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Today’s Main Points

• Check in on HW#1.  Demo.

• Intro to Python computer programming language.

• Some examples Linguistic applications.

• The NLTK toolkit.

• Pointers to more Python resources.
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Python Outline

• Introduction
– Python attributes and ‘Why Python?’
– Running programs
– Modules

• Basic object types
– Numbers and variables
– Strings
– Lists, Tuples
– Dictionaries

• Control Flow
– Conditionals
– Loops
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Python Features

• Free.  Runs on many different machines.
• Easy to read.

– Perl = “write only language”
• Quick to throw something together.

– NaiveBayes Java vs Python
• Powerful.  Object-oriented.

• THE modern choice for CompLing.
• NLTK
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Using Python Interactively

$ python
>>> print “Hello everyone!”
Hello everyone!
>>> print 2+2
4
>>> myname = “Andrew”
>>> myname
‘Andrew’

The easiest way to give Python a whirl is interactively.
(Human typing in red.  Machine responses in black.)
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Modules

print 25*3                         # multiply by 3
print ‘CompLing ‘ + ‘lecture 3’    # concatenate with +
myname = ‘Andrew’

To save code you need to write it in files.
Module: a text file containing Python code.
Example: write the following to file foo.py

$ python foo.py
75
CompLing lecture 3
$

(No leading spaces!)

Then run it as follows:
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Importing Modules

$ python
>>> import foo
75
CompLing lecture 3
>>> foo.myname
‘Andrew’

Every file ending in .py is a Python module.
Modules can contain attributes such as functions.
We can import this module into Python.
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Module Reloading

>>> import foo
75
CompLing lecture 3

Importing is expensive--after the first import of a module, repeated
imports have no effect (even if you have edited it).
Use reload to force Python to rerun the file again.

Edit foo.py to print 25*4 (instead of 25*3) and reload

>>> reload(foo)
75
CompLing lecture 3
<module ‘foo’ from ‘foo.py’>
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Module Attributes

university = ‘UMass’
department = ‘Linguistics’

Consider file bar.py

>>> import bar
>>> print bar.department
Linguistics

>>> from bar import department
>>> print department
Linguistics

>>> from bar import *
>>> print university
UMass

from copies named attributes from a module, so they are variables in the recipient.
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Python Program Structure

• Programs are composed of modules
• Modules contain statements
• Statements contain expressions
• Expressions create and process objects

• Statements include
– variable assignment, function calls
– control flow, module access
– building functions, building objects
– printing
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Python’s built-in objects

• Numbers: integer, floating point
• Strings
• Lists
• Dictionaries
• Tuples
• Files
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Numbers and Variables

• Usual number operators, e.g: +, *, /, **
• Usual operator precedence:
A * B + C * D = (A * B) + (C * D)
(use parens for clarity and to reduce bugs)

• Useful modules: math, random

• Variables
– created when first assigned a value
– replaced with their values when used in expressions
– must be assigned before use
– no need to declare ahead of time
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Strings

• String handling in Python is easy and
powerful (unlike C, C++, Java)

• Strings may be written using single quotes:
‘This is a Python string’

• or double quotes
“and so is this”

• They are the same, it just makes it easy to
include single (or double) quotes:
‘He said “what?”’  or  “He’s here.”

(Learning Python, chapter 5)
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Backslash in strings
Backslash \ can be used to escape (protect) certain non-printing or
special characters.
For example, \n is newline, \t is tab.

>>> s = ‘Name\tAge\nJohn\t21\nBob\t44’
>>> print s
Name Age
John 21
Bob 44
>>> t = ‘”Mary\’s”’
>>> print t
“Mary’s”
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Triple quote
Use a triple quote (“”” or ‘’’) for a string over severa lines:

