
Andrew McCallum, UMass Amherst,
 including material from Eqan Klein and Steve Renals, at Univ Edinburghh

Introduction to Python
Lecture #3

Computational Linguistics
CMPSCI 591N, Spring 2006

University of Massachusetts Amherst

Andrew McCallum

Andrew McCallum, UMass Amherst,
 including material from Eqan Klein and Steve Renals, at Univ Edinburghh

Today’s Main Points

• Check in on HW#1. Demo.

• Intro to Python computer programming language.

• Some examples Linguistic applications.

• The NLTK toolkit.

• Pointers to more Python resources.

Andrew McCallum, UMass Amherst,
 including material from Eqan Klein and Steve Renals, at Univ Edinburghh

Python Outline

• Introduction
– Python attributes and ‘Why Python?’
– Running programs
– Modules

• Basic object types
– Numbers and variables
– Strings
– Lists, Tuples
– Dictionaries

• Control Flow
– Conditionals
– Loops

Andrew McCallum, UMass Amherst,
 including material from Eqan Klein and Steve Renals, at Univ Edinburghh

Python Features

• Free. Runs on many different machines.
• Easy to read.

– Perl = “write only language”
• Quick to throw something together.

– NaiveBayes Java vs Python
• Powerful. Object-oriented.

• THE modern choice for CompLing.
• NLTK

Andrew McCallum, UMass Amherst,
 including material from Eqan Klein and Steve Renals, at Univ Edinburghh

Using Python Interactively

$ python
>>> print “Hello everyone!”
Hello everyone!
>>> print 2+2
4
>>> myname = “Andrew”
>>> myname
‘Andrew’

The easiest way to give Python a whirl is interactively.
(Human typing in red. Machine responses in black.)

Andrew McCallum, UMass Amherst,
 including material from Eqan Klein and Steve Renals, at Univ Edinburghh

Modules

print 25*3 # multiply by 3
print ‘CompLing ‘ + ‘lecture 3’ # concatenate with +
myname = ‘Andrew’

To save code you need to write it in files.
Module: a text file containing Python code.
Example: write the following to file foo.py

$ python foo.py
75
CompLing lecture 3
$

(No leading spaces!)

Then run it as follows:

Andrew McCallum, UMass Amherst,
 including material from Eqan Klein and Steve Renals, at Univ Edinburghh

Importing Modules

$ python
>>> import foo
75
CompLing lecture 3
>>> foo.myname
‘Andrew’

Every file ending in .py is a Python module.
Modules can contain attributes such as functions.
We can import this module into Python.

Andrew McCallum, UMass Amherst,
 including material from Eqan Klein and Steve Renals, at Univ Edinburghh

Module Reloading

>>> import foo
75
CompLing lecture 3

Importing is expensive--after the first import of a module, repeated
imports have no effect (even if you have edited it).
Use reload to force Python to rerun the file again.

Edit foo.py to print 25*4 (instead of 25*3) and reload

>>> reload(foo)
75
CompLing lecture 3
<module ‘foo’ from ‘foo.py’>

Andrew McCallum, UMass Amherst,
 including material from Eqan Klein and Steve Renals, at Univ Edinburghh

Module Attributes

university = ‘UMass’
department = ‘Linguistics’

Consider file bar.py

>>> import bar
>>> print bar.department
Linguistics

>>> from bar import department
>>> print department
Linguistics

>>> from bar import *
>>> print university
UMass

from copies named attributes from a module, so they are variables in the recipient.

Andrew McCallum, UMass Amherst,
 including material from Eqan Klein and Steve Renals, at Univ Edinburghh

Python Program Structure

• Programs are composed of modules
• Modules contain statements
• Statements contain expressions
• Expressions create and process objects

• Statements include
– variable assignment, function calls
– control flow, module access
– building functions, building objects
– printing

Andrew McCallum, UMass Amherst,
 including material from Eqan Klein and Steve Renals, at Univ Edinburghh

Python’s built-in objects

• Numbers: integer, floating point
• Strings
• Lists
• Dictionaries
• Tuples
• Files

Andrew McCallum, UMass Amherst,
 including material from Eqan Klein and Steve Renals, at Univ Edinburghh

Numbers and Variables

• Usual number operators, e.g: +, *, /, **
• Usual operator precedence:
A * B + C * D = (A * B) + (C * D)
(use parens for clarity and to reduce bugs)

• Useful modules: math, random

• Variables
– created when first assigned a value
– replaced with their values when used in expressions
– must be assigned before use
– no need to declare ahead of time

Andrew McCallum, UMass Amherst,
 including material from Eqan Klein and Steve Renals, at Univ Edinburghh

Strings

• String handling in Python is easy and
powerful (unlike C, C++, Java)

• Strings may be written using single quotes:
‘This is a Python string’

• or double quotes
“and so is this”

• They are the same, it just makes it easy to
include single (or double) quotes:
‘He said “what?”’ or “He’s here.”

