Statistical Models of Semantics and Unsupervised Language Discovery

Andrew McCallum

Computer Science Department
University of Massachusetts Amherst

Including slides from Chris Manning and Dan Klein.

Attachment Ambiguity

- Where to attach a phrase in the parse tree?
- "I saw the man with the telescope."
- What does "with a telescope" modify?
- Is the problem Al complete? Yes, but...
- Proposed simple structural factors
- Right association [Kimball 1973] 'low' or 'near' attachment = 'early closure' of NP
- Minimal attachment [Frazier 1978] (depends on grammar) $=$ 'high' or 'distant' attachment = 'late closure' (of NP)

Attachment Ambiguity

- "The children ate the cake with a spoon."
- "The children ate the cake with frosting."
- "Joe included the package for Susan."
- "Joe carried the package for Susan."
- Ford, Bresnan and Kaplan (1982): "It is quite evident, then, that the closure effects in these sentences are induced in some way by the choice of the lexical items."

Lexical acquisition, semantic similarity

- Previous models give same estimate to all unseen events.
- Unrealistic - could hope to refine that based on semantic classes of words
- Examples
- "Susan ate the cake with a durian."
- "Susan had never eaten a fresh durian before."
- Although never seen "eating pineapple" should be more likely than "eating holograms" because pineapple is similar to apples, and we have seen "eating apples".

An application: selectional preferences

- Most verbs prefer arguments of a particular type. Such regularities are called selectional preferences or selectional restrictions.
- "Bill drove a..." Mustang, car, truck, jeep
- Selectional preference strength: how strongly does a verb constrain direct objects
- "see" versus "unknotted"

Measuring selectional preference strength

- Assume we are given a clustering of (direct object) nouns. Resnick (1993) uses WordNet.
- Selectional association between a verb and a class

$$
S(v)=D\left(P(C \mid v) \| P(C)=\sum_{c} P(c \mid v) \log \frac{P(c \mid v)}{P(c)}\right.
$$

Proportion that its summand contributes to preference strength.

$$
A(v, c)=\frac{P(c \mid v) \log \frac{P(c \mid v)}{P(c)}}{S(v)}
$$

- For nouns in multiple classes, disambiguate as most likely sense:

$$
A(v, n)=\max _{c \in \operatorname{classes}(n)} A(v, c)
$$

Selection preference strength (made up data)

Noun class c	$\mathrm{P}(\mathrm{c})$	P(cleat)	P(c\|see)	P(c\|find)
people	0.25	0.01	0.25	0.33
furniture	0.25	0.01	0.25	0.33
food	0.25	0.97	0.25	0.33
action	0.25	0.01	0.25	0.01
SPS S(v)		1.76	0.00	0.35

$A($ eat, food $)=1.08$
A (find, action) $=-0.13$

Selectional Preference Strength example (Resnick, Brown corpus)

Verb v	Noun n	$A(v, n)$	Class	Noun n	$A(v, n)$	Class
answer	request	4.49	speech act	tragedy	3.88	communication
find	label	1.10	abstraction	fever	0.22	psych. feature
hear	story	1.89	communication	issue	1.89	communication
remember	reply	1.31	statement	smoke	0.20	article of commerce
repeat	comment	1.23	communication	journal	1.23	communication
read	article	6.80	writing	fashion	-0.20	activity
see	friend	5.79	entity	method	-0.01	method
write	letter	7.26	writing	market	0.00	commerce

But how might we measure word similarity for word classes?

- Vector spaces

A document-by-word matrix A.

	cosmonaut	astronaut	moon	car	truck
d_{1}	1	0	1	1	0
d_{2}	0	1	1	0	0
d_{3}	1	0	0	0	0
d_{4}	0	0	0	1	1
d_{5}	0	0	0	1	0
d_{6}	0	0	0	0	1

But how might we measure word similarity for word classes?

- Vector spaces word-by-word matrix B

	cosmonaut	astronaut	moon	car	truck
cosmonaut	2	0	1	1	0
astronaut	0	1	1	0	0
moon	1	1	2	1	0
car	1	0	1	3	1
truck	0	0	0	1	2

A modifier-by-head matrix C

	cosmonaut	astronaut	moon	car	truck
Soviet	1	0	0	1	1
American	0	1	0	1	1
spacewalking	1	1	0	0	0
red	0	0	0	1	1
full	0	0	1	0	0
old	0	0	0	1	1

Similarity measures for binary vectors

Similarity measure matching coefficient $\quad|X \cap Y|$

Dice coefficient

$$
\frac{2|X \cap Y|}{|X|+|Y|}
$$

Jaccard coefficient

$$
\frac{|X \cap Y|}{|X \cup Y|}
$$

Overlap coefficient $\quad \frac{|X \cap Y|}{\min (|X|,|Y|)}$
cosine

$$
\frac{|X \cap Y|}{\sqrt{|X| \times|Y|}}
$$

Cosine measure

$$
\cos (\vec{x}, \vec{y})=\frac{\vec{x} \cdot \vec{y}}{|\vec{x}||\vec{y}|}=\frac{\sum_{i=1}^{n} x_{i} y_{i}}{\sqrt{\sum_{i=1}^{n} x_{i}^{2}} \sqrt{\sum_{i=1}^{n} y_{i}^{2}}}
$$

maps vectors onto unit circle by dividing through by lengths:

$$
|\vec{x}|=\sqrt{\sum_{i=1}^{n} x_{i}^{2}}
$$

Example of cosine measure on word-by-word matrix on NYT

Focus word	Nearest neighbors							
garlic	sauce	.732	pepper	.728	salt	.726	cup	.726
fallen	fell	.932	decline	.931	rise	.930	drop	.929
engineered	genetically	.758	drugs	.688	research	.687	drug	.685
Alfred	named	.814	Robert	.809	William	.808	W	.808
simple	something	.964	things	.963	You	.963	always	.962

Probabilistic measures

(Dis-)similarity measure
Definition
KL divergence
Skew

$$
\begin{gathered}
D(p \| q)=\sum_{i} p_{i} \log \frac{p_{i}}{q_{i}} \\
D(q \| \alpha r+(1-\alpha) q)
\end{gathered}
$$

Jensen-Shannon (was IRad) $\frac{1}{2} D\left(p \| \frac{p+q}{2}\right)+D\left(q \| \frac{p+q}{2}\right)$
L_{1} norm (Manhattan)

$$
\sum_{i}\left|p_{i}-q_{i}\right|
$$

Neighbors of word "company"
 [Lee]

Skew $(\alpha=0.99)$	J.-S.	Euclidean
airline	business	city
business	airline	airline
bank	firm	industry
agency	bank	program
firm	state	organization
department	agency	bank
manufacturer	group	system
network	govt.	today
industry	city	series
govt.	industry	portion

Learning syntactic patterns for automatic hypernym discovery

Rion Snow, Daniel Jurafsky, and Andrew Y. Ng.

