Statistical Models of Semantics and Unsupervised Language Discovery

Andrew McCallum

Computer Science Department University of Massachusetts Amherst

Including slides from Chris Manning and Dan Klein.

Attachment Ambiguity

- Where to attach a phrase in the parse tree?
- "I saw the man with the telescope."
 - What does "with a telescope" modify?
 - Is the problem AI complete? Yes, but...
 - Proposed simple structural factors
 - Right association [Kimball 1973]
 'low' or 'near' attachment = 'early closure' of NP
 - Minimal attachment [Frazier 1978] (depends on grammar) = 'high' or 'distant' attachment = 'late closure' (of NP)

Attachment Ambiguity

- "The children ate the cake with a spoon."
- "The children ate the cake with frosting."
- "Joe included the package for Susan."
- "Joe carried the package for Susan."
- Ford, Bresnan and Kaplan (1982): "It is quite evident, then, that the closure effects in these sentences are induced in some way by the choice of the lexical items."

Lexical acquisition, semantic similarity

- Previous models give same estimate to all unseen events.
- Unrealistic could hope to refine that based on semantic classes of words
- Examples
 - "Susan ate the cake with a durian."
 - "Susan had never eaten a fresh durian before."
 - Although never seen "eating pineapple" should be more likely than "eating holograms" because pineapple is similar to apples, and we have seen "eating apples".

An application: selectional preferences

- Most verbs prefer arguments of a particular type. Such regularities are called selectional preferences or selectional restrictions.
- "Bill drove a..." Mustang, car, truck, jeep
- Selectional preference strength: how strongly does a verb constrain direct objects
- "see" versus "unknotted"

Measuring selectional preference strength

- Assume we are given a clustering of (direct object) nouns. Resnick (1993) uses WordNet.
- Selectional association between a verb and a class

$$S(v) = D(P(C|v)||P(C)) = \sum_{c} P(c|v) \log \frac{P(c|v)}{P(c)}$$

Proportion that its summand contributes to preference strength.

$$A(v,c) = \frac{P(c|v)\log\frac{P(c|v)}{P(c)}}{S(v)}$$

• For nouns in multiple classes, disambiguate as most likely sense: $A(v,n) = \max_{c \in \text{classes}(n)} A(v,c)$

Selection preference strength (made up data)

<u>Noun class c</u>	<u>P(c)</u>	<u>P(c eat)</u>	<u>P(c see)</u>	<u>P(c find)</u>
people	0.25	0.01	0.25	0.33
furniture	0.25	0.01	0.25	0.33
food	0.25	0.97	0.25	0.33
action	0.25	0.01	0.25	0.01
SPS S(v)		1.76	0.00	0.35

A(eat, food) = 1.08A(find, action) = -0.13

Selectional Preference Strength example (Resnick, Brown corpus)

Verb v	Noun n	A(v, n)	Class	Noun n	A(v, n)	Class
answer	request	4.49	speech act	tragedy	3.88	communication
find	label	1.10	abstraction	fever	0.22	psych. feature
hear	story	1.89	communication	issue	1.89	communication
remember	reply	1.31	statement	smoke	0.20	article of commerce
repeat	comment	1.23	communication	journal	1.23	communication
read	article	6.80	writing	fashion	-0.20	activity
see	friend	5.79	entity	method	-0.01	method
write	letter	7.26	writing	market	0.00	commerce

But how might we measure word similarity for word classes?

• Vector spaces

A document-by-word matrix A.

	cosmonaut	astronaut	moon	car	truck
d_1	1	0	1	1	0
d_2	0	1	1	0	0
d_3	1	0	0	0	0
d_4	0	0	0	1	1
d_5	0	0	0	1	0
d_6	0	0	0	0	1

But how might we measure word similarity for word classes?