(Learning Python, chapter 5)

Andrew McCallum, UMass Amherst,
 including material from Eqan Klein and Steve Renals, at Univ Edinburghh

Backslash in strings
Backslash \ can be used to escape (protect) certain non-printing or
special characters.
For example, \n is newline, \t is tab.

>>> s = ‘Name\tAge\nJohn\t21\nBob\t44’
>>> print s
Name Age
John 21
Bob 44
>>> t = ‘”Mary\’s”’
>>> print t
“Mary’s”

Andrew McCallum, UMass Amherst,
 including material from Eqan Klein and Steve Renals, at Univ Edinburghh

Triple quote
Use a triple quote (“”” or ‘’’) for a string over severa lines:

>>> s = “””this is
... a string
... over 3 lines”””
>>> t = ‘’’so
... is
... this’’’
>>> print s
this is
a string
over 3 lines
>>> print t
so
is
this

Andrew McCallum, UMass Amherst,
 including material from Eqan Klein and Steve Renals, at Univ Edinburghh

String operations
Concatenation (+)
Length (len)
Repetition (*)
Indexing and slicing ([])

s = ‘computational’
t = ‘linguistics’
cl = s + ‘ ‘ + t # ‘computational linguistics’
l = len(cl) # 25
u = ‘-’ * 6 # ------
c = s[3] # p
x = cl[11:16] # ‘al li’
y = cl[20:] # ‘stics’
z = cl[:-1] # ‘computational linguistic’

Andrew McCallum, UMass Amherst,
 including material from Eqan Klein and Steve Renals, at Univ Edinburghh

String methods
Methods are functions applied to and associated with objects
String methods allow strings to be processed in a more sophisticated way

s = ‘example’
s = s.capitalize() # ‘Example’
t = s.lower() # ‘example’
flag = s.isalpha() # True
s = s.replace(‘amp’,‘M’) # ‘exMle’
i = t.find(‘xa’) # 1
n = t.count(‘e’) # 2

Andrew McCallum, UMass Amherst,
 including material from Eqan Klein and Steve Renals, at Univ Edinburghh

Lists in Python
• Ordered collection of arbitrary objects
• Accessed by indexing based on offset from start
• Variable length (grows automatically)
• Heterogeneous (can contain any type, nestable)
• Mutable (can change the elements, unlike strings)

>>> s = [‘a’, ‘b’, ‘c’]
>>> t = [1, 2, 3]
>>> u = s + t # [‘a’, ‘b’, ‘c’, 1, 2, 3]
>>> n = len(u) # 6

Andrew McCallum, UMass Amherst,
 including material from Eqan Klein and Steve Renals, at Univ Edinburghh

Indexing and slicing lists
• Indexing and slicing work like strings
• Indexing returns the object at the given offset
• Slicing returns a list
• Can use indexing and slicing to change contents

l = [‘a’, ‘b’, ‘c’, ‘d’]
x = l[2] # ‘c’
m = l[1:] # [‘b’, ‘c’, ‘d’]
l[2] = ‘z’ # [‘a’, ‘b’, ‘z’, ‘d’]
l[0:2] = [‘x’, ‘y’] # [‘x’, ‘y’, ‘z’, ‘d’]

(Learning Python, chapter 6)

Andrew McCallum, UMass Amherst,
 including material from Eqan Klein and Steve Renals, at Univ Edinburghh

List methods
• Lists also have some useful methods
• append adds an item to the list
• extend adds multiple items
• sort orders a list in place

l = [7, 8, 9, 3]
l.sort () # [3, 7, 8, 9]
l.append(6) # [3, 7, 8, 9, 6]
l.extend([‘r’, ‘s’]) # [3, 7, 8, 9, ‘r’, ‘s’]
l.append([1, 2]) # [3, 7, 8, 9, ‘r’, ‘s’ [1, 2]]

(Learning Python, chapter 6)

Andrew McCallum, UMass Amherst,
 including material from Eqan Klein and Steve Renals, at Univ Edinburghh