- It has long been a goal of AI to automatically acquire structured knowledge directly from text, e.g, in the form of a semantic network.
"A small portion of the author's semantic network."
- Douglas Hofstadter, Gödel, Escher, Bach

We aim to classify whether a noun pair (X, Y) participates in one of the following semantic relationships:

Hypernymy (ancestor)

$Y \underset{H}{>} X$ if " χ is a kind of Y ".
entity $\underset{H}{>}$ organism $\underset{H}{>}$ person
Coordinate Terms (taxonomic sisters)
if X and Y possess a common
$Y \square X$ hypernym, i.e. $\exists Z$ such that " X and Y are both kinds of Z."
horse $\square_{C} \operatorname{dog} \square_{C}$ cat

Individual feature analysis

- Precision/recall for 69,592 classifiers (one per feature)
- Classifier f classifies noun pair \boldsymbol{x} as hypernym iff $x_{f}>0$
- In red: patterns originally proposed in (Hearst, 1992)
"Oxygen is the most abundant element on the moon."

Dependency Graph:

Dependency Paths (for "oxygen / element"):
-N:s:VBE, "be" VBE:pred:N
-N:s:VBE, "be" VBE:pred:N,(the,Det:det:N)
-N:s:VBE, "be" VBE:pred:N,(most,PostDet:post:N)
-N:s:VBE, "be" VBE:pred:N,(abundant,A:mod:N)
-N:s:VBE, "be" VBE:pred:N,(on,Prep:mod:N)

Rediscovering Hearst's Patterns

Y such as $\mathrm{X} . .$.

Such Y as X...
$X . .$. and other Y

Proposed in (Hearst, 1992) and used in (Caraballo, 2001), (Widdows, 2003), and others - but what about the rest of the lexico-syntactic pattern space?

Example: Using the "Y called X" Pattern for Hypernym Acquisition MINIPAR path: -N:desc:V, call, call.-V:vrel:N \rightarrow "<hypernym> 'called' <hyponym>"

None of the following links are contained in WordNet (or the training set, by extension).

Hyponym	Hypernym	Sentence Fragment
efflorescence	condition	\ldots...and a condition called efflorescence...
'neal inc	company	...The company, now called O^{\prime} 'Neal Inc...
hat creek outfit	ranch	...run a small ranch called the Hat Creek Outfit.
tardive dyskinesia	problem	... irreversible problem called tardive dyskinesia...
hiv-1	aids virus	...infected by the AIDS virus, called HIV-1.
bateau mouche	attraction	...sightseeing attraction called the Bateau Mouche...
kibbutz malkiyva	collective farm	...Israeli collective farm called Kibbutz Malkiyya...
Type of Noun Pair	Count Example	Pair
NE: Person	7 "John F.	Kennedy / president", "Marlin Fitzwater / spokesman"
NE: Place	7 "Diamon	d Bar / city", "France / place"
NE: Company	2 "Americ	n Can / company", "Simmons / company"
NE: Other	1 "Is Elvis	Alive / book"
Not Named Entity:	9 "earthqu	ake / disaster", "soybean / crop"

A better hypernym classifier

Hypernym classifiers on WordNet-labeled dev set

- 10 -fold cross validation on the WordNet-labeled data
- Conclusion: 70,000 features are more powerful than 6

VERBOCEAN: Mining the Web for Fine-Grained Semantic Verb Relations

Timothy Chklovski and Patrick Pantel

Why Detect Semantic Rels between Verbs?

- So that we can
- Understand the relationship when it's not stated
- Napoleon fought and won the battle
- During the holidays, people wrap and unwrap presents
- Soldiers prefer to avoid getting wounded and killed
- Use the relationship when summarizing across documents (e.g. same event, preceding event)
- The board considered the offer of \$3B
- The board accepted the offer \$3.8B
- The board okayed the offer of approximately \$4B
- Determine if two people have similar views on and event
- "I nudged him."
- "He shoved me."
- Hard to do manually

Why use Web? Motivating Intuition

- Small collections are tough: Semantics is often implied (Lenat, Chklovski)
- The Web's 10^{12} is a lot of words
- So, Use small bits of more detailed text to help with mass of general text
- Patterns issued to a search engine and their correlation

ISI
 Muwia Sotmeshent
 Relevant Work

- Levin's classes (similarity)
- 3200 verbs in 191 classes
- PropBank
- 4,659 framesets (1.4 framesets per verb)
- VerbNet
- 191 coarse-grained groupings (with overlap)
- FrameNet
- WordNet
- troponomy
- antonymy
- entailment

Fellbaum's (1998) entailment hierarchy.

VerbOcean: Web-based Extraction of Verb Relations

- VerbOcean is a network of verb relations
- Currently, over 3400 nodes with on average 13 relations per verb
- Detected relation types are:
- similarity
- strength
- antonymy
- enablement
- temporal precedence (happens-before)
- Download from http://semantics.isi.edu/ocean/

ISI Approach

- Three stages:
- Identify pairs of highly associated verbs co-occurring on the Web with sufficient frequency using DIRT (Lin and Pantel 2001)
- For each verb pair
- test patterns associated with each semantic relation
- E.g. Temporal Precedence:
"to X and then Y ", "Xed and then Yed"
- calculate a score for each possible semantic relation
- Compare the strengths of the individual semantic relations and output a consistent set as the final output
- prefer the most specific and then strongest relations

Lexical Patterns

SEmANTIC RELATION	Surface Patterns	Example
similarity (4)	X ie Y Xed and Yed	"She heckled and taunted the comedian."
strength (8)	X even Y Xed even Yed Xed and even Yed not just Xed but Yed	"He not just harassed, but terrorized her."
enablement (4)	Xed * by Ying the Xed * by Ying or to X * by Ying the	"She saved the document by clicking the button."
antonymy (7)	either X or Y either Xs or Ys Xed * but Yed	"There's something about Mary: you will either
love or hate her."		
to X and then Y Xed * and then Yed to X and later Y to X and subsequently Y Y Xed and subsequently Yed	"He designed the prototype and then patented it."	

