Graphical Models

Lecture 5:

Template-Based Representations

Andrew McCallum mccallum@cs.umass.edu

Thanks to Noah Smith and Carlos Guestrin for some slide materials.

Administration

- Homework #3 won't go out until early March.
 Push back HW#2 due date?
- Lagrange Multipliers?
- Calendar.

BN with Repeated Structure

Plate Model

"Unrolled" Ground Network

Ground network

Students and their Grades

Example: A = student, B = grade

Student, Course, Grade, Difficulty

Each student takes only one course

Example: A_1 = course difficulty, A_2 = student aptitude for the area, B = grade

Student, Course, Grade, Difficulty

Multiple courses per student

Example: A_1 = assignment difficulty, A_2 = intelligence, B = grade

Plate Models: Limitations and Alternatives

- Limitations:
 - can't have edges between two "copies" of the same variable,
 (e.g. *position* a time t depends on *position* at time time t-1)
 - can't have edges between particular pairs selected by some other relation, (e.g. Genotype(U₁) depends on Genotype(U₂), where U₂ is mother of U₁.
- Alternatives
 - Dynamic Bayesian Networks (DBNs)
 - Specific to repetitions over time
 - Probabilistic relational models
 - More flexible; see K&F 6.4.2.

Temporal Models

- X takes different values at each (discrete) time step.
 - $\mathbf{X}^{(t)}$ is the random variable at time t
- Markov Assumption: $X^{(t+1)} \perp \{X^{(0)}, ..., X^{(t-1)}\} \mid X^{(t)}$
- Stationary Assumption (aka time invariant or homogeneous)
 P(X^(t+1) | X^(t)) is the same for all t.
- Can use conditional Bayesian network to define
 P(X^(t+1) | X^(t))

Hidden Markov Model

2-time-slice conditional BN

unrolled or ground Bayesian network

Dynamic Bayesian Network

- Bayesian network over X⁽⁰⁾, conditional Bayesian network for X^(t+1) given X^(t) (2-time-slice)
 - HMM is a special case.
 - Kalman filter (linear dynamical system) is a special case.

Example: DBN for vehicle position

Unrolled over 3 steps

Dynamic Bayesian Networks

Probabilistic Relational Models

- Contingent Dependency
 - specifies the context in which some dependency holds, with a "guard"—a formula that must hold for the dependency to be applicable.
 - e.g. Location(V) depends on Location(U) contingent on Precedes(U,V)
 - e.g. Genotype(V) depends on Genotype(U) contingent on Mother(U,V)
- Relational Uncertainty (one kind of structural uncertainty)

– The "guard" predicates are random variables!

Object Uncertainty

[Milch et al "BLOG"]

- The set of objects is not predetermined.
 - Get list of authors in 100 BibTeX files.
 "Stuart Russell" "Stuart Rusell" "S. Russell"
 How many people are mentioned?
- Introduce

person-objects (represents entity)
person-reference objects (represents mention)
refers-to(m,o) relation

• Model generates (a) # of people, (b) person objects, (c) their reference objects.

Directed Factor Graph Notation

[Laura Dietz 2010]

Variables and Constants

	Directed factor graph	Pseudocode
Llatent		
variable /	var	
latent		
parameter		
Observed	abs	
variable	005	
Constant /		
hyper	const	
parameter		

Factors and Densities

	Directed factor graph	Pseudocode
Factor with one input parameter	in Density out	1: draw out \sim Density(in)
Example: Gaussian	$ \begin{array}{c} \sigma \\ \hline \\ \mu \end{array} \end{array} $	1: draw $x \sim \mathcal{N}(\mu, \sigma)$

Replication with Plates

Nested Plates

Conditioning with *Gates*

Minka & Winn 2008

Plates & Gates (and implicit combo)

	Directed factor graph	Pseudocode
Replicated gate	c $d = c$ θ $\forall c$ $\forall c$	1: draw $x \sim \text{Multi}(\theta_c)$
Implicit notation for replicating gates	$\begin{array}{c} c \\ \vdots \\ Multi \\ \vdots \\ \theta \\ \forall c \\ \hline \end{array}$	1: draw $x \sim \text{Multi}(\theta_c)$

Latent Dirichlet Allocation

[Blei, Ng, Jordan]

25