Dictionaries

Dictionaries are
• Address by key, not by offset
• Unordered collections of arbitrary objects
• Variable length, heterogeneous

(can contain contain any type of object), nestable
• Mutable (can change the elements, unlike strings)

• Think of dictionaries as a set of key:value pairs
• Use a key to access its value

(Learning Python, chapter 7)

Andrew McCallum, UMass Amherst,
 including material from Eqan Klein and Steve Renals, at Univ Edinburghh

Dictionary example
level = {‘low’:1, ‘medium’:5}
x = level[‘medium’] # 5
n = len(level) # 2

flag = level.has_key(‘low’) # True
l = level.keys() # [‘low’,‘medium’]

level[‘low’] = 2 # {‘low’:2, ‘medium’:5}
level[‘high’] = 10 # {‘low’:2, ‘high’:10, ‘medium’:5}

level.items()
[(‘low’,2), (‘high’,10), (‘medium’,5)]

level.values()
[2, 10, 5]

Andrew McCallum, UMass Amherst,
 including material from Eqan Klein and Steve Renals, at Univ Edinburghh

Notes on dictionaries

• Sequence operations don’t work (e.g. slice)
dictionaries are mappings, not sequences.

• Dictionaries have a set of keys:
only one value per key.

• Assigning to a new key adds an entry
• Keys can be any immutable object, not just

strings.

• Dictionaries can be used as records
• Dictionaries can be used for sparse matrices.

Andrew McCallum, UMass Amherst,
 including material from Eqan Klein and Steve Renals, at Univ Edinburghh

Other objects
Tuples: list lists, but immutable (cannot be changed)

emptyT = ()
t1 = (1, 2, 3)
x = t1[1] # 2
n = len(t1) # 3
y = t1[1:] # (2, 3)

Files: objects with methods for reading and writing to files
file = open(‘myfile’, ‘w’)
file.write(‘hellow file\n’)
file.close()

f2 = open(‘myfile’, ‘r’)
s = f2.readline() # ‘hello file\n’
t = f2.readline() # ‘’
all = open(‘myfile’).read() #entire file as a string

(Learning Python, chapter 7)

Andrew McCallum, UMass Amherst,
 including material from Eqan Klein and Steve Renals, at Univ Edinburghh

Conditionals: if tests

• Indentation determines the block structure
Indentation to the left is the only place where whitespace matters in Python

• Indentation enforces readability
• Tests after if and elif can be just about anything:

False, 0, (), [], ‘’, all count as false
Other values count as true.

course = ‘Syntax’
if course == ‘Syntax’:

print ‘Bhatt’
print ‘or Potts’

elif course == ‘Computational Linguistics’:
print ‘McCallum’

else:
print ‘Someone else’

(Learning Python, chapter 9)

Andrew McCallum, UMass Amherst,
 including material from Eqan Klein and Steve Renals, at Univ Edinburghh

while loops
A while loop keeps iterating while the test at the top remains True.

a = 0
b = 10
while a < b:

print a
a = a + 1

s = ‘abcdefg’
while len(s) > 0:

print s
s = s[1:]

(Learning Python, chapter 10)

Andrew McCallum, UMass Amherst,
 including material from Eqan Klein and Steve Renals, at Univ Edinburghh

for loops
for is used to step through any sequence object

l = [‘a’, ‘b’, ‘c’]
for i in l:

print i

sum = 0
for x in [1, 2, 3, 4, 5, 6]:

sum = sum + x
print sum

(Learning Python, chapter 10)

range() is a useful function:
range(5) # [0, 1, 2, 3, 4]
range(2,5) # [2, 3, 4]
range(0,6,2) # [0, 2, 4]

Andrew McCallum, UMass Amherst,
 including material from Eqan Klein and Steve Renals, at Univ Edinburghh

for loops with style
Do something to each item in a list (e.g. print its square)

l = [1, 2, 3, 4, 5, 6] # or l = range(1,7)

one way to print the square
for x in l:

print x*x

another way to do it
n = len(l)
for i in range(n):

print l[i]*l[i]

Which is better?