>>> s = “””this is
... a string
... over 3 lines”””
>>> t = ‘’’so
... is
... this’’’
>>> print s
this is
a string
over 3 lines
>>> print t
so
is
this
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String operations
Concatenation (+)
Length (len)
Repetition (*)
Indexing and slicing ([])

s = ‘computational’
t = ‘linguistics’
cl = s + ‘ ‘ + t # ‘computational linguistics’
l = len(cl) # 25
u = ‘-’ * 6 # ------
c = s[3] # p
x = cl[11:16] # ‘al li’
y = cl[20:] # ‘stics’
z = cl[:-1] # ‘computational linguistic’
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String methods
Methods are functions applied to and associated with objects
String methods allow strings to be processed in a more sophisticated way

s = ‘example’
s = s.capitalize() # ‘Example’
t = s.lower() # ‘example’
flag = s.isalpha() # True
s = s.replace(‘amp’,‘M’) # ‘exMle’
i = t.find(‘xa’) # 1
n = t.count(‘e’) # 2
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Lists in Python
• Ordered collection of arbitrary objects
• Accessed by indexing based on offset from start
• Variable length (grows automatically)
• Heterogeneous (can contain any type, nestable)
• Mutable (can change the elements, unlike strings)

>>> s = [‘a’, ‘b’, ‘c’]
>>> t = [1, 2, 3]
>>> u = s + t     # [‘a’, ‘b’, ‘c’, 1, 2, 3]
>>> n = len(u)     # 6
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Indexing and slicing lists
• Indexing and slicing work like strings
• Indexing returns the object at the given offset
• Slicing returns a list
• Can use indexing and slicing to change contents

l = [‘a’, ‘b’, ‘c’, ‘d’]
x = l[2] # ‘c’
m = l[1:] # [‘b’, ‘c’, ‘d’]
l[2] = ‘z’ # [‘a’, ‘b’, ‘z’, ‘d’]
l[0:2] = [‘x’, ‘y’] # [‘x’, ‘y’, ‘z’, ‘d’]

(Learning Python, chapter 6)
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List methods
• Lists also have some useful methods
• append adds an item to the list
• extend adds multiple items
• sort orders a list in place

l = [7, 8, 9, 3]
l.sort () # [3, 7, 8, 9]
l.append(6) # [3, 7, 8, 9, 6]
l.extend([‘r’, ‘s’]) # [3, 7, 8, 9, ‘r’, ‘s’]
l.append([1, 2]) # [3, 7, 8, 9, ‘r’, ‘s’ [1, 2]]

(Learning Python, chapter 6)
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Dictionaries

Dictionaries are
• Address by key, not by offset
• Unordered collections of arbitrary objects
• Variable length, heterogeneous

(can contain contain any type of object), nestable
• Mutable (can change the elements, unlike strings)

• Think of dictionaries as a set of key:value pairs
• Use a key to access its value

(Learning Python, chapter 7)
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Dictionary example
level = {‘low’:1, ‘medium’:5}
x = level[‘medium’] # 5
n = len(level) # 2

flag = level.has_key(‘low’) # True
l = level.keys() # [‘low’,‘medium’]

level[‘low’] = 2      # {‘low’:2, ‘medium’:5}
level[‘high’] = 10    # {‘low’:2, ‘high’:10, ‘medium’:5}

level.items()
[(‘low’,2), (‘high’,10), (‘medium’,5)]

level.values()
[2, 10, 5]
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Notes on dictionaries

• Sequence operations don’t work (e.g. slice)
dictionaries are mappings, not sequences.

• Dictionaries have a set of keys:
only one value per key.

• Assigning to a new key adds an entry
• Keys can be any immutable object, not just

strings.

• Dictionaries can be used as records
• Dictionaries can be used for sparse matrices.
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Other objects
Tuples: list lists, but immutable (cannot be changed)

emptyT = ()
t1 = (1, 2, 3)
x = t1[1] # 2
n = len(t1) # 3
y = t1[1:] # (2, 3)

Files: objects with methods for reading and writing to files
file = open(‘myfile’, ‘w’)
file.write(‘hellow file\n’)
file.close()

f2 = open(‘myfile’, ‘r’)
s = f2.readline() # ‘hello file\n’
t = f2.readline() # ‘’
all = open(‘myfile’).read()   #entire file as a string

(Learning Python, chapter 7)



Andrew McCallum, UMass Amherst,
 including material from Eqan Klein and Steve Renals, at Univ Edinburghh

Conditionals: if tests

• Indentation determines the block structure
Indentation to the left is the only place where whitespace matters in Python

• Indentation enforces readability
• Tests after if and elif can be just about anything:

False, 0, (), [], ‘’, all count as false
Other values count as true.