 Vector spaces word-by-word matrix B

	cosmonaut	astronaut	moon	car	truck
cosmonaut	2	0	1	1	0
astronaut	0	1	1	0	0
moon	1	1	2	1	0
car	1	0	1	3	1
truck	0	0	0	1	2

A modifier-by-head matrix C

	cosmonaut	astronaut	moon	car	truck
Soviet	1	0	0	1	1
American	0	1	0	1	1
spacewalking	1	1	0	0	0
red	0	0	0	1	1
full	0	0	1	0	0
old	0	0	0	1	1

Similarity measures for binary vectors

Similarity measureDefinitionmatching coefficient $|X \cap Y|$ Dice coefficient $\frac{2|X \cap Y|}{|X|+|Y|}$ Jaccard coefficient $\frac{|X \cap Y|}{|X \cup Y|}$ Overlap coefficient $\frac{|X \cap Y|}{\min(|X|,|Y|)}$ cosine $\frac{|X \cap Y|}{\sqrt{|X| \times |Y|}}$

Cosine measure

$$\cos(\vec{x}, \vec{y}) = \frac{\vec{x} \cdot \vec{y}}{|\vec{x}| |\vec{y}|} = \frac{\sum_{i=1}^{n} x_i y_i}{\sqrt{\sum_{i=1}^{n} x_i^2} \sqrt{\sum_{i=1}^{n} y_i^2}}$$

maps vectors onto unit circle by dividing through by lengths:

$$\vec{x}| = \sqrt{\sum_{i=1}^{n} x_i^2}$$

Example of cosine measure on word-by-word matrix on NYT

Focus word	Nearest neighbors							
garlic	sauce	.732	pepper	.728	salt	.726	сир	.726
fallen	fell	.932	decline	.931	rise	.930	drop	.929
engineered	genetically	.758	drugs	.688	research	.687	drug	.685
Alfred	named	.814	Robert	.809	William	.808	W	.808
simple	something	.964	things	.963	You	.963	always	.962

Probabilistic measures

(Dis-)similarity measure	Definition
KL divergence	$D(p \ q) = \sum_i p_i \log \frac{p_i}{q_i}$
Skew	$D(q\ \alpha r+(1-\alpha)q)$
Jensen-Shannon (was IRad)	$\tfrac{1}{2}D(p\ \tfrac{p+q}{2}) + D(q\ \tfrac{p+q}{2})$
L_1 norm (Manhattan)	$\sum_i p_i - q_i $

Neighbors of word "company" [Lee]

Skew ($\alpha = 0.99$)	JS.	Euclidean
airline	business	city
business	airline	airline
bank	firm	industry
agency	bank	program
firm	state	organization
department	agency	bank
manufacturer	group	system
network	govt.	today
industry	city	series
govt.	industry	portion

Learning syntactic patterns for automatic hypernym discovery

Rion Snow, Daniel Jurafsky, and Andrew Y. Ng.

• It has long been a goal of AI to automatically acquire structured knowledge directly from text, e.g, in the form of a semantic network.

We aim to classify whether a noun pair (X, Y) participates in one of the following semantic relationships:

Hypernymy (ancestor)

 $Y > X_{H}$ if "X is a kind of Y". entity $> organism > person_{H}$

Coordinate Terms (taxonomic sisters) if X and Y possess a common hypernym, i.e. $\exists Z$ such that "X and Y are both kinds of Z." horse $\Box_C \log \Box_C cat$

- Precision/recall for 69,592 classifiers (one per feature)
- Classifier *f* classifies noun pair **x** as hypernym iff $x_f > 0$
- In red: patterns originally proposed in (Hearst, 1992)

"Oxygen is the most abundant element on the moon."

Dependency Graph:

Dependency Paths (for "oxygen / element"):

-N:s:VBE, "be" VBE:pred:N -N:s:VBE, "be" VBE:pred:N,(the,Det:det:N) -N:s:VBE, "be" VBE:pred:N,(most,PostDet:post:N) -N:s:VBE, "be" VBE:pred:N,(abundant,A:mod:N) -N:s:VBE, "be" VBE:pred:N,(on,Prep:mod:N)

Rediscovering Hearst's Patterns

Proposed in (Hearst, 1992) and used in (Caraballo, 2001), (Widdows, 2003), and others – but what about the rest of the lexico-syntactic pattern space?

Example: Using the "Y called X" Pattern for Hypernym Acquisition MINIPAR path: -N:desc:V.call.call.-V:vrel:N \rightarrow "<hypernym> 'called' <hyponym>"

None of the following links are contained in WordNet (or the training set, by extension).