Andrew McCallum, UMass Amherst,
 including material from Eqan Klein and Steve Renals, at Univ Edinburghh

Example: intersecting sequences
(Keyword in)The intersection of

[‘a’, ‘d’, ‘f’, ‘g’] and [‘a’, ‘b’, ‘c’, ‘d’]
is [‘a’, ‘d’]

l1 = [‘a’, ‘d’, ‘f’, ‘g’]
l2 = [‘a’, ‘b’, ‘c’, ‘d’]
one way
result = []
for x in l1:

for y in l2:
if x == y:

result.append(x)
or, alternatively
result = []
for x in l1:

if x in l2:
result.append(x) # result == [‘a’, ‘d’]

Andrew McCallum, UMass Amherst,
 including material from Eqan Klein and Steve Renals, at Univ Edinburghh

Built-in, imported and user-defined functions
• Some functions are built-in, e.g.

• Some functions may be imported, e.g.

• Some functions are user-defined, e.g.

l = len([‘a’, ‘b’, ‘c’])

import math
from os import getcwd
print getcwd() # which directory am I in?
x = math.sqrt(9) # 3

def multiply(a, b):
return a * b

print multiply(4,5)
print multiply(‘-’,5)

Andrew McCallum, UMass Amherst,
 including material from Eqan Klein and Steve Renals, at Univ Edinburghh

Functions in Python

• Functions are a way to group a set of statements that can
be run more than once in a program.

• They can take parameters as inputs, and can return a
value as output.

• Example

• def creates a function object, and assigns it to a name
• return sends an object back to the caller
• Adding () after the function’s name calls the function.

def square(x): # create and assign
return x*x

y = square(5) # y gets 25

(Learning Python, chapter 12)

Andrew McCallum, UMass Amherst,
 including material from Eqan Klein and Steve Renals, at Univ Edinburghh

Intersection function

• Putting the code in a function means you can run it many times.
• General -- callers pass any 2 sequences
• Code is in one place. Makes changing it easier (if you have to)

def intersect(seq1, seq2)
result = []
for x in seq1:

if x in seq2:
result.append(x)

return result

Andrew McCallum, UMass Amherst,
 including material from Eqan Klein and Steve Renals, at Univ Edinburghh

Local variables
Variables inside a function are local to that function.

>>> intersect(s1, s2):
... result = []
... for x in s1:
... if x in s2:
... result.append(x)
... return result
...
>>> intersect([1,2,3,4], [1,5,6,4])
[1, 4]
>>> result
Traceback (most recent call last):
 File “<stdin>”, line 1, in ?
NameError: name ‘result’ is not defined

Andrew McCallum, UMass Amherst,
 including material from Eqan Klein and Steve Renals, at Univ Edinburghh

Argument passing
Arguments are passed by assigning objects to local names.

>>> def plusone(x):
... x = x + 1
... return x
...
>>> plusone(3)
4
>>> x = 6
>>> plusone(x)
7
>>> x
6

Andrew McCallum, UMass Amherst,
 including material from Eqan Klein and Steve Renals, at Univ Edinburghh

Passing mutable arguments
Recall that numbers, strings, tuples are immutable, and that lists and
dictionaries are mutable:

>>> def appendone(s):
... s.append(‘one’)
... return s
...
>>> appendone([‘a’, ‘b’])
[‘a’, ‘b’, ‘one’]
>>> l = [‘x’, ‘y’]
>>> appendone(l)
[‘x, ‘y’, ‘one’]
>>> l
[‘x’, ‘y’, ‘one’]

Andrew McCallum, UMass Amherst,
 including material from Eqan Klein and Steve Renals, at Univ Edinburghh

map
>>> counters = range(1,6)
>>> updated = []
>>> for x in counters:
... updated.append(x+3)
...
>>> updated
[4, 5, 6, 7, 8]

Another way...
>>> def addthree(x):
... return x+3
...
map() applies a function to all elements of a list
>>> map(addthree, counters)
[4, 5, 6, 7, 8]

Andrew McCallum, UMass Amherst,
 including material from Eqan Klein and Steve Renals, at Univ Edinburghh

Anonymous functions and
list comprehensions

lambda is a way to define a function with no name
>>> map((lambda x: x+3), counters)
[4, 5, 6, 7, 8]

a list comprehension does something similar,
but can offer more flexibility
>>> result = [addthree(x) for x in counters]
>>> result
[4, 5, 6, 7, 8]
>>> [addthree(x) for x in counters if x < 4]
[4, 5, 6]

Also check out apply, filter, and reduce.

Andrew McCallum, UMass Amherst,
 including material from Eqan Klein and Steve Renals, at Univ Edinburghh

Guido van Rossum

Grew up in the Netherlands.