course = ‘Syntax’
if course == ‘Syntax’:

print ‘Bhatt’
print ‘or Potts’

elif course == ‘Computational Linguistics’:
print ‘McCallum’

else:
print ‘Someone else’

(Learning Python, chapter 9)
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while loops
A while loop keeps iterating while the test at the top remains True.

a = 0
b = 10
while a < b:

print a
a = a + 1

s = ‘abcdefg’
while len(s) > 0:

print s
s = s[1:]

(Learning Python, chapter 10)
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for loops
for is used to step through any sequence object

l = [‘a’, ‘b’, ‘c’]
for i in l:

print i

sum = 0
for x in [1, 2, 3, 4, 5, 6]:

sum = sum + x
print sum

(Learning Python, chapter 10)

range() is a useful function:
range(5) # [0, 1, 2, 3, 4]
range(2,5) # [2, 3, 4]
range(0,6,2) # [0, 2, 4]
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for loops with style
Do something to each item in a list (e.g. print its square)

l = [1, 2, 3, 4, 5, 6]  # or l = range(1,7)

# one way to print the square
for x in l:

print x*x

# another way to do it
n = len(l)
for i in range(n):

print l[i]*l[i]

Which is better?
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Example: intersecting sequences
(Keyword in)The intersection of

[‘a’, ‘d’, ‘f’, ‘g’] and [‘a’, ‘b’, ‘c’, ‘d’]
is  [‘a’, ‘d’]

l1 = [‘a’, ‘d’, ‘f’, ‘g’]
l2 = [‘a’, ‘b’, ‘c’, ‘d’]
# one way
result = []
for x in l1:

for y in l2:
if x == y:

result.append(x)
# or, alternatively
result = []
for x in l1:

if x in l2:
result.append(x) # result == [‘a’, ‘d’]
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Built-in, imported and user-defined functions
• Some functions are built-in, e.g.

• Some functions may be imported, e.g.

• Some functions are user-defined, e.g.

l = len([‘a’, ‘b’, ‘c’])

import math
from os import getcwd
print getcwd() # which directory am I in?
x = math.sqrt(9) # 3

def multiply(a, b):
return a * b

print multiply(4,5)
print multiply(‘-’,5)
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Functions in Python

• Functions are a way to group a set of statements that can
be run more than once in a program.

• They can take parameters as inputs, and can return a
value as output.

• Example

• def creates a function object, and assigns it to a name
• return sends an object back to the caller
• Adding () after the function’s name calls the function.

def square(x): # create and assign
return x*x

y = square(5) # y gets 25

(Learning Python, chapter 12)
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Intersection function

• Putting the code in a function means you can run it many times.
• General -- callers pass any 2 sequences
• Code is in one place.  Makes changing it easier (if you have to)

def intersect(seq1, seq2)
result = []
for x in seq1:

if x in seq2:
result.append(x)

return result



Andrew McCallum, UMass Amherst,
 including material from Eqan Klein and Steve Renals, at Univ Edinburghh

Local variables
Variables inside a function are local to that function.

>>> intersect(s1, s2):
... result = []
... for x in s1:
... if x in s2:
... result.append(x)
... return result
...
>>> intersect([1,2,3,4], [1,5,6,4])
[1, 4]
>>> result
Traceback (most recent call last):
  File “<stdin>”, line 1, in ?
NameError: name ‘result’ is not defined
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Argument passing
Arguments are passed by assigning objects to local names.

>>> def plusone(x):
... x = x + 1
... return x
...
>>> plusone(3)
4
>>> x = 6
>>> plusone(x)
7
>>> x
6
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Passing mutable arguments
Recall that numbers, strings, tuples are immutable, and that lists and
dictionaries are mutable:

>>> def appendone(s):
... s.append(‘one’)
... return s
...
>>> appendone([‘a’, ‘b’])
[‘a’, ‘b’, ‘one’]
>>> l = [‘x’, ‘y’]
>>> appendone(l)
[‘x, ‘y’, ‘one’]
>>> l
[‘x’, ‘y’, ‘one’]
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map
>>> counters = range(1,6)
>>> updated = []
>>> for x in counters:
... updated.append(x+3)
...
>>> updated
[4, 5, 6, 7, 8]

