Graphical Models

Lecture 5:

Parameter Estimation & Lagrange Multipliers

Andrew McCallum mccallum@cs.umass.edu

Thanks to Noah Smith and Carlos Guestrin for some slide materials.

Administration

• HW#2 due date

Learning

- Bayesian Networks can be built by hand.
 - Experts' time is expensive.
 - There may not be any experts.
 - Large models are unwieldly.
 - Knowledge doesn't always transfer across domains.
- Data is often cheap (now).
 - Remember that this was not always the case!

Notation

- P* is the true distribution from which our samples were drawn.
- $\mathbf{x}^{(1)}$, $\mathbf{x}^{(2)}$, ..., $\mathbf{x}^{(M)}$ drawn IID from P*.

Goal of Learning?

Density estimation:

Return a model M that precisely captures P*

• Prediction:

Optimize quality of answers to specific queries, e.g. $P(x_i|x_j,x_k)$

Knowledge discovery:

Reveal facts about the domain.

Learning Bayesian Networks

	Known structure	Unknown structure
Fully observed data	(today)	hard (later)
Missing data	hard (later)	very hard

MLE Basics

- Likelihood function
- Sufficient statistic: vector representation of the data that summarizes everything you need to compute likelihood
 - If τ (dataset₁) = τ (dataset₂) then the likelihood functions are the same.
- For distributions over one random variable, this is usually not hard.
- What about Bayesian networks?

Key Idea

For known structure and fully observed data,
 MLE for a Bayesian network whose CPDs have disjoint parameters

equates to

MLE for each of its CPDs.

- That's it!
- Why?

$$\theta_{\text{MLE}} = \arg \max_{\theta} \prod_{t} P(X = x^{(t)} | \theta)$$

$$= \arg \max_{\theta} \prod_{t} \prod_{i} P(X_i = x_i^{(t)} | \text{Parents}(X_i) = \text{Parents}(x_i), \theta)$$

$$= \arg \max_{\theta} \sum_{t} \sum_{i} \log P(X_i = x_i^{(t)} | \text{Parents}(X_i) = \text{Parents}(x_i), \theta)$$

If the parameters $\boldsymbol{\theta}$ are partitioned by CPT ...

=
$$\arg \max_{\boldsymbol{\theta}} \sum_{i} \sum_{t} \log P(X_i = x_i^{(t)} \mid \text{Parents}(X_i) = \text{Parents}(x_i), \boldsymbol{\theta}_i)$$

(swap order of sums)

Example

$$\langle a^{(1)}, b^{(1)}, c^{(1)}, d^{(1)} \rangle$$

 $\langle a^{(2)}, b^{(2)}, c^{(2)}, d^{(2)} \rangle$
 \vdots
 $\langle a^{(M)}, b^{(M)}, c^{(M)}, d^{(M)} \rangle$

$$oldsymbol{ heta} = \langle oldsymbol{ heta}_A, oldsymbol{ heta}_{B|A}, oldsymbol{ heta}_{C|A}, oldsymbol{ heta}_{D|C}
angle$$

$$\begin{aligned} \pmb{\theta}_{\text{MLE}} &= \arg \max_{\pmb{\theta}} \sum_{t} \log P(A = a^{(t)}, B = b^{(t)}, C = c^{(t)}, D = d^{(t)}) \\ &= \arg \max_{\pmb{\theta}} \sum_{t} \log P(A = a^{(t)}) + \log P(B = b^{(t)} \mid A = a^{(t)}) \\ &\quad + \log P(C = c^{(t)} \mid A = a^{(t)}) + \log P(D = d^{(t)} \mid C = c^{(t)}) \\ &= \arg \max_{\pmb{\theta}} \sum_{t} \log P(A = a^{(t)}) + \sum_{t} \log P(B = b^{(t)} \mid A = a^{(t)}) \\ &\quad + \sum_{t} \log P(C = c^{(t)} \mid A = a^{(t)}) + \sum_{t} \log P(D = d^{(t)} \mid C = c^{(t)}) \\ &= \left\langle \arg \max_{\pmb{\theta}_{A}} \sum_{t} \log P(A = a^{(t)}), \arg \max_{\pmb{\theta}_{B\mid A}} \sum_{t} \log P(B = b^{(t)} \mid A = a^{(t)}), \right. \\ &\left. \arg \max_{\pmb{\theta}_{C\mid A}} \sum_{t} \log P(C = c^{(t)} \mid A = a^{(t)}), \right. \\ &\left. \arg \max_{\pmb{\theta}_{C\mid A}} \sum_{t} \log P(C = c^{(t)} \mid A = a^{(t)}), \right. \\ &\left. \arg \max_{\pmb{\theta}_{C\mid A}} \sum_{t} \log P(D = d^{(t)} \mid C = c^{(t)}) \right\rangle \end{aligned}$$