“December 1989, I was
looking for a ‘hobby’
programming project that
would keep me occupied
during the week around
Christmas....”
...Python 2.4... NASA, WWW
infrastructure, Google...

In December 2005, hired by
Google.

Andrew McCallum, UMass Amherst,
 including material from Eqan Klein and Steve Renals, at Univ Edinburghh

Useful module: re
Regular expressions

import re

r = re.compile(r’\bdis(\w+)\b’)
s = ‘Then he just disappeared.’
match = r.search(s)
if match:

print “Found the regex in the string!”
print “The prefix was”, match.group(1)

Andrew McCallum, UMass Amherst,
 including material from Eqan Klein and Steve Renals, at Univ Edinburghh

Useful module: random
Random number generator and random choices

>>> import random

>>> random.uniform(0,1)
0.16236

>>> list = [‘first’, ‘second’, ‘third’, ‘fourth’]
>>> random.choice(list)
‘third’
>>> random.choice(list)
‘first’

Andrew McCallum, UMass Amherst,
 including material from Eqan Klein and Steve Renals, at Univ Edinburghh

NLTK: Python Natural Language Toolkit

• NLTK is a set of Python modules which you can import
into your programs, e.g.:
from nltk_lite.utilities import re_show

• NLTK is distributed with several corpora.
• Example corpora with NLTK:

– gutenberg (works of literature from Proj. Gutenberg)
– treebank (parsed text from the Penn treebank
– brown (1961 million words of POS-tagged text)

• Load a corpus (eg gutenberg) using:
>>> from nltk_lite.corpora import gutenberg
>>> print gutenberg.items
[‘autsen-emma’, ‘austen-persuasion’,...]

Andrew McCallum, UMass Amherst,
 including material from Eqan Klein and Steve Renals, at Univ Edinburghh

Simple corpus operations

• Simple processing of a corpus includes tokenization
(splitting the text into word tokens), text normalization (eg
by case), and word stats, tagging and parsing.

• Count the number of words in “Macbeth”
from nltk_lite.corpora import gutenberg
nwords = 0
for word in gutenberg.raw(‘shakespeare-macbeth’):

nwords += 1
print nwords

• gutenberg.raw(textname) is an iterator, which
behaves like a sequence (eg a list) except it returns
elements one at a time as required.

Andrew McCallum, UMass Amherst,
 including material from Eqan Klein and Steve Renals, at Univ Edinburghh

Richer corpora

• The Gutenberg corpus is tokenized as a sequence of words
with no further structure.

• The Brown corpus has sentences marked, and is stored as a
list of sentences, where a sentence is a list of word tokens.
We can use the extract function to obtain individual
sentences
from nltk_lite.corpora import brown
from nltk_lite.corpora import extract
firstSentence = extract(0, brown.raw(‘a’))
[‘The’, ‘Fulton’, ‘County’, ‘Grand’, ‘jury’...]

• Part-of-speech tagged text can also be extracted:
taggedFirstSentence = extract(0, brown.tagged(‘a’))
[(‘The’, ‘at’), (‘Fulton’, ‘np-tl’),
 (‘County’, ‘nn-tl’)...

Andrew McCallum, UMass Amherst,
 including material from Eqan Klein and Steve Renals, at Univ Edinburghh

Parsed text
Parsed text from the Penn treebank can also be accessed

>>> from nltk_lite.corpora import treebank
>>> parsedSent = extract(0, treebank.parsed())
>>> print parsedSent
>>> print parsedSent
(S:

(NP-SBJ:
(NP: (NNP: 'Pierre') (NNP: 'Vinken'))
(,: ',')
(ADJP: (NP: (CD: '61') (NNS: 'years')) (JJ: 'old'))
(,: ','))

(VP:
(MD: 'will')
(VP: (VB: 'join') (NP: (DT: 'the') (NN: 'board'))

(PP-CLR: (IN: 'as') (NP: (DT: 'a') (JJ: 'nonexecutive')
(NN: 'director'))) (NP-TMP: (NNP: 'Nov.') (CD: '29'))))
(.: '.'))

Andrew McCallum, UMass Amherst,
 including material from Eqan Klein and Steve Renals, at Univ Edinburghh

More Python Resources

• “Learning Python” book.

• NLTK Python intro for Linguists
http://nltk.sourceforge.net/lite/doc/en/programming.html

• Others listed at
“Resources” link on course home page

• Your TAs!

Andrew McCallum, UMass Amherst,
 including material from Eqan Klein and Steve Renals, at Univ Edinburghh

Thank you!