Lexical Patterns Match...

- Refined to decrease capturing wrong parts of speech or incorrect semantic relations
- Xed * by Ying the; Xed * by Ying or
- "... waved at by parking guard ..."
- "... encouraged further by sailing lessons ..."

ISV VerbOcean - Similarity

- Verbs that are similar or related
- e.g. boo - heckle

VerbOcean - Strength

- Similar verbs that denote a more intense, thorough, comprehensive or absolute action
- e.g. change-of-state verbs that denote a more complete change (shock \rightarrow startle)

VerbOcean - Antonymy

- Semantic opposition
- switching thematic roles associated with the verb (buy - sell)
- stative verbs (live - die)
- sibling verbs which share a parent (walk - run)
- restitutive opposition: antonymy + happens-before (damage - repair)

VerbOcean - Enablement

- Holds between two verbs V_{1} and V_{2} when the pair can be glossed as " V_{1} is accomplished by V_{2} " (assess review)

Appendix. Sample relations extracted by our system.

Semantic Relation	EXAMPLES	Semantic Relation	EXAMPLES	Semantic Relation	EXAMPLES
similarity	maximize :: enhance produce :: create reduce :: restrict	enablement	assess :: review accomplish :: complete double-click :: click	happens before	detain :: prosecute enroll :: graduate schedule :: reschedule
strength	permit :: authorize surprise :: startle startle :: shock	antonymy	assemble :: dismantle regard :: condemn roast :: fry		

Demo

http://semantics.isi.edu/ocean/

Clustering words into topics with Latent Dirichlet Allocation

[Blei, Ng, Jordan 2003]

Generative

Process:

For each document:
Sample a distribution over topics, θ

For each word in doc
Sample a topic, z

Sample a word from the topic, w

Example:

70\% Iraq war
30\% US election

Iraq war
"bombing"

Example topics induced from a large collection of text

| DISEASE | WATER | MIND | STORY | FIELD | SCIENCE | BALL | JOB |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| BACTERIA | FISH | WORLD | STORIES | MAGNETIC | STUDY | GAME | WORK |
| DISEASES | SEA | DREAM | TELL | MAGNET | SCIENTISTS | TEAM | JOBS |
| GERMS | SWIM | DREAMS | CHARACTER | WIRE | SCIENTIFIC | FOOTBALL | CAREER |
| FEVER | SWIMMING | THOUGHT | CHARACTERS | NEEDLE | KNOWLEDGE | BASEBALL | EXPERIENCE |
| CAUSE | POOL | IMAGINATION | AUTHOR | CURRENT | WORK | PLAYERS | EMPLOYMENT |
| CAUSED | LIKE | MOMENT | READ | COIL | RESEARCH | PLAY | OPPORTUNITIES |
| SPREAD | SHELL | THOUGHTS | TOLD | POLES | CHEMISTRY | FIELD | WORKING |
| VIRUSES | SHARK | OWN | SETTING | IRON | TECHNOLOGY | PLAYER | TRAINING |
| INFECTION | TANK | REAL | TALES | COMPASS | MANY | BASKETBALL | SKILLS |
| VIRUS | SHELLS | LIFE | PLOT | LINES | MATHEMATICS | COACH | CAREERS |
| MICROORGANISMS | SHARKS | IMAGINE | TELLING | CORE | BIOLOGY | PLAYED | POSITIONS |
| PERSON | DIVING | SENSE | SHORT | ELECTRIC | FIELD | PLAYING | FIND |
| INFECTIOUS | DOLPHINS | CONSCIOUSNESS | FICTION | DIRECTION | PHYSICS | HIT | POSITION |
| COMMON | SWAM | STRANGE | ACTION | FORCE | LABORATORY | TENNIS | FIELD |
| CAUSING | LONG | FEELING | TRUE | MAGNETS | STUDIES | TEAMS | OCCUPATIONS |
| SMALLPOX | SEAL | WHOLE | EVENTS | BE | WORLD | GAMES | REQUIRE |
| BODY | DIVE | BEING | TELLS | MAGNETISM | SCIENTIST | SPORTS | OPPORTUNITY |
| INFECTIONS | DOLPHIN | MIGHT | TALE | POLE | STUDYING | BAT | EARN |
| CERTAIN | UNDERWATER | HOPE | NOVEL | INDUCED | SCIENCES | TERRY | ABLE |

[Tennenbaum et al]