Hyponym	Hypernym	Sentence Fragment			
efflorescence	condition	and a condition called efflorescence			
'neal_inc	company	The company, now called O'Neal Inc			
hat_creek_outfit	ranch	run a small ranch called the Hat Creek Outfit.			
tardive_dyskinesia	problem	irreversible problem called tardive dyskinesia			
hiv-1	aids_virus	infected by the AIDS virus, called HIV-1.			
bateau_mouche	attraction	sightseeing attraction called the Bateau Mouche			
kibbutz_malkiyya	collective_farm	Israeli collective farm called Kibbutz Malkiyya			
Type of Noun Pair NE: Person NE: Place NE: Company NE: Other Not Named Entity:	 7 "John F. 7 "Diamon 2 "America 1 "Is Elvis 	Example Pair "John F. Kennedy / president", "Marlin Fitzwater / spokesman" "Diamond Bar / city", "France / place" "American Can / company", "Simmons / company" "Is Elvis Alive / book" "earthquake / disaster", "soybean / crop"			

A better hypernym classifier

- 10-fold cross validation on the WordNet-labeled data
- Conclusion: 70,000 features are more powerful than 6

VERBOCEAN: Mining the Web for Fine-Grained Semantic Verb Relations

Timothy Chklovski and Patrick Pantel

Why Detect Semantic Rels between Verbs?

- So that we can
 - Understand the relationship when it's not stated
 - Napoleon *fought* and *won* the battle
 - During the holidays, people wrap and unwrap presents
 - Soldiers prefer to avoid getting wounded and killed
 - Use the relationship when summarizing across documents (e.g. same event, preceding event)
 - The board considered the offer of \$3B
 - The board accepted the offer \$3.8B
 - The board okayed the offer of approximately \$4B
 - Determine if two people have similar views on and event
 - "I nudged him."
 - "He shoved me."
- Hard to do manually

Why use Web? Motivating Intuition

- Small collections are tough: Semantics is often implied (Lenat, Chklovski)
- The Web's 10¹² is a lot of words
- So, Use small bits of more detailed text to help with mass of general text
 - Patterns issued to a search engine and their correlation

- Levin's classes (similarity)
 - 3200 verbs in 191 classes
- PropBank
 - 4,659 framesets (1.4 framesets per verb)
- VerbNet
 - 191 coarse-grained groupings (with overlap)
- FrameNet
- WordNet
 - troponomy
 - antonymy
 - entailment
 - cause

VerbOcean: Web-based Extraction of Verb Relations

- VerbOcean is a network of verb relations
 - Currently, over 3400 nodes with on average 13 relations per verb
- Detected relation types are:
 - similarity
 - strength
 - antonymy
 - enablement
 - temporal precedence (happens-before)
- Download from http://semantics.isi.edu/ocean/

Three stages:

- Identify pairs of highly associated verbs co-occurring on the Web with sufficient frequency using DIRT (Lin and Pantel 2001)
- For each verb pair
 - test patterns associated with each semantic relation
 - E.g. Temporal Precedence:
 - "to X and then Y", "Xed and then Yed"
 - calculate a score for each possible semantic relation
- Compare the strengths of the individual semantic relations and output a consistent set as the final output

prefer the most specific and then strongest relations

Lexical Patterns

SEMANTIC RELATION	Surface Patterns	Example
similarity (4)	X ie Y Xed and Yed	"She heckled and taunted the comedian."
strength (8)	X even Y Xed even Yed Xed and even Yed not just Xed but Yed	"He not just harassed, but terrorized her."
enablement (4)	Xed * by Ying the Xed * by Ying or to X * by Ying the	"She saved the document by clicking the button."
antonymy (7)	either X or Y either Xs or Ys Xed * but Yed	"There's something about Mary: you will either love or hate her."
happens-before (12)	to X and then Y Xed * and then Yed to X and later Y to X and subsequently Y Xed and subsequently Yed	"He designed the prototype and then patented it."

Lexical Patterns Match...

- Refined to decrease capturing wrong parts of speech or incorrect semantic relations
 - Xed * by Ying the; Xed * by Ying or
 - "... waved at by parking guard ..."
 - "... encouraged further by sailing lessons ..."

- Similar verbs that denote a more intense, thorough, comprehensive or absolute action
 - e.g. change-of-state verbs that denote a more complete change (shock → startle)

- Semantic opposition
 - switching thematic roles associated with the verb (buy sell)
 - stative verbs (live die)
 - sibling verbs which share a parent (walk run)
 - restitutive opposition: antonymy + happens-before
 - (damage repair)

Semantic Relation	Examples	Semantic Relation	Examples	Semantic Relation	Examples
similarity	maximize :: enhance produce :: create reduce :: restrict	enablement	assess :: review accomplish :: complete double-click :: click	happens before	detain :: prosecute enroll :: graduate schedule :: reschedule
strength	permit :: authorize surprise :: startle startle :: shock	antonymy	assemble :: dismantle regard :: condemn roast :: fry		

Appendix. Sample relations extracted by our system.