$$\begin{aligned} \pmb{\theta}_{\text{MLE}} &= \arg \max_{\pmb{\theta}} \sum_{t} \log P(A = a^{(t)}, B = b^{(t)}, C = c^{(t)}, D = d^{(t)}) \\ &= \arg \max_{\pmb{\theta}} \sum_{t} \log P(A = a^{(t)}) + \log P(B = b^{(t)} \mid A = a^{(t)}) \\ &+ \log P(C = c^{(t)} \mid A = a^{(t)}) + \log P(D = d^{(t)} \mid C = c^{(t)}) \\ &= \arg \max_{\pmb{\theta}} \sum_{t} \log P(A = a^{(t)}) + \sum_{t} \log P(B = b^{(t)} \mid A = a^{(t)}) \\ &+ \sum_{t} \log P(C = c^{(t)} \mid A = a^{(t)}) + \sum_{t} \log P(D = d^{(t)} \mid C = c^{(t)}) \\ &= \left\langle \arg \max_{\pmb{\theta}_{A}} \sum_{t} \log P(A = a^{(t)}), \arg \max_{\pmb{\theta}_{B \mid A}} \sum_{t} \log P(B = b^{(t)} \mid A = a^{(t)}), \right. \\ &\arg \max_{\pmb{\theta}_{C \mid A}} \sum_{t} \log P(C = c^{(t)} \mid A = a^{(t)}), \arg \max_{\pmb{\theta}_{B \mid C}} \sum_{t} \log P(D = d^{(t)} \mid C = c^{(t)}) \right\rangle \end{aligned}$$

$$\begin{aligned} \pmb{\theta}_{\text{MLE}} &= \arg \max_{\pmb{\theta}} \sum_{t} \log P(A = a^{(t)}, B = b^{(t)}, C = c^{(t)}, D = d^{(t)}) \\ &= \arg \max_{\pmb{\theta}} \sum_{t} \log P(A = a^{(t)}) + \log P(B = b^{(t)} \mid A = a^{(t)}) \\ &+ \log P(C = c^{(t)} \mid A = a^{(t)}) + \log P(D = d^{(t)} \mid C = c^{(t)}) \\ &= \arg \max_{\pmb{\theta}} \sum_{t} \log P(A = a^{(t)}) + \sum_{t} \log P(B = b^{(t)} \mid A = a^{(t)}) \\ &+ \sum_{t} \log P(C = c^{(t)} \mid A = a^{(t)}) + \sum_{t} \log P(D = d^{(t)} \mid C = c^{(t)}) \end{aligned}$$

$$= \left\langle \arg \max_{\boldsymbol{\theta}_{A}} \sum_{t} \log P(A = a^{(t)}), \arg \max_{\boldsymbol{\theta}_{B|A}} \sum_{t} \log P(B = b^{(t)} \mid A = a^{(t)}), \arg \max_{\boldsymbol{\theta}_{C|A}} \sum_{t} \log P(C = c^{(t)} \mid A = a^{(t)}), \arg \max_{\boldsymbol{\theta}_{D|C}} \sum_{t} \log P(D = d^{(t)} \mid C = c^{(t)}) \right\rangle$$

Deriving the MLE

- Many distributions have a closed form for the MLE.
- Solve (analytically, and with constraints), ∀j:

$$\frac{\partial}{\partial \theta_j} \sum_{t} \log P(X_i = x_i^{(t)} \mid \text{Parents}(X_i) = \text{Parents}(x_i^{(t)})) = 0$$

- Typically *convex*.
- Eg: Gaussian, binomial, multinomial.
- Today: Binomial and multinomial, with Lagrange Multipliers.

Binomial Distribution

- $P(Y = heads) = \theta$, $P(Y = tails) = 1 \theta$
- "IID" assumption
 - Each flip is independent of the others.
 - All flips are distributed identically.

$$P(\mathbf{Y} \mid \theta, N) = \theta^{\text{\#heads}(\mathbf{Y})} \times (1 - \theta)^{\text{\#tails}(\mathbf{Y})}$$

Maximum Likelihood Estimation

- Data: sequence Y of flip outcomes
- Assumption: binomial distribution; flips are IID
- Goal: select θ
- Maximum likelihood estimation: treat this as an optimization problem over θ

$$\theta_{\text{MLE}} = \arg \max_{\theta} P(\mathbf{Y} \mid \theta)$$

$$= \arg \max_{\theta} \log P(\mathbf{Y} \mid \theta)$$

MLE for the Binomial

$$\theta_{\text{MLE}} = \arg \max_{\theta} P(\boldsymbol{Y} \mid \theta)$$

$$= \arg \max_{\theta} \log P(\boldsymbol{Y} \mid \theta)$$

$$P(\mathbf{Y} \mid \theta, N) = \theta^{\text{\#heads}(\mathbf{Y})} \times (1 - \theta)^{\text{\#tails}(\mathbf{Y})}$$

$$\arg \max_{\theta} \# \operatorname{heads}(\boldsymbol{Y}) \log \theta + \# \operatorname{tails}(\boldsymbol{Y}) \log (1 - \theta)$$

MLE for the Binomial

Deriving the Binomial MLE

- Board work
- Use a little calculus...

Deriving the Multinomial MLE

- Board work
- Introduce Lagrange Multipliers
- Use them to solve for MLE of a multinomial.

Deriving Functional Form for Maximum Entropy Classifiers

- Board work
- Lagrange again...

Generalized Linear Model

Score is defined as a linear function of X:

$$f(\boldsymbol{X}) = w_0 + \sum_i w_i X_i$$

Z = f(X) is a random variable

 Probability distribution over binary value Y is defined by:

$$P(Y = 1) = \operatorname{sigmoid}(f(X))$$

Sample Y.

From lecture 3!

$$\operatorname{sigmoid}(z) = \frac{e^z}{1 + e^z}$$

Markov Networks as a Generalized Linear Model

- Sigmoid equates to binary output log-linear model.
- More generally, multinomial logit: take a linear score (Z in lecture 3), exponentiate, and normalize (Z in Gibbs dist.)
 - Don't confuse the Zs.
- The generalized linear model we used for CPDs is a log-linear distribution.