Example topics induced from a large collection of text

| DISEASE | WATER | MIND | STORY | FIELD | SCIENCE | BALL | JOB |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| BACTERIA | FISH | WORLD | STORIES | MAGNETIC | STUDY | GAME | WORK |
| DISEASES | SEA | DREAM | TELL | MAGNET | SCIENTISTS | TEAM | JOBS |
| GERMS | SWIM | DREAMS | CHARACTER | WIRE | SCIENTIFIC | FOOTBALL | CAREER |
| FEVER | SWIMMING | THOUGHT | CHARACTERS | NEEDLE | KNOWLEDGE | BASEBALL | EXPERIENCE |
| CAUSE | POOL | IMAGINATION | AUTHOR | CURRENT | WORK | PLAYERS | EMPLOYMENT |
| CAUSED | LIKE | MOMENT | READ | COIL | RESEARCH | PLAY | OPPORTUNITIES |
| SPREAD | SHELL | THOUGHTS | TOLD | POLES | CHEMISTRY | FIELD | WORKING |
| VIRUSES | SHARK | OWN | SETTING | IRON | TECHNOLOGY PLAYER | TRAINING | |
| INFECTION | TANK | REAL | TALES | COMPASS | MANY | BASKETBALL | SKILLS |
| VIRUS | SHELLS | LIFE | PLOT | LINES | MATHEMATICS | COACH | CAREERS |
| MICROORGANISMS | SHARKS | IMAGINE | TELLING | CORE | BIOLOGY | PLAYED | POSITIONS |
| PERSON | DIVING | SENSE | SHORT | ELECTRIC | FIELD | PLAYING | FIND |
| INFECTIOUS | DOLPHINS | CONSCIOUSNESS | FICTION | DIRECTION | PHYSICS | HIT | POSITION |
| COMMON | SWAM | STRANGE | ACTION | FORCE | LABORATORY | TENNIS | FIELD |
| CAUSING | LONG | FEELING | TRUE | MAGNETS | STUDIES | TEAMS | OCCUPATIONS |
| SMALLPOX | SEAL | WHOLE | EVENTS | BE | WORLD | GAMES | REQUIRE |
| BODY | DIVE | BEING | TELLS | MAGNETISM | SCIENTIST | SPORTS | OPPORTUNITY |
| INFECTIONS | DOLPHIN | MIGHT | TALE | POLE | STUDYING | BAT | EARN |
| CERTAIN | UNDERWATER | HOPE | NOVEL | INDUCED | SCIENCES | TERRY | ABLE |

[Tennenbaum et al]

Collocations

- An expression consisting of two or more words that correspond to some conventional way of saying things.
- Characterized by limited compositionality.
- compositional: meaning of expression can be predicted by meaning of its parts.
- "strong tea", "rich in calcium"
- "weapons of mass destruction"
- "kick the bucket", "hear it through the grapevine"

Topics Modeling Phrases

- Topics based only on unigrams often difficult to interpret
- Topic discovery itself is confused because important meaning / distinctions carried by phrases.
- Significant opportunity to provide improved language models to ASR, MT, IR, etc.

Topical N-gram Model

LDA Topic

LDA

algorithms algorithm genetic problems efficient

Topical N-grams

genetic algorithms genetic algorithm evolutionary computation evolutionary algorithms fitness function

Topic Comparison

LDA

learning
optimal
reinforcement
state
problems
policy
dynamic
action
programming
actions
function
markov
methods
decision
rl
continuous
spaces
step
policies
planning

Topical N-grams (2) Topical N -grams (1)

reinforcement learning
optimal policy
dynamic programming optimal control
function approximator prioritized sweeping
finite-state controller
learning system
reinforcement learning rl function approximators markov decision problems
markov decision processes
local search
state-action pair
markov decision process
belief states
stochastic policy
action selection
upright position
reinforcement learning methods
policy
action
states
actions
function
reward
control
agent
q-learning
optimal
goal
learning
space
step
environment
system
problem
steps
sutton
policies

Topic Comparison

LDA

motion
visual
field
position
figure direction
fields
eye
location
retina
receptive
velocity
vision
moving
system
flow
edge
center
light
local

Topical N -grams (2) Topical N -grams (1)

receptive field
spatial frequency
temporal frequency
visual motion
motion energy
tuning curves
horizontal cells
motion detection
preferred direction
visual processing
area mt
visual cortex
light intensity
directional selectivity
high contrast
motion detectors
spatial phase
moving stimuli
decision strategy
visual stimuli
motion
response
direction
cells
stimulus
figure
contrast
velocity
model
responses
stimuli
moving
cell
intensity
population
image
center
tuning
complex
directions

Topic Comparison

LDA
word
system
recognition
hmm
speech
training
performance
phoneme
words
context
systems
frame
trained
speaker
sequence
speakers
mlp
frames
segmentation
models

Topical N-grams (2) Topical N -grams (1)

speech recognition training data neural network error rates neural net hidden markov model feature vectors continuous speech
training procedure
continuous speech recognition
gamma filter
hidden control
speech production
neural nets
input representation
output layers
training algorithm
test set
speech frames
speaker dependent
speech
word
training
system
recognition
hmm
speaker
performance
phoneme
acoustic
words
context
systems
frame
trained
sequence
phonetic
speakers
mlp
hybrid

Unsupervised learning of topic hierarchies

(Blei, Griffiths, Jordan \& Tenenbaum, NIPS 2003)

Joint models of syntax and semantics (Grififiths,

 Steyvers, Blei \& Tenenbaum, NIPS 2004)- Embed topics model inside an nth order Hidden Markov Model:

Semantic classes

FOOD	MAP	DOCTOR	BOOK	GOLD	BEHAVIOR	CELLS	PLANTS
FOODS	NORTH	PATIENT	BOOKS	IRON	SELF	CELL	PLANT
BODY	EARTH	HEALTH	READING	SILVER	INDIVIDUAL	ORGANISMS	LEAVES
NUTRIENTS	SOUTH	HOSPITAL	INFORMATION	COPPER	PERSONALITY	ALGAE	SEEDS
DIET	POLE	MEDICAL	LIBRARY	METAL	RESPONSE	BACTERIA	SOIL
FAT	MAPS	CARE	REPORT	METALS	SOCIAL	MICROSCOPE	ROOTS
SUGAR	EQUATOR	PATIENTS	PAGE	STEEL	EMOTIONAL	MEMBRANE	FLOWERS
ENERGY	WEST	NURSE	TITLE	CLAY	LEARNING	ORGANISM	WATER
MILK	LINES	DOCTORS	SUBJECT	LEAD	FEELINGS	FOOD	FOOD
EATING	EAST	MEDICINE	PAGES	ADAM	PSYCHOLOGISTS	LIVING	GREEN
FRUITS	AUSTRALIA	NURSING	GUIDE	ORE	INDIVIDUALS	FUNGI	SEED
VEGETABLES	GLOBE	TREATMENT	WORDS	ALUMINUM	PSYCHOLOGICAL	MOLD	STEMS
WEIGHT	POLES	NURSES	MATERIAL	MINERAL	EXPERIENCES	MATERIALS	FLOWER
FATS	HEMISPHERE	PHYSICIAN	ARTICLE	MINE	ENVIRONMENT	NUCLEUS	STEM
NEEDS	LATITUDE	HOSPITALS	ARTICLES	STONE	HUMAN	CELLED	LEAF
CARBOHYDRATES	PLACES	DR	WORD	MINERALS	RESPONSES	STRUCTURES	ANIMALS
VITAMINS	LAND	SICK	FACTS	POT	BEHAVIORS	MATERIAL	ROOT
CALORIES	WORLD	ASSISTANT	AUTHOR	MINING	ATTITUDES	STRUCTURE	POLLEN
PROTEIN	COMPASS	EMERGENCY	REFERENCE	MINERS	PSYCHOLOGY	GREEN	GROWING
MINERALS	CONTINENTS	PRACTICE	NOTE	TIN	PERSON	MOLDS	GROW