Demo

http://semantics.isi.edu/ocean/

Clustering words into topics with Latent Dirichlet Allocation

[Blei, Ng, Jordan 2003]

Example:

α θ Ζ Т N_d D **Generative Process:**

For each document:

Sample a distribution over topics, θ For each word in doc

Sample a topic, z

70% Iraq war 30% US election

Iraq war

Sample a word from the topic, w

"bombing"

Example topics induced from a large collection of text

DISEASE	WATER	MIND	STORY	FIELD	SCIENCE	BALL	JOB
BACTERIA	FISH	WORLD	STORIES	MAGNETIC	STUDY	GAME	WORK
DISEASES	SEA	DREAM	TELL	MAGNET	SCIENTISTS	TEAM	JOBS
GERMS	SWIM	DREAMS	CHARACTER	WIRE	SCIENTIFIC	FOOTBALL	CAREER
FEVER	SWIMMING		CHARACTERS	NEEDLE	KNOWLEDGE	BASEBALL	EXPERIENCE
CAUSE	POOL	IMAGINATION	AUTHOR	CURRENT	WORK	PLAYERS	EMPLOYMENT
CAUSED	LIKE	MOMENT	READ	COIL	RESEARCH	PLAY	OPPORTUNITIES
SPREAD	SHELL	THOUGHTS	TOLD	POLES	CHEMISTRY	FIELD	WORKING
VIRUSES	SHARK	OWN	SETTING	IRON	TECHNOLOGY	PLAYER	TRAINING
INFECTION	TANK	REAL	TALES	COMPASS	MANY H	BASKETBALI	SKILLS
VIRUS	SHELLS	LIFE	PLOT	LINES	MATHEMATICS	COACH	CAREERS
MICROORGANISM		IMAGINE	TELLING	CORE	BIOLOGY	PLAYED	POSITIONS
PERSON	DIVING	SENSE	SHORT	ELECTRIC	FIELD	PLAYING	FIND
INFECTIOUS	DOLPHINS	CONSCIOUSNESS		DIRECTION	PHYSICS	HIT	POSITION
COMMON	SWAM	STRANGE	ACTION	FORCE	LABORATORY	TENNIS	FIELD
CAUSING	LONG	FEELING	TRUE	MAGNETS	STUDIES	TEAMS	OCCUPATIONS
SMALLPOX	SEAL	WHOLE	EVENTS	BE	WORLD	GAMES	REQUIRE
BODY	DIVE	BEING	TELLS	MAGNETISM	1 SCIENTIST	SPORTS	OPPORTUNITY
INFECTIONS	DOLPHIN	MIGHT	TALE	POLE	STUDYING	BAT	EARN
CERTAIN	UNDERWATER	HOPE	NOVEL	INDUCED	SCIENCES	TERRY	ABLE

[Tennenbaum et al]

Example topics induced from a large collection of text

DISEASE	WATER	MIND	STORY	FIELD	SCIENCE	BALL	JOB
BACTERIA	FISH	WORLD	STORIES	MAGNETIC	STUDY	GAME	WORK
DISEASES	SEA	DREAM	TELL	MAGNET	SCIENTISTS	TEAM	JOBS
GERMS	SWIM	DREAMS	CHARACTER	WIRE	SCIENTIFIC	FOOTBALL	CAREER
FEVER	SWIMING		CHARACTERS	NEEDLE	KNOWLEDGE	BASEBALL	EXPERIENCE
CAUSE	POOL	IMAGINATION	AUTHOR	CURRENT	WORK	PLAYERS	EMPLOYMENT
CAUSED	LIKE	MOMENT	READ	COIL	RESEARCH	PLAY	OPPORTUNITIES
SPREAD	SHELL	THOUGHTS	TOLD	POLES	CHEMISTRY	FIELD	WORKING
VIRUSES	SHARK	OWN	SETTING	IRON	TECHNOLOGY	PLAYER	TRAINING
INFECTION	TANK	REAL	TALES	COMPASS	MANY E	BASKETBALI	
VIRUS	SHELLS	LIFE	PLOT	LINES	MATHEMATICS	COACH	CAREERS
MICROORGANISM		IMAGINE	TELLING	CORE	BIOLOGY	PLAYED	POSITIONS
PERSON	DIVING	SENSE	SHORT	ELECTRIC	FIELD	PLAYING	FIND
INFECTIOUS	DOLPHINS	CONSCIOUSNES	S FICTION	DIRECTION	PHYSICS	HIT	POSITION
COMMON	SWAM	STRANGE	ACTION	FORCE	LABORATORY	TENNIS	FIELD
CAUSING	LONG	FEELING	TRUE	MAGNETS	STUDIES	TEAMS	OCCUPATIONS
SMALLPOX	SEAL	WHOLE	EVENTS	BE	WORLD	GAMES	REQUIRE
BODY	DIVE	BEING	TELLS	MAGNETISM	1 SCIENTIST	SPORTS	OPPORTUNITY
INFECTIONS	DOLPHIN	MIGHT	TALE	POLE	STUDYING	BAT	EARN
CERTAIN	UNDERWATER	HOPE	NOVEL	INDUCED	SCIENCES	TERRY	ABLE

