
Andrew McCallum, UMass Amherst,
 including material from William Cohen

String Edit Distance
(and intro to dynamic programming)

Lecture #4
Computational Linguistics
CMPSCI 591N, Spring 2006

University of Massachusetts Amherst

Andrew McCallum

Andrew McCallum, UMass Amherst,
 including material from William Cohen

Dynamic Programming

• (Not much to do with “programming” in the
CS sense.)

• Dynamic programming is efficient in finding
optimal solutions for cases with lots of
overlapping sub-problems.

• It solves problems by recombining solutions
to sub-problems, when the sub-problems
themselves may share sub-sub-problems.

Andrew McCallum, UMass Amherst,
 including material from William Cohen

Fibonacci Numbers

1 1 2 3 5 8 13 21 34 ...

Andrew McCallum, UMass Amherst,
 including material from William Cohen

1

Andrew McCallum, UMass Amherst,
 including material from William Cohen

Calculating Fibonacci Numbers

F(n) = F(n-1) + F(n-2),
 where F(0)=0, F(1)=1.

Non-Dynamic Programming implementation

For fib(8), how many calls to function fib(n)?

def fib(n):
 if n == 0 or n == 1:
 return n
 else:
 return fib(n-1) + fib(n-2)

Andrew McCallum, UMass Amherst,
 including material from William Cohen

DP Example:
Calculating Fibonacci Numbers

table = {}
def fib(n):
 global table
 if table.has_key(n):
 return table[n]
 if n == 0 or n == 1:
 table[n] = n
 return n
 else:
 value = fib(n-1) + fib(n-2)
 table[n] = value
 return value

Dynamic Programming: avoid repeated calls by remembering
function values already calculated.

Andrew McCallum, UMass Amherst,
 including material from William Cohen

DP Example:
Calculating Fibonacci Numbers

def fib(n):
 table = [0] * (n+1)
 table[0] = 0
 table[1] = 1
 for i in range(2,n+1):
 table[i] = table[i-2] + table[i-1]
 return table[n]

...or alternately, in a list instead of a dictionary...

We will see this pattern many more times in this course:
1. Create a table (of the right dimensions to describe our problem.
2. Fill the table, re-using solutions to previous sub-problems.

Andrew McCallum, UMass Amherst,
 including material from William Cohen

String Edit Distance

Andrew

Amdrewz 1. substitute m to n
2. delete the z
Distance = 2

Given two strings (sequences) return the “distance”
between the two strings as measured by...

...the minimum number of “character edit operations”
needed to turn one sequence into the other.

Andrew McCallum, UMass Amherst,
 including material from William Cohen

String distance metrics: Levenshtein

• Given strings s and t
– Distance is shortest sequence of edit

commands that transform s to t, (or equivalently s
to t).

– Simple set of operations:
• Copy character from s over to t (cost 0)
• Delete a character in s (cost 1)
• Insert a character in t (cost 1)
• Substitute one character for another (cost 1)

• This is “Levenshtein distance”

Andrew McCallum, UMass Amherst,
 including material from William Cohen

Levenshtein distance - example

• distance(“William Cohen”, “Willliam Cohon”)

2

S

O

E

CCCCCCCCICCCC

2111111110000

NHOC_MAILLLIW

NHOC_MAILLIWs

t
edit
op

cost
so far...

alignment

gap

Alignment is a little bit like a parse.

Andrew McCallum, UMass Amherst,
 including material from William Cohen

Finding the Minimum

Another fine day in the park

Anybody can see him pick the ball

Not so easy.... not so clear.
Not only are the strings, longer, but is isn’t immediately
obvious where the alignments should happen.
What if we consider all possible alignments by brute force?
How many alignments are there?

What is the minimum number of operations for....?

Andrew McCallum, UMass Amherst,
 including material from William Cohen

Dynamic Program Table for String Edit

E
K

cijA
P
S

KRAP

Measure distance between strings PARK

SPAKE

cij =
the number of edit
operations needed
to align PA with
SPA.

Andrew McCallum, UMass Amherst,
 including material from William Cohen

Dynamic Programming to the Rescue!

• Given some partial solution, it isn’t hard to figure
out what a good next immediate step is.

• Partial solution =
“This is the cost for aligning s up to position i
 with t up to position j.

• Next step =
“In order to align up to positions x in s and y in
 t, should the last operation be a substitute,
 insert, or delete?

How to take our big problem and chop it into building-block pieces.