Syntactic classes

SAID	THE	MORE	ON	GOOD	ONE	HE	BE
ASKED	HIS	SUCH	AT	SMALL	SOME	YOU	MAKE
THOUGHT	THEIR	LESS	INTO	NEW	MANY	THEY	GET
TOLD	YOUR	MUCH	FROM	IMPORTANT	TWO	I	HAVE
SAYS	HER	KNOWN	WITH	GREAT	EACH	SHE	GO
MEANS	ITS	JUST	THROUGH	LITTLE	ALL	WE	TAKE
CALLED	MY	BETTER	OVER	LARGE	MOST	IT	DO
CRIED	OUR	RATHER	AROUND	$*$	ANY	PEOPLE	FIND
SHOWS	THIS	GREATER	AGAINST	BIG	THREE	EVERYONE	USE
ANSWERED	THESE	HIGHER	ACROSS	LONG	THIS	OTHERS	SEE
TELLS	A	LARGER	UPON	HIGH	EVERY	SCIENTISTS	HELP
REPLIED	AN	LONGER	TOWARD	DIFFERENT	SEVERAL	SOMEONE	KEEP
SHOUTED	THAT	FASTER	UNDER	SPECIAL	FOUR	WHO	GIVE
EXPLAINED	NEW	EXACTLY	ALONG	OLD	FIVE	NOBODY	LOOK
LAUGHED	THOSE	SMALLER	NEAR	STRONG	BOTH	ONE	COME
MEANT	EACH	SOMETHING	BEHIND	YOUNG	TEN	SOMETHING	WORK
WROTE	MR	BIGGER	OFF	COMMON	SIX	ANYONE	MOVE
SHOWED	ANY	FEWER	ABOVE	WHITE	MUCH	EVERYBODY	LIVE
BELIEVED	MRS	LOWER	DOWN	SINGLE	TWENTY	SOME	EAT
WHISPERED	ALL	ALMOST	BEFORE	CERTAIN	EIGHT	THEN	BECOME

Corpus-specific factorization (NIPS)

image	data	state	membrane	chip	experts	kernel	network
images	gaussian	policy	synaptic	analog	expert	support	neura
object	mixture	value	cell	neuron	gating	vector	networks
objects	likelihood	function	*	digital	hme	svm	output
feature	posterior	action	current	synapse	architecture	kernels	input
recognition	prior	reinforcement	dendritic	neural	mixture	\#	training
views	distribution	learning	potential	hardware	learning	space	inputs
\#	em	classes	neuron	weight	mixtures	function	weights
pixel	bayesian	optimal	conductance	\#	function	machines	\#
visual	parameters		channels	vlsi	gate	set	outputs
in	is	see	used	model	networks	however	\#
with	was	show	trained	algorithm	values	also	*
for	has	note	obtained	system	results	then	1
on	becomes	consider	described	case	models	thus	x
from	denotes	assume	given	problem	parameters	therefore	t
at	being	present	found	network	units	first	n
using	remains	need	presented	method	data	here	-
into	represents	propose	defined	approach	functions	now	c
over	exists	describe	generated	paper	problems	hence	r
within	seems	suggest	shown	process	algorithms	finally	p

Syntactic classes in PNAS

5	8	14	25	26	30	33
IN	ARE	THE	SUGGEST	LEVELS	RESULTS	BEEN
FOR	WERE	THIS	INDICATE	NUMBER	ANALYSIS	MAY
ON	WAS	ITS	SUGGESTING	LEVEL	DATA	CAN
BETWEEN	IS	THEIR	SUGGESTS	RATE	STUDIES	COULD
DURING	WHEN	AN	SHOWED	TIME	STUDY	WELL
AMONG	REMAIN	EACH	REVEALED	CONCENTRATIONS	FINDINGS	DID
FROM	REMAINS	ONE	SHOW	VARIETY	EXPERIMENTS	DOES
UNDER	REMAINED	ANY	DEMONSTRATE	RANGE	OBSERVATIONS	DO
WITHIN	PREVIOUSLY	INCREASED	INDICATING	CONCENTRATION	HYPOTHESIS	MIGHT
THROUGHOUT	BECOME	EXOGENOUS	PROVIDE	DOSE	ANALYSES	SHOULD
THROUGH	BECAME	OUR	SUPPORT	FAMILY	ASSAYS	WILL
TOWARD	BEING	RECOMBINANT	INDICATES	SET	POSSIBILITY	WOULD
INTO	BUT	ENDOGENOUS	PROVIDES	FREQUENCY	MICROSCOPY	MUST
AT	GIVE	TOTAL	INDICATED	SERIES	PAPER	CANNOT
INVOLVING	MERE	PURIFIED	DEMONSTRATED	AMOUNTS	WORK	REMAINED
AFTER	APPEARED	TILE	SHOWS	RATES	EVIDENCE	ALSO
ACROSS	APPEAR	FULL	SO	CLASS	FINDING	THEY
AGAINST	ALLOWED	CHRONIC	REVEAL	VALUES	MUTAGENESIS	BECOME
WHEN	NORMALLY	ANOTHER	DEMONSTRATES	AMOUNT	OBSERVATION	MAG
ALONG	EACH	EXCESS	SUGGESTED	SITES	MEASUREMENTS	LIKELY

Semantic highlighting

Darker words are more likely to have been generated from the topic-based "semantics" module:

In contrast to this approach, we study here how the overall network activity can control single cell parameters such as input resistance, as well as time and space constants, parameters that are crucial for excitability and spariotemporal (sic) integration.

