## **Graphical Models**

Lecture 9: Variable Elimination

Andrew McCallum mccallum@cs.umass.edu

Thanks to Noah Smith and Carlos Guestrin for some slide materials.

#### Probabilistic Inference

- Assume we are given a graphical model.
- Want:

$$P(X \mid E = e) = \frac{P(X, E = e)}{P(E = e)}$$

$$\propto P(X, E = e)$$

$$= \sum_{y \in Val(Y)} P(X, E = e, Y = y)$$

## Example

Query:P(Flu | runny nose)

P(F) Flu P(A) All.

P(S | F, A) S.I.

P(R | S) R.N. P(H | S) H.

 Requires accounting for all possibilities for A, S, and H.

$$P(F \mid R) = \frac{P(F, R)}{P(R)}$$

$$= \frac{\sum_{A,S,H} P(F, A, S, R, H)}{\sum_{F,A,S,H} P(F, A, S, R, H)}$$

#### Probabilistic Inference

- In general it is intractable.  $\odot$
- In practice we can often do it anyway.
- Today: Exact inference via variable elimination.

#### Later:

- Approximate inference
- Maximum a posteriori inference (find the best explanation, not necessarily the whole distribution)

#### Decision Version of Inference

Given a Bayesian network over X, and a value x
 ∈ Val(X<sub>i</sub>) decide whether P(X<sub>i</sub> = x) > 0.

- Witness is full set of random variables x such that x<sub>i</sub> = x.
- Can verify that P(X = x) > 0 in polynomial time.
- Therefore this problem is in NP.

#### Reduction from 3-SAT

 Given a 3-SAT formula, construct a Bayesian network and variable X such that the decision inference solution yields a 3-SAT solution.

## 3-SAT Bayesian Network



## 3-SAT Bayesian Network



binary chaining (AND)

## 3-SAT Bayesian Network

• P(X = 1 | Q = q) if and only if q is a satisfying assignment for the 3-SAT problem.

- P(X = 1) is the number of satisfying assignments divided by  $2^n$ .
  - If positive, the formula is satisfiable.

#### The Real Inference Problem

Given a Bayesian network over X, and a value x
 ∈ Val(X<sub>i</sub>), compute P(X<sub>i</sub> = x).

- Similar to problems of the form "how many solutions satisfy the requirements?"
- This problem is #P-complete.
  - #P-complete problems: if a poly-time algorithm exists, then P = PH and therefore P = NP.

# Exact inference is hopeless in general.

## Approximations: Absolute Error

Let ρ denote an estimate:

$$|P(\boldsymbol{X} = \boldsymbol{x} \mid \boldsymbol{E} = \boldsymbol{e}) - \rho| \leq \epsilon$$

- Inappropriate for rare events!
- Approximating P(X = x) up to some fixed absolute error  $\varepsilon$  has a randomized polynomial time algorithm.
- But this goes away with evidence for  $\varepsilon$  < 0.5.

## Approximations: Relative Error

$$\frac{\rho}{1+\epsilon} \le P(\boldsymbol{X} = \boldsymbol{x} \mid \boldsymbol{E} = \boldsymbol{e}) \le \rho(1+\epsilon)$$

• Given relative error  $\varepsilon$ , the problem of finding an estimate  $\rho$  with that relative error (i.e., satisfying the bounds above) is NP-hard.

Let's just try it anyway.

 Let's calculate P(B) from things we have.



 Let's calculate P(B) from things we have.

$$P(B) = \sum_{a \in Val(A)} P(A = a)P(B \mid A = a)$$



 Let's calculate P(B) from things we have.

$$P(B) = \sum_{a \in Val(A)} P(A = a)P(B \mid A = a)$$

 Note that C and D do not matter.



 Let's calculate P(B) from things we have.

$$P(B) = \sum_{a \in Val(A)} P(A = a)P(B \mid A = a)$$







 We now have a Bayesian network for the marginal distribution P(B, C, D).