Andrew McCallum, UMass Amherst,
 including material from William Cohen

Dynamic Program Table for String Edit

E
K
A
P
S

KRAP

Measure distance between strings PARK

SPAKE

delete

insert

substitute

Edit operations
for turning
SPAKE
into
PARK

Andrew McCallum, UMass Amherst,
 including material from William Cohen

Dynamic Program Table for String Edit

E
K

???c31c30A
c24c23c22c21c20P
c14c13c12c11c10S
c05c04c03c00

KRAP

Measure distance between strings PARK

SPAKE

c02

Andrew McCallum, UMass Amherst,
 including material from William Cohen

Dynamic Program Table for String Edit

E
K

???c31c30A
c24c23c22c21c20P
c14c13c12c11c10S
c05c04c03c00

KRAP

c02

D(i,j) = score of best alignment from s1..si to t1..tj

= min

D(i-1,j-1), if si=tj //copy
D(i-1,j-1)+1, if si!=tj //substitute
D(i-1,j)+1 //insert
D(i,j-1)+1 //delete

delete

insert

subst

Andrew McCallum, UMass Amherst,
 including material from William Cohen

Computing Levenshtein distance - 2

D(i,j) = score of best alignment from s1..si to t1..tj

= min
D(i-1,j-1) + d(si,tj) //subst/copy
D(i-1,j)+1 //insert
D(i,j-1)+1 //delete

(simplify by letting d(c,d)=0 if c=d, 1 else)

also let D(i,0)=i (for i inserts) and D(0,j)=j

Andrew McCallum, UMass Amherst,
 including material from William Cohen

Dynamic Program Table Initialized

5E
4K
3A
2P
1S

43210

KRAP

D(i,j) = score of best alignment from s1..si to t1..tj

= min

D(i-1,j-1)+d(si,tj) //substitute
D(i-1,j)+1 //insert
D(i,j-1)+1 //delete

Andrew McCallum, UMass Amherst,
 including material from William Cohen

Dynamic Program Table ... filling in

5E
4K
3A
2P

11S
43210

KRAP

D(i,j) = score of best alignment from s1..si to t1..tj

= min

D(i-1,j-1)+d(si,tj) //substitute
D(i-1,j)+1 //insert
D(i,j-1)+1 //delete

Andrew McCallum, UMass Amherst,
 including material from William Cohen

Dynamic Program Table ... filling in

5E
4K
3A
2P

 4 3211S
43210

KRAP

D(i,j) = score of best alignment from s1..si to t1..tj

= min

D(i-1,j-1)+d(si,tj) //substitute
D(i-1,j)+1 //insert
D(i,j-1)+1 //delete

Andrew McCallum, UMass Amherst,
 including material from William Cohen

Dynamic Program Table ... filling in

5E
4K
3A

12P
 4 3211S

43210

KRAP

D(i,j) = score of best alignment from s1..si to t1..tj

= min

D(i-1,j-1)+d(si,tj) //substitute
D(i-1,j)+1 //insert
D(i,j-1)+1 //delete

Andrew McCallum, UMass Amherst,
 including material from William Cohen

Dynamic Program Table ... filling in

33345E
22234K
32123A
43212P

 4 3211S
43210

KRAP

D(i,j) = score of best alignment from s1..si to t1..tj

= min

D(i-1,j-1)+d(si,tj) //substitute
D(i-1,j)+1 //insert
D(i,j-1)+1 //delete

Final cost of
aligning all of
both strings.

Andrew McCallum, UMass Amherst,
 including material from William Cohen

DP String Edit Distance
def stredit (s1,s2):
 "Calculate Levenstein edit distance for strings s1 and s2."
 len1 = len(s1) # vertically
 len2 = len(s2) # horizontally
 # Allocate the table
 table = [None]*(len2+1)
 for i in range(len2+1): table[i] = [0]*(len1+1)
 # Initialize the table
 for i in range(1, len2+1): table[i][0] = i
 for i in range(1, len1+1): table[0][i] = i
 # Do dynamic programming
 for i in range(1,len2+1):
 for j in range(1,len1+1):
 if s1[j-1] == s2[i-1]:
 d = 0
 else:
 d = 1
 table[i][j] = min(table[i-1][j-1] + d,
 table[i-1][j]+1,
 table[i][j-1]+1)

Andrew McCallum, UMass Amherst,
 including material from William Cohen

Remebering the Alignment (trace)

D(i,j) = min
D(i-1,j-1) + d(si,tj) //subst/copy
D(i-1,j)+1 //insert
D(i,j-1)+1 //delete

 33345N

4 3 234H

54323O

5433 2C

5432 1C

5432 1M
NEHOC

A trace indicates
where the min
value came from,
and can be used to
find edit
operations and/or
a best alignment
(may be more than 1)

Andrew McCallum, UMass Amherst,
 including material from William Cohen

Three Enhanced Variants

• Needleman-Munch
– Variable costs

• Smith-Waterman
– Find longest “soft matching” subsequence

• Affine Gap Distance
– Make repeated deletions (insertions) cheaper

• (Implement one for homework?)

Andrew McCallum, UMass Amherst,
 including material from William Cohen

Needleman-Wunch distance

D(i,j) = min
D(i-1,j-1) + d(si,tj) //subst/copy
D(i-1,j) + G //insert
D(i,j-1) + G //delete

d(c,d) is an arbitrary
distance function on

characters (e.g. related
to typo frequencies,

amino acid
substitutibility, etc)

William Cohen

Wukkuan Cigeb

G = “gap cost”

Andrew McCallum, UMass Amherst,
 including material from William Cohen

Smith-Waterman distance

• Instead of looking at each sequence in its
entirety, this compares segments of all
possible lengths and chooses whichever
maximize the similarity measure.