# Another way...
>>> def addthree(x):
... return x+3
...
# map() applies a function to all elements of a list
>>> map(addthree, counters)
[4, 5, 6, 7, 8]
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Anonymous functions and
list comprehensions

# lambda is a way to define a function with no name
>>> map((lambda x: x+3), counters)
[4, 5, 6, 7, 8]

# a list comprehension does something similar,
# but can offer more flexibility
>>> result = [addthree(x) for x in counters]
>>> result
[4, 5, 6, 7, 8]
>>> [addthree(x) for x in counters if x < 4]
[4, 5, 6]

Also check out apply, filter, and reduce.
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Guido van Rossum

Grew up in the Netherlands.

“December 1989, I was
looking for a ‘hobby’
programming project that
would keep me occupied
during the week around
Christmas....”
...Python 2.4... NASA, WWW
infrastructure, Google...

In December 2005, hired by
Google.
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Useful module: re
Regular expressions

import re

r = re.compile(r’\bdis(\w+)\b’)
s = ‘Then he just disappeared.’
match = r.search(s)
if match:

print “Found the regex in the string!”
print “The prefix was”, match.group(1)
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Useful module: random
Random number generator and random choices

>>> import random

>>> random.uniform(0,1)
0.16236

>>> list = [‘first’, ‘second’, ‘third’, ‘fourth’]
>>> random.choice(list)
‘third’
>>> random.choice(list)
‘first’
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NLTK: Python Natural Language Toolkit

• NLTK is a set of Python modules which you can import
into your programs, e.g.:
from nltk_lite.utilities import re_show

• NLTK is distributed with several corpora.
• Example corpora with NLTK:

– gutenberg (works of literature from Proj. Gutenberg)
– treebank (parsed text from the Penn treebank
– brown (1961 million words of POS-tagged text)

• Load a corpus (eg gutenberg) using:
>>> from nltk_lite.corpora import gutenberg
>>> print gutenberg.items
[‘autsen-emma’, ‘austen-persuasion’,...]
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Simple corpus operations

• Simple processing of a corpus includes tokenization
(splitting the text into word tokens), text normalization (eg
by case), and word stats, tagging and parsing.

• Count the number of words in “Macbeth”
from nltk_lite.corpora import gutenberg
nwords = 0
for word in gutenberg.raw(‘shakespeare-macbeth’):

nwords += 1
print nwords

• gutenberg.raw(textname) is an iterator, which
behaves like a sequence (eg a list) except it returns
elements one at a time as required.
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Richer corpora

• The Gutenberg corpus is tokenized as a sequence of words
with no further structure.

• The Brown corpus has sentences marked, and is stored as a
list of sentences, where a sentence is a list of word tokens.
We can use the extract function to obtain individual
sentences
from nltk_lite.corpora import brown
from nltk_lite.corpora import extract
firstSentence = extract(0, brown.raw(‘a’))
# [‘The’, ‘Fulton’, ‘County’, ‘Grand’, ‘jury’...]

• Part-of-speech tagged text can also be extracted:
taggedFirstSentence = extract(0, brown.tagged(‘a’))
# [(‘The’, ‘at’), (‘Fulton’, ‘np-tl’),
   (‘County’, ‘nn-tl’)...
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Parsed text
Parsed text from the Penn treebank can also be accessed

>>> from nltk_lite.corpora import treebank
>>> parsedSent = extract(0, treebank.parsed())
>>> print parsedSent
>>> print parsedSent
(S:

(NP-SBJ:
(NP: (NNP: 'Pierre') (NNP: 'Vinken'))
(,: ',')
(ADJP: (NP: (CD: '61') (NNS: 'years')) (JJ: 'old'))
(,: ','))

(VP:
(MD: 'will')
(VP: (VB: 'join') (NP: (DT: 'the') (NN: 'board'))

(PP-CLR: (IN: 'as') (NP: (DT: 'a') (JJ: 'nonexecutive')
(NN: 'director'))) (NP-TMP: (NNP: 'Nov.') (CD: '29'))))
(.: '.'))
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More Python Resources

• “Learning Python” book.

• NLTK Python intro for Linguists
http://nltk.sourceforge.net/lite/doc/en/programming.html

• Others listed at
“Resources” link on course home page

• Your TAs!
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Thank you!