 We can repeat the same process to calculate P(C).

$$P(C) = \sum_{b \in Val(B)} P(B = b)P(C \mid B = b)$$

We already have P(B)!



 We can repeat the same process to calculate P(C).

$$P(C) = \sum_{b \in Val(B)} P(B = b)P(C \mid B = b)$$







- We now have P(C, D).
- Marginalizing out A and B happened in two steps, and we seem to be exploiting the Bayesian network structure.



Last step to get P(D):

$$P(D) = \sum_{c \in Val(C)} P(C = c)P(D \mid C = c)$$

| 0 |   | ' | P(D   C) | 0 | 1 |
|---|---|---|----------|---|---|
| 1 |   |   | 0        |   |   |
|   | _ |   | 1        |   |   |

| 0 |  |
|---|--|
| 1 |  |

D

- Notice that the same step happened for each random variable:
  - We created a new CPD over a variable and its "successor"
  - We summed out (marginalized) the variable.

$$P(D) = \sum_{a \in Val(A)} \sum_{b \in Val(B)} \sum_{c \in Val(C)} P(A = a) P(B = b \mid A = a) P(C = c \mid B = b) P(D \mid C = c)$$

$$= \sum_{c \in Val(C)} P(D \mid C = c) \sum_{b \in Val(B)} P(C = c \mid B = b) \sum_{a \in Val(A)} P(A = a) P(B = b \mid A = a)$$

#### That Was Variable Elimination

- We reused computation from previous steps and avoided doing the same work more than once.
  - Dynamic programming!
- We exploited the Bayesian network structure (each subexpression only depends on a small number of variables).
- Exponential blowup avoided!
- But: is there a general technique for any graphical model?

#### What's Next?

- Some machinery
- Variable elimination algorithm
- Analysis

Lecture 5!

## **Factor Graphs**

- Bipartite graph
  - Variable nodes (circles)
  - Factor nodes (squares)
  - Edge between variable and factor if the factor depends on that variable.
- Makes the factors more obvious.
- CPDs can be seen as factors.



#### **Products of Factors**

 Given two factors with different scopes, we can calculate a new factor equal to their products.

$$\phi_{product}(\boldsymbol{x} \cup \boldsymbol{y}) = \phi_1(\boldsymbol{x}) \cdot \phi_2(\boldsymbol{y})$$

#### **Products of Factors**

• Given two factors with different scopes, we can calculate a new factor equal to their products.

| Α | В | φ <sub>1</sub> (A, B) |
|---|---|-----------------------|
| 0 | 0 | 30                    |
| 0 | 1 | 5                     |
| 1 | 0 | 1                     |
| 1 | 1 | 10                    |

| В | С | ф <sub>2</sub> (В, С) |
|---|---|-----------------------|
| 0 | 0 | 100                   |
| 0 | 1 | 1                     |
| 1 | 0 | 1                     |
| 1 | 1 | 100                   |

| Α | В | C | ф <sub>3</sub> (A, B, C) |
|---|---|---|--------------------------|
| 0 | 0 | 0 | 3000                     |
| 0 | 0 | 1 | 30                       |
| 0 | 1 | 0 | 5                        |
| 0 | 1 | 1 | 500                      |
| 1 | 0 | 0 | 100                      |
| 1 | 0 | 1 | 1                        |
| 1 | 1 | 0 | 10                       |
| 1 | 1 | 1 | 1000                     |