The integrated architecture in this paper combines feed forward control and error feedback adaptive control using neural networks.

In other words, for our proof of convergence, we require the softassign algorithm to return a doubly stochastic matrix as *sinkhorn theorem guarantees that it will instead of a matrix which is merely close to being doubly stochastic based on some reasonable metric.

The aim is to construct a portfolio with a maximal expected return for a given risk level and time horizon while simultaneously obeying *institutional or *legally required constraints.

The left graph is the standard experiment the right from a training with \# samples
The graph G is called the *guest graph, and H is called the host graph.

Social Network Analysis: Group and Topic Discovery

Xuerui Wang and Andrew McCallum

Groups and Topics

- Input:
- Observed relations between people
- Attributes on those relations (text, or categorical)
- Output:
- Attributes clustered into "topics"
- Groups of people---varying depending on topic

Discovering Groups from Observed Set of Relations

Student Roster	Academic Admiration
Adams	Acad(A, B) Acad(C, B)
Bennett	Acad(A, D) Acad(C, D)
Carter	Acad(B, E) Acad(D, E)
Davis	Acad(B, F) Acad(D, F)
Edwards	Acad(E, A) Acad(F, A)
Frederking	Acad(E, C) Acad(F, C)

Admiration relations among six high school students.

Adjacency Matrix Representing Relations

Student Roster	Academic Admiration
Adams	Acad(A, B) Acad(C, B)
Bennett	Acad(A, D) Acad(C, D)
Carter	Acad(B, E) Acad(D, E)
Davis	Acad(B, F) Acad(D, F)
Edwards	Acad(E, A) Acad(F, A)
Frederking	Acad(E, C) Acad(F, C)

								B ${ }^{\text {C }}$	\|D						C	B	D	E	
		C		F			G1	G2G1	192		G3				G1	G2	G2		G3
A						A1							A G1						
B						G2							G1						
C						G1							G2						
D						G2							G2						
E						G3							G3						
F						G3							G3						

Group Model: Partitioning Entities into Groups

Stochastic Blockstructures for Relations

[Nowicki, Snijders 2001]
S : number of entities
G : number of groups

Enhanced with arbitrary number of groups in [Kemp, Griffiths, Tenenbaum 2004]

Two Relations with Different Attributes

The Group-Topic Model:
 Discovering Groups and Topics Simultaneously

[Wang, Mohanty, McCallum 2006]

Inference and Estimation

Gibbs Sampling:

- Many r.v.s can be integrated out
- Easy to implement
- Reasonably fast

We assume the relationship is symmetric.

$$
\begin{aligned}
& P\left(t_{b} \mid \mathbf{V}, \mathbf{g}, \mathbf{w}, \mathbf{t}_{-b}, \alpha, \beta, \eta\right) \\
\propto & \frac{\prod_{v=1}^{V} \prod_{x=1}^{e_{v}^{(b)}}\left(\eta_{v}+c_{t_{b} v}-x\right)}{\prod_{x=1}^{\sum_{v=1}^{V} e_{v}^{(b)}}\left(\sum_{v=1}^{V}\left(\eta_{v}+c_{t_{b} v}\right)-x\right)} \\
& \times \prod_{g=1}^{G} \prod_{h=g}^{G} \frac{\prod_{k=1}^{2} \Gamma\left(\beta_{k}+m_{g h k}^{(b)}\right)}{\Gamma\left(\sum_{k=1}^{2}\left(\beta_{k}+m_{g h k}^{(b)}\right)\right)},
\end{aligned}
$$

$$
P\left(g_{s t} \mid \mathbf{V}, \mathbf{g}_{-s t}, \mathbf{w}, \mathbf{t}, \alpha, \beta, \eta\right)
$$

$$
\propto \frac{\alpha_{g_{s t}}+n_{t g_{s t}}-1}{\sum_{g=1}^{G}\left(\alpha_{g}+n_{t g}\right)-1} \prod_{b=1}^{B}\left(I\left(t_{b}=t\right)\right.
$$

$$
\left.\times \prod_{h=1}^{G} \frac{\prod_{k=1}^{2} \prod_{x=1}^{d_{g_{s t} h k}^{(b)}}\left(\beta_{k}+m_{g_{s t} h k}^{(b)}-x\right)}{\prod_{x=1}^{\sum_{k=1}^{2} d_{g_{s t h}}^{(b)}}\left(\left(\sum_{k=1}^{2}\left(\beta_{k}+m_{g_{s t} h k}^{(b)}\right)-x\right)\right.}\right)
$$

Dataset \#1:

U.S. Senate

- 16 years of voting records in the US Senate (1989-2005)
- a Senator may respond Yea or Nay to a resolution
- 3423 resolutions with text attributes (index terms)
- 191 Senators in total across 16 years

S. 543
Title: An Act to reform Federal deposit insurance, protect the deposit insurance
funds, recapitalize the Bank Insurance Fund, improve supervision and regulation
of insured depository institutions, and for other purposes.
Sponsor: Sen Riegle, Donald W., Jr. [MI] (introduced 3/5/1991) Cosponsors (2)
Latest Major Action: 12/19/1991 Became Public Law No: 102-242.
Index terms: Banks and banking
Accounting Administrative fees
Credit Deposit insurance $\underline{\text { Depressed areas and other } 110 \text { terms }}$

Adams (D-WA), Nay Akaka (D-HI), Yea Bentsen (D-TX), Yea Biden (D-DE), Yea Bond (R-MO), Yea Bradley (D-NJ), Nay Conrad (D-ND), Nay

Topics Discovered (U.S. Senate)

Mixture of Unigrams

Group-Topic Model

Education	Energy	Military Misc.	Economic
education school aid children drug students elementary prevention	energy power water nuclear gas petrol research pollution	government military foreign tax congress aid law policy	federal labor insurance aid tax business employee care
Education + Domestic	Foreign	Economic	Social Security + Medicare
education school federal aid government tax energy research	foreign trade chemicals tariff congress drugs communicable diseases	labor insurance tax congress income minimum wage business	social security insurance medical care medicare disability assistance

