Graphical Models

Lecture 4.
Undirected Graphical Models

Andrew McCallum
mccallum@cs.umass.edu

Thanks to Noah Smith and Carlos Guestrin for some slide materials.



Administrivia

* HWH1:

— Source code was due Tuesday by 5pm.

— Reports due today (Thursday) 5pm.

— Heard of some successes.

— Comments?



Motivating Example:
No Bayesian Network is a P-Map

* Misunderstanding students
1(P):

A -
+ ALC|B,D ~ : o
e B1LD|AC B ) S/ .
C A
e -B1D
C |
e -A 1l C Fails to capture:
Fails to capture: -BL1D
BLD|A,C

Want to represent preference for pairwise affinities



Undirected Graphical Models

e Also known as Markov networks and
Markov random fields.

* Alternative representation of graphs with
probability distributions.
— Motivation
— Definition
— Independence
— Representation theorems
— |-maps and P-maps



Motivating Example:
This Markov Network is a P-Map!

* Misunderstanding students
1(P):

cALC|B,D :
* BLD]|AC 8 ) D )
e -B1D )
e -A1C C

(Will explain soon why it is a P-Map.)

“affinity functions” or “compatibility functions” on edges.
Call these “factors”



Markov Networks

e Each random variable is a vertex.

* Undirected edges.

* Factors are associated with
edges (or more generally subsets of nodes |

that form cliques).

— A factor maps assignments of its
nodes to nonnegative
“compatibility” values.

B



Markov Networks

B | $,(A, B)

* In this example,
associate a factor with
each edge.

Rl |lO|lO|>
= | Ol |O|0O

Rl |lO|lO|>

— Could also have factors
for single nodes!

R |, [O]|O | @
R 1 O |]O|0O

R |lRL|O[O|O
= | O|l—Rr|[O|CO




Markov Networks

* Probability distribution:

P(a’7 b7 C, d) X (/bl (CL, b)¢2(bv C)¢3 (C7 d)¢4(a7 d)

P(CL b c d) _ ¢1 (a7 b)¢2(b’ C)¢3 (C7 d)¢4(a’ d)
Y Z ¢1<CL/,b/)¢2(b,,C,)¢3(C,,d,)¢4(a/,d,)
a’,b’,c’ . d
Z = Z ¢1(a/7b/)¢2(b’7Cl)¢3(cl7d/)¢4(a’/?d/)
a’,b’.c,d’

R | L |O|lO|>

B|C C|D A|D
0|0 0|0 0[O0
01 01 0|1
110 110 110
111 111 111




Markov Networks

* Probability distribution:

P(a’7 b7 C, d) X (/bl (CL, b)¢2(bv C)¢3 (C7 d)§b4(a7 d)

R | L |O|lO|>

Pa.b.c.d) = ¢1(a, ZZ)¢/2(5, 0)753,(07 d)¢,4(6,% d) _
Y oid Ve, )gs(c,d)pald )
o b el !
Z= Y $(d V)t )gs(c,d)pald,d)
al b e dl
=7,201,840
B|C C| D A|D
00 00 00
0|1 0|1 0|1
110 110 110
11 11 11




Markov Networks

* Probability distribution:
P(a7 b7 C, d) 8 (,bl (a’a b)§b2(ba C)¢3(C7 d)¢4(a7 d)

P1 (aﬂ b)¢2(b7 C)¢3 (C7 d)¢4(a’ d)

P(a,b,c,d) =
S 1@ V)l )a(c d)oala ) @
a’,b’,c’ . d
Z= " ¢1(d V)pa(t . )ps(c d)pald ) / \
a’,b’,c’,d
= 7,201,840 /@
A|B c|>1(A, B)(| B C A|D
0|1 5 0 0 0|1 P(0, 1,1, 0)
1|10 1 1 1 1|0 = 5,000,000/ 7
11 1 1 1)1 =069
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* Probability distribution: WO (00 e
a\\ AN LNt
\ oo o)
P(a,b, c,d) o ¢1(a,b)ga(b, €)gs(c, d)pa(a, d) e g e
ue ¥
b) o (b d d
P(a,,b, c, d) _ ¢1(a’7 )¢2( ?C)¢3(C7 )¢4(a’ )
S (Y )palb . )oalcd )ala ) @
a’,b’,c’ . d
Z = Z ¢1(a’,b’)gbg(b’,c’)gb3(c’,d’)¢4(a’,d’) / \
a’ b’ e d’
= 7,201,840 /@
A B C|D|diCD)||A
0 0 0|0 1 0
0 0 0|1 100 0 P(1, 1,0, 0)
1 1 (N 100 1 =10/2
) ) aE ] ) = 0.0000014




Administrivia

* CSCF mailing lists for HW submission
were a disaster.