Given X and Y (Y ∉ X), we can turn a factor
 φ(X, Y) into a factor ψ(X) via marginalization:

$$\psi(\boldsymbol{X}) = \sum_{y \in Val(Y)} \phi(\boldsymbol{X}, y)$$

Given X and Y (Y ∉ X), we can turn a factor
 φ(X, Y) into a factor ψ(X) via marginalization:

$$\psi(\boldsymbol{X}) = \sum_{y \in Val(Y)} \phi(\boldsymbol{X}, y)$$

| P(C   A, B) | 0, 0 | 0, 1 | 1, 0 | 1,1 |  |
|-------------|------|------|------|-----|--|
| 0           | 0.5  | 0.4  | 0.2  | 0.1 |  |
| 1           | 0.5  | 0.6  | 0.8  | 0.9 |  |

| Α | В | С | ψ   |
|---|---|---|-----|
| 0 | 0 | 0 | 0.5 |
| 0 | 0 | 1 | 0.5 |
| 0 | 1 | 0 | 0.4 |
| 0 | 1 | 1 | 0.6 |
| 1 | 0 | 0 | 0.2 |
| 1 | 0 | 1 | 0.8 |
| 1 | 1 | 0 | 0.1 |
| 1 | 1 | 1 | 0.9 |

"summing out" B

| Α | С | ψ(A, C) |
|---|---|---------|
| 0 | 0 | 0.9     |
| 0 | 1 | 1.1     |
| 1 | 0 | 0.3     |
| 1 | 1 | 1.7     |

Given X and Y (Y ∉ X), we can turn a factor
 φ(X, Y) into a factor ψ(X) via marginalization:

$$\psi(\boldsymbol{X}) = \sum_{y \in Val(Y)} \phi(\boldsymbol{X}, y)$$

| P(C   A, B) | 0, 0 | 0, 1 | 1, 0 | 1,1 | _ |
|-------------|------|------|------|-----|---|
| 0           | 0.5  | 0.4  | 0.2  | 0.1 |   |
| 1           | 0.5  | 0.6  | 0.8  | 0.9 |   |

| Α | В | С | ψ   |
|---|---|---|-----|
| 0 | 0 | 0 | 0.5 |
| 0 | 0 | 1 | 0.5 |
| 0 | 1 | 0 | 0.4 |
| 0 | 1 | 1 | 0.6 |
| 1 | 0 | 0 | 0.2 |
| 1 | 0 | 1 | 0.8 |
| 1 | 1 | 0 | 0.1 |
| 1 | 1 | 1 | 0.9 |

"summing out" C

| Α | В | ψ(A, B) |
|---|---|---------|
| 0 | 0 | 1       |
| 0 | 1 | 1       |
| 1 | 0 | 1       |
| 1 | 1 | 1       |

Given X and Y (Y ∉ X), we can turn a factor
 φ(X, Y) into a factor ψ(X) via marginalization:

$$\psi(\boldsymbol{X}) = \sum_{y \in Val(Y)} \phi(\boldsymbol{X}, y)$$

• We can refer to this new factor by  $\sum_{\gamma} \Phi$ .

## Marginalizing Everything?

- Take a Markov network's "product factor" by multiplying all of its factors.
- Sum out all the variables (one by one).

What do you get?

#### Factors Are Like Numbers

- Products are commutative:  $\phi_1 \cdot \phi_2 = \phi_2 \cdot \phi_1$
- Products are associative:

$$(\varphi_1 \cdot \varphi_2) \cdot \varphi_3 = \varphi_1 \cdot (\varphi_2 \cdot \varphi_3)$$

- Sums are commutative:  $\sum_{X} \sum_{Y} \Phi = \sum_{Y} \sum_{X} \Phi$
- Distributivity of multiplication over summation:

$$X \notin \text{Scope}(\phi_1) \Rightarrow \sum_{X} (\phi_1 \cdot \phi_2) = \phi_1 \cdot \sum_{X} \phi_2$$

## Eliminating One Variable

Input: Set of factors  $\Phi$ , variable Z to eliminate

Output: new set of factors  $\Psi$ 

- 1. Let  $\Phi' = \{ \varphi \in \Phi \mid Z \in Scope(\varphi) \}$
- 2. Let  $\Psi = \{ \varphi \in \Phi \mid Z \notin Scope(\varphi) \}$
- 3. Let  $\psi$  be  $\sum_{Z} \prod_{\Phi \in \Phi'} \Phi$
- 4. Return  $\Psi \cup \{\psi\}$

#### Example

Query:P(Flu | runny nose)

• Let's eliminate H.