Groups Discovered (US Senate)

Groups from topic Education + Domestic

Group 1	Group 3	Group 4
73 Republicans	Cohen(R-ME)	Armstrong(R-CO)
Krueger(D-TX)	Danforth(R-MO)	Garn(R-UT)
Group 2	Durenberger(R-MN)	Humphrey(R-NH)
90 Democrats	Hatfield(R-OR)	McCain(R-AZ)
Chafee,L.(R-RI)	Heinz(R-PA)	McClure(R-ID)
Jeffords(I-VT)	Jeffords(R-VT)	Roth(R-DE)
	Kassebaum(R-KS)	Symms(R-ID)
	Packwood(R-OR)	Wallop(R-WY)
	Specter(R-PA)	Brown(R-CO)
	Snowe(R-ME)	DeWine(R-OH)
	Collins(R-ME)	Thompson(R-TN)
		Fitzgerald(R-IL)
		Voinovich(R-OH)
		Miller(D-GA)
		Coleman(R-MN)

Senators Who Change Coalition the most Dependent on Topic

Senator	Group Switch Index
Shelby(D-AL)	0.6182
Heflin(D-AL)	0.6049
Voinovich(R-OH)	0.6012
Johnston(D-LA)	0.5878
Armstrong(R-CO)	0.5747

e.g. Senator Shelby (D-AL) votes with the Republicans on Economic with the Democrats on Education + Domestic with a small group of maverick Republicans on Social Security + Medicaid

Dataset \#2:
 The UN General Assembly

- Voting records of the UN General Assembly (1990-2003)
- A country may choose to vote Yes, No or Abstain
- 931 resolutions with text attributes (titles)
- 192 countries in total
- Also experiments later with resolutions from 1960-2003

Vote on Permanent Sovereignty of Palestinian People, 87th plenary meeting

The draft resolution on permanent sovereignty of the Palestinian people in the occupied Palestinian territory, including Jerusalem, and of the Arab population in the occupied Syrian Golan over their natural resources (document A/54/591) was adopted by a recorded vote of 145 in favour to 3 against with 6 abstentions:

In favour: Afghanistan, Argentina, Belgium, Brazil, Canada, China, France, Germany, India, Japan, Mexico, Netherlands, New Zealand, Pakistan, Panama, Russian Federation, South Africa, Spain, Turkey, and other 126 countries.
Against: Israel, Marshall Islands, United States.
Abstain: Australia, Cameroon, Georgia, Kazakhstan, Uzbekistan, Zambia.

Topics Discovered (UN)

Mixture of Unigrams	Everything Nuclear	Human Rights	Security in Middle East
	nuclear weapons use implementation countries	rights human palestine situation israel	occupied israel syria security calls
Group-Topic Model		Nuclear Arms Race	Human Rights
	nuclear states united weapons nations	nuclear arms prevention race space	rights human palestine occupied israel

Groups Discovered (UN)

The countries list for each group are ordered by their 2005 GDP (PPP) and only 5 countries are shown in groups that have more than 5 members.

G	Nuclear Arsenal	Human Rights	Nuclear Arms Race
R	nuclear	rights	nuclear
O	states	human	arms
U	united	palestine	prevention
P	weapons	occupied	race
1	nations	israel	space
	Brazil	Brazil	UK
	Columbia	Mexico	France
1	Chile	Columbia	Spain
	Peru	Chile	Monaco
	Venezuela	Peru	East-Timor
	USA	Nicaragua	India
	Japan	Papua	Russia
2	Germany	Rwanda	Micronesia
	UK...	Swaziland	
	Russia	Fiji	
	China	USA	Japan
	India	Japan	Germany
3	Mexico	Germany	Italy...
	Iran	UK...	Poland
	Pakistan	Russia	Hungary
	Kazakhstan	China	China
	Belarus	India	Brazil
4	Yugoslavia	Indonesia	Mexico
	Azerbaijan	Thailand	Indonesia
	Cyprus	Philippines	tram
	Thailand	Belarus	USA
	Philippines	Turkmenistan	Israel
5	Malaysia	Azerbaijan	Palau
	Nigeria	Uruguay	
	Tunisia	Kyrgyzstan	

Groups and Topics, Trends over Time (UN)

Time Period	Topic 1	Topic 2	Topic 3	Group distributions for Topic 3					
				Group 1	Group2	Group3	Group4	$\begin{gathered} \hline \text { Group5 } \\ \hline \text { Turkey } \end{gathered}$	
	Nuclear	Procedure	Africa Indep.	India Indonesia Iran Thailand Philippines		Argentina Colombia Chile Venezuela Dominican	VSSRPolandHungaryBulgariaBelarus		
60-75	operative general nuclear power	committee amendment assembly deciding	calling right africa self					Turkey	
	Independence	Finance	Weapons	Cuba Albania	India Indonesia Pakistan Saudi Egypt	Algeria Iraq Syria Libya Afganistan	USSR Poland Hungary Bulgaria Belarus	USA Japan UK France Italy	
65-80	```territories independence self colonial```	budget appropriation contribution income	nuclear UN international weapons						
	N. Weapons	Israel	Rights	Mexico Indonesia Iran Thailand Philippines	China	USA Japan UK France Italy	Brazil Turkey Argentina Colombia Chile	India USSR Poland Vietnam Hungary	
70-85	nuclear international UN human	israel measures hebron expelling	africa territories south right						
	Rights	Israel/Pal.	Disarmament	Mexico Indonesia Iran Thailand Philippines	USA Algeria Japan Vietnam UK Iraq France Syria USSR Libya 		China Brazil Argentina Colombia Chile	India	
75-90	south africa israel rights	israel arab occupied palestine	UN international nuclear disarmament						
	Disarmament	Conflict	Pal. Rights	$\begin{aligned} & \text { USA } \\ & \text { Israel } \end{aligned}$	China India Russia Spain Hungary	Japan UK France Italy Canada	Guatemala St Vincent Dominican	Malawi	
80-95	nuclear US disarmament international	need israel palestine secretary	rights palestine israel occupied						
	Weapons	Rights	Israel/Pal.	Poland Czech R. Hungary Bulgaria Albania	China India Brazil Mexico Indonesia	USA Japan UK France Italy	Russia Argentina Ukraine Belarus Malta	Cameroon Congo Ivory C. Liberia	
85-00	nuclear weapons use international	rights human fundamental freedoms	israeli palestine occupied disarmament						

Social Networks in Research Literature

- Better understand structure of our own research area.
- Structure helps us learn a new field.
- Aid collaboration
- Map how ideas travel through social networks of researchers.
- Aids for hiring and finding reviewers!

