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Thanks to Noah Smith and Carlos Guestrin for some slide materials.



Administration

e HW#2 due date



Learning

e Bayesian Networks can be built by hand.

— Experts’ time is expensive.

— There may not be any experts.

— Large models are unwieldly.

— Knowledge doesn’t always transfer across domains.
* Data is often cheap (now).

— Remember that this was not always the case!



Notation

 P*isthe true distribution from which our
samples were drawn.

o x1) x2)  xM drawn IID from P*.



Goal of Learning?

* Density estimation:
Return a model M that precisely captures P*

* Prediction:
Optimize quality of answers to specific queries,
e.qg. P(xi| xj,xx)

 Knowledge discovery:
Reveal facts about the domain.



Learning Bayesian Networks

Known structure

Unknown
structure

Fully observed
data

@ (today)

hard (later)

Missing data

hard (later)

very hard




IMILE Basics

Likelihood function

Sufficient statistic: vector representation of
the data that summarizes everything you need
to compute likelihood

— If t(dataset,) = t(dataset,) then the likelihood
functions are the same.

For distributions over one random variable,
this is usually not hard.

What about Bayesian networks?



Key ldea

* For known structure and fully observed data,
MLE for a Bayesian network whose CPDs have

disjoint parameters
equates to
MLE for each of its CPDs.

e That’s it!
e Why?



Decomposability

arg max

OviLE

-
-

[P(x =2"]0)

arg max

¢
: —[ HP(Xl = x,gt) | Parents(X;) = Parents(x;), 0)
t

= arg mgxz Zlog P(X; = :cgt) | Parents(X;) = Parents(z;), 0)
If the parameters O are partitioned by CPT ...

_ log P(X; =2 | P X;)=P i); 0;
argmgxzi:; og P( x;’ | Parents(X;) arents(z;), 0;)

(swap order of sums)



Decomposability

Example
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<CL(M)7 b(M)a C(M)7 d(M)>

0 = (04,0p514,004,0p|C)



Decomposability

O = arg mgXZlog P(A = a(t), B = b(t)7 C = C(t)7 D — d(t))
t




Decomposability

O = arg mgXZlog P(A = a(t), B = b(t)7 C = C(t)7 D — d(t))
t

= argmnglogP(A:a(t))+1ogP(B:b(t) | A:a(t))
t

+log P(C=c® | A=aP)+1og P(D =dP | C = c®




Decomposability

O = arg mgétXZlog P(A = a(t), B = b(t)7 C = c(t)7 D — d(t))
t

= argmnglogP(A = a(t)) +log P(B = p(®) | A= a(t))
t

+logP(C=cP | A=a®)+1logP(D =d® | C = V)
— — a® — p® — q®
arg mnglog P(A=a'")+ glog P(B=b"|A=a")

¢
+ ZlogP(C =c® | A=a)+ ZlogP(D =dY | C =cW)
t ¢




Decomposability

O = arg mnglog P(A=a¥,B=bW C =" D=d")
¢

= arg mnglog P(A=a®)4+1logP(B=0b" | A=aW)
¢

+logP(C=cY | A=a®)4+1logP(D=dY | C =)
— = ) — M A= q®
argmnglogPA a +ZlogPB b’ | A=a'")

—l—ZlogP C=cY|A=a¥) +ZlogP(D =db | C =)
¢

= log P(A = a¥ log P(B=0b® | A=qaW
<argr%ix; og P( a )argmaxz og | a'"’),

0B|a

argmaleogP (C=cb | A=a), argmaleogP (D=dY|C = c(t))>

O0c|a Op|c




Deriving the MLE

Many distributions have a closed form for the
MLE.

Solve (analytically, and with constraints), Vvj:

0
00, glogP(Xi - xz(t) | Parents(X;) = Parents(azz(.t))) - 0

Typically convex.
Eg: Gaussian, binomial, multinomial.

Today: Binomial and multinomial,
with Lagrange Multipliers.



Binomial Distribution

* P(Y=heads)=06, P(Y=tails)=1-6
* “1ID” assumption

— Each flip is independent of the others.
— All flips are distributed identically.

P(Y |0,N) = pFtheads(Y) (1-— 6))#tails(Y)




Maximum Likelihood Estimation

* Data: sequence Y of flip outcomes
* Assumption: binomial distribution; flips are 11D
 Goal: select©

e Maximum likelihood estimation: treat this as
an optimization problem over 0

HMLE arg m@ax P(Y ‘ (9)

= argmax log P(Y | 0)



MLE for the Binomial

HMLE arg Il’lea,X P(Y ‘ (9)

= argmax log P(Y | 0)

P(Y | 0, N) = g#heads(Y) o (1 _ g)#tails(Y)

arg max #heads(Y ) log 6 + #tails(Y ) log(1 — )
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Deriving the Binomial MLE

e Board work
e Use a little calculus...



Deriving the Multinomial MLE

* Board work
* Introduce Lagrange Multipliers

e Use them to solve for MLE of a multinomial.



Deriving Functional Form for
Maximum Entropy Classifiers

e Board work

* Lagrange again...



Generalized Linear Model

e Score is defined as a linear function of X:

f(X) =w0+zwin’

Z Z=1(X) isa

random variable

* Probability distribution over binary value Y is
defined by:

P(Y =1) = sigmoid(f(X))
e Sample.

sigmoid(z) = g
62




Markov Networks as a
Generalized Linear Model

* Sigmoid equates to binary output log-linear
model.

 More generally, multinomial logit:
take a linear score (Z in lecture 3),
exponentiate, and normalize (Z in Gibbs dist.)

— Don’t confuse the Zs.

* The generalized linear model we used for CPDs
Is a log-linear distribution.