* http://nescai.cs.umass.edu/cs691/
— username: cs691

— password. %k 3k %k 5k >k k 3k Xk



Markov Networks
(General Form)

 Let D. denote the set of variables (subset of X)
in the ith clique.

* Probability distribution is a Gibbs distribution:

P(X) = U(ZX)
U(X) = Hqﬁz

Compare to directed!

g is this sum? meval(X) =1



Notes

* Z might be hard to calculate.
— “Normalization constant”

— “Partition function”

* Can get efficient calculation in some cases.

— This is an inference problem; it’s equivalent to
marginalizing over everything.

* Ratios of probabilities are easy.
P(x) _ Ulx)/Z _ U(x)
P(x’) Ux')/Z Ulx')




Pairwise Markov Networks

e All factors associated with one node or one
pair (connected by an edge).

P(X) = H¢i(X7;) H ¢, (Xi, X5)

(i,j)eH

 The graph may have cliques with more than
two nodes, but they do not have factors.



Markov Networks
Can Always Be Made Pairwise

* For any factor over three or more variables,
introduce a new variable.

* Val(X) has a size that is the number of values
the factor can take (exponential in values of
neighbors).

* Local factor structure is lost.

Show example on board



Pairwise Markov Network Example

* Classify each pixel as
foreground or

background.
oi(X; =1fg,C;) = eXp_”Cia—szgH
5i(Xs =g, Cy) = exp 1! ;2ubgn2
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Application: Image Segmentation

building

(d)

Figure 4.B.1 — Two examples of image segmentation results (a) The original image. (b) An overseg-
mentation known as superpixels; each superpixel is associated with a random variable that designates its
sezment assignment. The use of superpixels reduces the size of the problems. (c) Result of segmentation
ng mode 3rl,r.=:miala slone, so that each superpixel is classified independently. (d) Result of segmentation

sing 2 pairwise Markov network encoding interactions between adjacent superpixels.



Reducing Factors

* Given some variables’
values, we can reduce
the factors to that
context.

e Resulting conditional
distribution is still
Gibbs. (New Z.)
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Reducing Factors

* Given some variables’
values, we can reduce
the factors to that
context.

e Resulting conditional
distribution is still
Gibbs. (New Z.)

Talk about “factor product” and “factor reduction” on the board.
Relate undirected to undirected models with examples!



Reduced Markov Networks

Full network




Reduced Markov Networks

Condition on
“grade”

22



Reduced Markov Networks

Condition on
“grade” and “SAT”

23



Independence in Markov Networks

 Given a set of observed nodes Z, a path X;-X,-
X;-...-X, is active if no nodes on the path are
observed.

« Two sets of nodes X and Y in F{ are separated
given Z if there is no active path between any
X.e Xandany VY. €Y.

— Denoted: sep,(X,Y | Z)

* Global Markov assumption:
sep, (X, Y|Z)=XL1LY]|Z



Representation Theorems

e Bayesian networks ...

The Bayesian network graph is

P(X)

an I-map for P.

H P(X; | Parents(X;))

2=1

— Independencies give you the Bayesian network.

— Bayesian network reveals independencies.




Representation Theorems

e Bayesian networks ...

The Bayesian network graph is DlPx) = HP(X@' | Parents(X;))
an I-map for P.

2=1

e Markov networks ...



Representation Theorems

e Bayesian networks ...

The Bayesian network graph is DlPx) = HP(X@' | Parents(X;))
an I-map for P.

2=1

e Markov networks ...