Traditional Bibliometrics

- Analyses a small amount of data
(e.g. 19 articles from a single issue of a journal)
- Uses "journal" as a proxy for "research topic" (but there is no journal for information extraction)
- Uses impact measures almost exclusively based on simple citation counts.

How can we use topic models to create new, interesting impact measures?

Our Data

- Over 1 million research papers, gathered as part of Rexa.info portal.
- Cross linked references / citations.

Finding Topics with TNG

Traditional unigram LDA run on 1 million titles / abstracts (200 topics)

...select ~300k papers on ML, NLP, robotics, vision...

Find 200 TNG topics among those papers.

Topic	Topic Unigrams
Web1 (98)	web information search digital user li- brary users pages content libraries
Web2 (156)	web semantic ontology services world wide based ontologies hypermedia metadata
Computer Vision (5)	recognition object face tracking objects based system image video human
Game Theory (111)	decision making utility equilibrium games theory game choice preferences model
System (160)	system performance communication operating parallel implementation net- work applications message high

Topic	Topic Unigrams and Ngrams
Digital Libraries(102)	digital electronic library metadata access
	"digital libraries" "digital library" "electronic commerce" "dublin core" "cultural heritage"
Web Pages (129)	web site pages page www sites
	"world wide web" "web pages" "web sites" "web site" "world wide"
Ontologies (186)	semantic ontology ontologies rdf semantics meta
	"semantic web" "description logics" "rdf schema" "description logic" "resource description framework"
Web Services (184)	web services service xml business
	"web services" "web service" "markup language" "xml documents" "xml schema"

Topical Bibliometric Impact Measures

[Mann, Mimno, McCallum, 2006]

- Topical Citation Counts
- Topical Impact Factors
- Topical Longevity
- Topical Diversity
- Topical Precedence
- Topical Transfer

Topical Diversity

Entropy of the topic distribution among

 papers that cite this paper (this topic).| Topic | Impact Diversity |
| :--- | :--- |
| Low | |
| | 2.95 |
| Siversity | |
| Speech Recognition (120) | 3.09 |
| Graphics (9) | 3.21 |
| Mobile Robots (22) | 3.31 |
| Machine Translation (96) | 3.32 |
| Digital Libraries (102) | 3.77 |
| Probability (89) | 4.5 |
| Finite Automata (66) | 4.55 |
| Probabilistic Modeling (3) | 4.55 |
| Pattern Recognition (125) | 4.57 |
| Simulated Annealing (52) | 4.59 |
| | |

Topical Diversity

Can also be measured on particular papers...

Topical Diversity	Citations	Title
4.00	618	A tutorial on hidden Markov models and selected applications in speech processing
3.80	138	The self-organizing map
3.77	163	Hierarchical mixtures of experts and the EM algorithm
3.74	65	Quantifying Inductive Bias: AI Learning Algorithms and ...
3.74	144	Knowledge Acquisition via Incremental Conceptual Clustering
3.73	155	A Tutorial on Learning With Bayesian Networks
3.72	244	Term-Weighting Approaches in Automatic Text Retrieval
3.71	294	Finding Structure in Time
3.7	173	An introduction to hidden Markov models
3.7	132	Nearest neighbor pattern classification

Topical Precedence

Within a topic, what are the earliest papers that received more than n citations?

Information Retrieval:

On Relevance, Probabilistic Indexing and Information Retrieval, Kuhns and Maron (1960)
Expected Search Length: A Single Measure of Retrieval Effectiveness Based on the Weak Ordering Action of Retrieval Systems,

Cooper (1968)
Relevance feedback in information retrieval,
Rocchio (1971)
Relevance feedback and the optimization of retrieval effectiveness,
Salton (1971)
New experiments in relevance feedback,
Ide (1971)
Automatic Indexing of a Sound Database Using Self-organizing Neural Nets,
Feiten and Gunzel (1982)

Topical Precedence

Within a topic, what are the earliest papers that received more than \boldsymbol{n} citations?

Speech Recognition:

Some experiments on the recognition of speech, with one and two ears, E. Colin Cherry (1953)

Spectrographic study of vowel reduction,
B. Lindblom (1963)

Automatic Lipreading to enhance speech recognition,
Eric D. Petajan (1965)
Effectiveness of linear prediction characteristics of the speech wave for..., B. Atal (1974)

Automatic Recognition of Speakers from Their Voices,
B. Atal (1976)

Topical Transfer

Transfer from Digital Libraries to other topics

Other topic	Cit's	Paper Title
Web Pages	31	Trawling the Web for Emerging Cyber- Communities, Kumar, Raghavan,... 1999.
Computer Vision	14	On being ‘Undigital' with digital cameras: extending the dynamic...
Video	12	Lessons learned from the creation and deployment of a terabyte digital video
Graphs	12	Trawling the Web for Emerging Cyber- Communities
Web Pages	11	WebBase: a repository of Web pages

Topical Transfer

Citation counts from one topic to another.
Map "producers and consumers"

Outline

Social Network Analysis with Topic Models

- Role Discovery (Author-Recipient-Topic Model, ART)
- Group Discovery (Group-Topic Model, GT)
\checkmark Enhanced Topic Models
- Correlations among Topics (Pachinko Allocation, PAM)
- Time Localized Topics (Topics-over-Time Model, TOT)
- Markov Dependencies in Topics (Topical N-Grams Model, TNG)

Bibliometric Impact Measures enabled by Topics
Multi-Conditional Mixtures

Topic Model Musings

- 3 years ago Latent Dirichlet Allocation appeared as a complex innovation ...but now these methods \& mechanics are well-understood.
- Innovation now is to understand data and modeling needs, how to structure a new model to capture these.