Query:P(Flu | runny nose)

• Let's eliminate H.



- Query:P(Flu | runny nose)
- Let's eliminate H.

1. 
$$\Phi' = \{ \Phi_{SH} \}$$

2. 
$$\Psi = \{ \varphi_F, \varphi_A, \varphi_{FAS}, \varphi_{SR} \}$$

3. 
$$\psi = \sum_{H} \prod_{\Phi \in \Phi'} \Phi$$



- Query:P(Flu | runny nose)
- Let's eliminate H.

1. 
$$\Phi' = \{ \Phi_{SH} \}$$

2. 
$$\Psi = \{ \varphi_F, \varphi_A, \varphi_{FAS}, \varphi_{SR} \}$$

3. 
$$\psi = \sum_{H} \Phi_{SH}$$



- Query:P(Flu | runny nose)
- Let's eliminate H.

1. 
$$\Phi' = \{ \Phi_{SH} \}$$

2. 
$$\Psi = \{ \varphi_F, \varphi_A, \varphi_{FAS}, \varphi_{SR} \}$$

3. 
$$\psi = \sum_{H} \Phi_{SH}$$

| P(H   S) | 0   | 1   |
|----------|-----|-----|
| 0        | 0.8 | 0.1 |
| 1        | 0.2 | 0.9 |



| _ | <u> </u> |
|---|----------|
|   | 0        |
|   | 1        |

| S | ψ(S) |  |
|---|------|--|
| 0 | 1.0  |  |
| 1 | 1.0  |  |

- Query:P(Flu | runny nose)
- Let's eliminate H.

1. 
$$\Phi' = \{ \Phi_{SH} \}$$

2. 
$$\Psi = \{ \varphi_F, \varphi_A, \varphi_{FAS}, \varphi_{SR} \}$$

3. 
$$\psi = \sum_{H} \Phi_{SH}$$

| P(H   S) | 0   | 1   |
|----------|-----|-----|
| 0        | 0.8 | 0.1 |
| 1        | 0.2 | 0.9 |



| N | 5 | Ψ(S) |
|---|---|------|
|   | 0 | 1.0  |
|   | 1 | 1.0  |

Query:P(Flu | runny nose)

- Let's eliminate H.
- We can actually ignore the new factor, equivalently just deleting H!
  - Why?
  - In some cases eliminating a variable is really easy!



| S | ψ(S) |
|---|------|
| 0 | 1.0  |
| 1 | 1.0  |

#### Variable Elimination

Input: Set of factors  $\Phi$ , ordered list of variables Z to eliminate

Output: new factor ψ

- 1. For each  $Z_i \in \mathbf{Z}$  (in order):
  - Let  $\Phi$  = Eliminate-One( $\Phi$ ,  $Z_i$ )
- 2. Return  $\prod_{\Phi \in \Phi} \Phi$

Query:P(Flu | runny nose)

- H is already eliminated.
- Let's now eliminate S.



- Query:P(Flu | runny nose)
- Eliminating S.

1. 
$$\Phi' = \{ \varphi_{SR}, \varphi_{FAS} \}$$

2. 
$$\Psi = \{ \varphi_F, \varphi_A \}$$

3. 
$$\psi_{FAR} = \sum_{S} \prod_{\Phi \in \Phi'} \Phi$$

4. Return  $\Psi \cup \{\psi_{FAR}\}$ 



- Query:P(Flu | runny nose)
- Eliminating S.