• For every cell the algorithm calculates all
possible paths leading to it. These paths can
be of any length and can contain insertions
and deletions.

Andrew McCallum, UMass Amherst,
 including material from William Cohen

Smith-Waterman distance

D(i,j) = min

0 //start over
D(i-1,j-1) + d(si,tj) //subst/copy
D(i-1,j) + G //insert
D(i,j-1) + G //delete

G = 1

d(c,c) = -2

d(c,d) = +1

-7-5-5 -20N
-3-5-6-30H
-1 -2-3-4-1O

000 -1-2C
000 -1-2C
00000M
NEHOC

Andrew McCallum, UMass Amherst,
 including material from William Cohen

Example output from Python

 s ' a l l o n g e r
 0 1 2 3 4 5 6 7 8 9 10
 l 1 0 0 0 0 * 0 0 0 0 0 0
 o 2 0 0 0 0 0 *-2 -1 0 0 0
 u 3 0 0 0 0 0 *-1 -1 0 0 0
 n 4 0 0 0 0 0 0 *-3 -2 -1 0
 g 5 0 0 0 0 0 0 -2 *-5 -4 -3
 e 6 0 0 0 0 0 0 -1 -4 *-7 -6

(My implementation of HW#2, task choice #2. -McCallum)

Andrew McCallum, UMass Amherst,
 including material from William Cohen

Affine gap distances

• Smith-Waterman fails on some pairs that
seem quite similar:

William W. Cohen

William W. ‘Don’t call me Dubya’ Cohen

Intuitively, a single long insertion is “cheaper”
than a lot of short insertions

Intuitively, single long insertions are “cheaper”
than a lot of short insertions

Andrew McCallum, UMass Amherst,
 including material from William Cohen

Affine gap distances - 2

• Idea:
– Current cost of a “gap” of n characters: nG
– Make this cost: A + (n-1)B, where A is cost of

“opening” a gap, and B is cost of “continuing” a
gap.

Andrew McCallum, UMass Amherst,
 including material from William Cohen

Affine gap distances - 3

D(i,j) = max
D(i-1,j-1) + d(si,tj) //subst/copy
D(i-1,j)-1 //insert
D(i,j-1)-1 //delete

IS(i,j) = max D(i-1,j) - A
IS(i-1,j) - B

IT(i,j) = max D(i,j-1) - A
IT(i,j-1) - B

Best score in which si
is aligned with a ‘gap’

Best score in which tj
is aligned with a ‘gap’

D(i-1,j-1) + d(si,tj)

IS(I-1,j-1) + d(si,tj)

IT(I-1,j-1) + d(si,tj)

Andrew McCallum, UMass Amherst,
 including material from William Cohen

Affine gap distances as automata

-B

-B

-d(si,tj) D

IS

IT-d(si,tj)

-d(si,tj)

-A

-A

Andrew McCallum, UMass Amherst,
 including material from William Cohen

Generative version of affine gap
automata (Bilenko&Mooney, TechReport 02)

HMM emits pairs: (c,d) in
state M, pairs (c,-) in state
D, and pairs (-,d) in state I.

For each state there is a
multinomial distribution
on pairs.

The HMM can trained with
EM from a sample of pairs
of matched strings (s,t)

E-step is forward-backward; M-step uses some ad hoc smoothing

Andrew McCallum, UMass Amherst,
 including material from William Cohen

Affine gap edit-distance learning:
experiments results (Bilenko & Mooney)

Experimental method: parse records into fields; append a
few key fields together; sort by similarity; pick a
threshold T and call all pairs with distance(s,t) < T
“duplicates”; picking T to maximize F-measure.

Andrew McCallum, UMass Amherst,
 including material from William Cohen

Affine gap edit-distance learning:
experiments results (Bilenko & Mooney)

Andrew McCallum, UMass Amherst,
 including material from William Cohen

Affine gap edit-distance learning:
experiments results (Bilenko & Mooney)

Precision/recall for MAILING dataset duplicate detection

Andrew McCallum, UMass Amherst,
 including material from William Cohen

Affine gap distances – experiments
(from McCallum, Nigam,Ungar KDD2000)

• Goal is to match data like this:

Andrew McCallum, UMass Amherst,
 including material from William Cohen

Homework #2

• The assignment
– Start with my stredit.py code
– Make some modifications
– Write a little about your experiences

• Some possible modifications
– Implement Needleman-Wunch, Smith-Waterman, or Affine Gap

Distance.
– Create a little spell-checker: if entered word isn’t in the dictionary,

return the dictionary word that is closest.
– Change implementation to operate on sequences of words rather

than characters... get an online translation dictionary, and find
alignments between English & French or English & Russian!

– Try to learn the parameters of the function from data. (Tough.)