The Markov network’s P(X) == |1 ¢:(D;
graph is an I-map for P. — (X) Z H (D:)




Representation Theorem (l)

& Gibbs distribution satisfies the independencies associated with the graph

 Factorization into D, gives a simple way to build
the graph:

— put an edge between X and Y iff
3D. such that X, Y € D..

The Markov network’s PIX) — D
graph is an I-map for P. ( ) 7 H ¢ ( )




Representation Theorem (l)

Assume Gibbs.

Consider three disjoint sets of variables, W, Y, and Z,
such that dsep, (W, Y | Z).

— For now assume these comprise all of X; general case is
not hard.

No edges between W and Y, so any clique is either
iIn WuZ or YUZ. ( 11 @-(Di)) ( I1 (bi(Di))

o (W,2Z2)05(Y, Z)

P(X) =

NI~ N[~

It follows that W L Y | Z.



Representation Theorem (ll)

e Other direction?

The Markov network’s
graph is an I-map for P.




Representation Theorem (ll)

e Fails!

The Markov network’s
graph is an I-map for P.




Example

I-map for P

\

/

/

\
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X, | X | X3 | X,
ol o] o] o
o] o] o1
oo ]| 1]o0
oo | 1|1
o] 1]o0]o0
o] 1|01
o 1] 1]o0
o 1] 1|1
1 ofo]o
10|01
1o 1]o0
1o | 1|1
1| 1|0]o0
1| 1|01
1| 1|1]o0
11|11

Example

I—mapforP@\
5
()

X; L X;]X,,X,and
others hold in P.
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X, | X | X3 | X,
ol o] o] o
o] o] o1
oo ]| 1]o0
oo | 1|1
o] 1]o0]o0
o] 1|01
o 1] 1]o0
o 1] 1|1
1 ofo]o
10|01
1o 1]o0
1o | 1|1
1| 1|0]o0
1| 1|01
1| 1|1]o0
11|11

Example

I—mapforP@\
5
()

The distribution does
not factorize into the
graph’s cliques!
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Representation Theorem (ll)

* Succeeds if P(x) > O for all x.

 Hammersley-Clifford Theorem

The Markov network’s S
graph is an I-map for P
and P is nonnegative.




Graphs and Independencies

Bayesian
y Markov Networks
Networks
local local Markov o
independencies assumption '
global . :
. . d-separation separation
independencies




Local Independence Assumptions in

Markov Networks
* Separation defines global independencies.



Local Independence Assumptions in

Markov Networks

* Pairwise Markov independence: pairs of
non-adjacent variables are independent given
everything else.



Local Independence Assumptions in

Markov Networks

 Markov blanket: each variable is independent
of the rest given its neighbors.

Define neighbors on the board



Local Independence Assumptions in
Markov Networks

* Separation:
sep, (W, Y |Z)=W_LY|Z

e Pairwise Markov:
A1lB|X\{A B}

 Markov blanket:
A 1 X\ Neighbors(A) | Neighbors(A)



I-Maps

* Fully connected graph is an I-map (like BNs)
* Minimal I-maps (delete edge - not an I-map)

— Not unique for Bayesian networks.

— What about Markov Networks?...

— Unique for Markov networks (if positive distribution)!
* Simple way to construct a minimal [-map:

— Check each pairwise Markov assumption.

— If it’s not entailed by P, add edge.



P-Maps

 Want: independencies from the graphical
model are exactly the same as in P.

 Doesn’t always exist for Bayesian networks
(misunderstanding students).

e What about Markov Networks?...

* Doesn’t always exist for Markov networks.

p Minimal I-map is not a P-map.

A . B A /| B

A1lB cC | cC |
“A1LB|C



Bayesian Networks
and Markov Networks

Bayesian Networks Markov Networks
local independencies local Markov assumption pairwise; Markov blanket
global independencies d-separation separation
 v-structures handled elegantly * cycles allowed
. * CPDs are conditional probabilities | perfect maps for
relative advantages « probability of full instantiation is | misunderstanding students
easy (no partition function)




Markov Networks So Far

Markov network: undirected graph, potentials
over cliques (or sub-cliques), normalization via
partition function

Representation theorems

Independence: active paths/separation;
pairwise; Markov blanket

Minimal I-maps are unique

P-maps don’t always exist



HW

e Due Feb 17 and Feb 22