1. 
$$\Phi' = \{ \Phi_{SR}, \Phi_{FAS} \}$$

2. 
$$\Psi = \{ \varphi_F, \varphi_A \}$$

3. 
$$\psi_{FAR} = \sum_{S} \varphi_{SR} \cdot \varphi_{FAS}$$

4. Return  $\Psi \cup \{\psi_{FAR}\}$ 



- Query:P(Flu | runny nose)
- Eliminating S.

1. 
$$\Phi' = \{ \Phi_{SR}, \Phi_{FAS} \}$$

2. 
$$\Psi = \{ \varphi_F, \varphi_A \}$$

3. 
$$\psi_{FAR} = \sum_{S} \varphi_{SR} \cdot \varphi_{FAS}$$

4. Return  $\Psi \cup \{\psi_{FAR}\}$ 



Query:P(Flu | runny nose)

• Finally, eliminate A.



- Query:P(Flu | runny nose)
- Eliminating A.

1. 
$$\Phi' = \{ \varphi_A, \varphi_{FAR} \}$$

2. 
$$\Psi = \{ \varphi_F \}$$

3. 
$$\psi_{FR} = \sum_{A} \varphi_{A} \cdot \psi_{FAR}$$



- Query:P(Flu | runny nose)
- Eliminating A.

1. 
$$\Phi' = \{ \varphi_A, \varphi_{FAR} \}$$

2. 
$$\Psi = \{ \Phi_{F} \}$$

3. 
$$\psi_{FR} = \sum_{A} \varphi_{A} \cdot \psi_{FAR}$$





• Earlier, we eliminated A, then B, then C.



 Now let's start by eliminating C.



 Now let's start by eliminating C.

| P(C   B) | 0 | 1 |
|----------|---|---|
| 0        |   |   |
| 1        |   |   |

| P(D   C) | 0 | 1 |
|----------|---|---|
| 0        |   |   |
| 1        |   |   |

=

| В | U                          | D                                      | ф'(В, С, D)                                                                                                                                                                   |
|---|----------------------------|----------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0 | 0                          | 0                                      |                                                                                                                                                                               |
| 0 | 0                          | 1                                      |                                                                                                                                                                               |
| 0 | 1                          | 0                                      |                                                                                                                                                                               |
| 0 | 1                          | 1                                      |                                                                                                                                                                               |
| 1 | 0                          | 0                                      |                                                                                                                                                                               |
| 1 | 0                          | 1                                      |                                                                                                                                                                               |
| 1 | 1                          | 0                                      |                                                                                                                                                                               |
| 1 | 1                          | 1                                      |                                                                                                                                                                               |
|   | 0<br>0<br>0<br>0<br>1<br>1 | 0 0<br>0 0<br>0 1<br>0 1<br>1 0<br>1 0 | 0       0       0         0       0       1         0       1       0         0       1       1         1       0       0         1       0       1         1       1       0 |



Α

 Now let's start by eliminating C.

|          | В | С | D | ф'(В, С, D) |
|----------|---|---|---|-------------|
|          | 0 | 0 | 0 |             |
| Σ        | 0 | 0 | 1 |             |
| <b>C</b> | 0 | 1 | 0 |             |
|          | 0 | 1 | 1 |             |
|          | 1 | 0 | 0 |             |
|          | 1 | 0 | 1 |             |
|          | 1 | 1 | 0 |             |
|          | 1 | 1 | 1 |             |
|          | 1 | 1 | 1 |             |

| В | D | ψ(B, D) |
|---|---|---------|
| 0 | 0 |         |
| 0 | 1 |         |
| 1 | 0 |         |
| 1 | 1 |         |



• Eliminating B will be similarly complex.

| В | D | ψ(B, D) |
|---|---|---------|
| 0 | 0 |         |
| 0 | 1 |         |
| 1 | 0 |         |
| 1 | 1 |         |



#### Variable Elimination: Comments

- Can prune away all non-ancestors of the query variables.
- Ordering makes a difference!
- Works for Markov networks and Bayesian networks.
  - Factors need not be CPDs and, in general, new factors won't be.