and, in general, new
factors won’t be.