[Tennenbaum et al]

Collocations

- An expression consisting of two or more words that correspond to some conventional way of saying things.
- Characterized by limited *compositionality*.
 - *compositional*: meaning of expression can be predicted by meaning of its parts.
 - "strong tea", "rich in calcium"
 - "weapons of mass destruction"
 - "kick the bucket", "hear it through the grapevine"

Topics Modeling Phrases

- Topics based only on unigrams often difficult to interpret
- Topic discovery itself is confused because important meaning / distinctions carried by phrases.
- Significant opportunity to provide improved language models to ASR, MT, IR, etc.

LDA Topic

<u>LDA</u>

algorithms algorithm genetic problems efficient

Topical N-grams

genetic algorithms genetic algorithm evolutionary computation evolutionary algorithms fitness function

Topic Comparison

learning optimal reinforcement state problems policy dynamic action programming actions function markov methods decision rl continuous spaces step policies planning

Topical N-grams (2) Topical N-grams (1)

reinforcement learning optimal policy dynamic programming optimal control function approximator prioritized sweeping finite-state controller learning system reinforcement learning rl function approximators markov decision problems markov decision processes local search state-action pair markov decision process belief states stochastic policy action selection upright position reinforcement learning methods policy action states actions function reward control agent q-learning optimal goal learning space step environment system problem steps sutton policies

Topic Comparison

motion visual field position figure direction fields eye location retina receptive velocity vision moving system flow edge center light local

Topical N-grams (2) Topical N-grams (1)

receptive field spatial frequency temporal frequency visual motion motion energy tuning curves horizontal cells motion detection preferred direction visual processing area mt visual cortex light intensity directional selectivity high contrast motion detectors spatial phase moving stimuli decision strategy visual stimuli

motion response direction cells stimulus figure contrast velocity model responses stimuli moving cell intensity population image center tuning complex directions

Topic Comparison

LDA

word system recognition hmm speech training performance phoneme words context systems frame trained speaker sequence speakers mlp frames segmentation models

Topical N-grams (2) Topical N-grams (1)

speech recognition training data neural network error rates neural net hidden markov model feature vectors continuous speech training procedure continuous speech recognition gamma filter hidden control speech production neural nets input representation output layers training algorithm test set speech frames speaker dependent

speech word training system recognition hmm speaker performance phoneme acoustic words context systems frame trained sequence phonetic speakers mlp hybrid

Unsupervised learning of topic hierarchies (Blei, Griffiths, Jordan & Tenenbaum, NIPS 2003)

Joint models of syntax and semantics (Griffiths, Steyvers, Blei & Tenenbaum, NIPS 2004)

 Embed topics model inside an *n*th order Hidden Markov Model:

Semantic classes

FOOD	MAP	DOCTOR	BOOK	GOLD	BEHAVIOR	CELLS	PLANTS
FOODS	NORTH	PATIENT	BOOKS	IRON	SELF	CELL	PLANT
BODY	EARTH	HEALTH	READING	SILVER	INDIVIDUAL	ORGANISMS	LEAVES
NUTRIENTS	SOUTH	HOSPITAL	INFORMATION	COPPER	PERSONALITY	ALGAE	SEEDS
DIET	POLE	MEDICAL	LIBRARY	METAL	RESPONSE	BACTERIA	SOIL
FAT	MAPS	CARE	REPORT	METALS	SOCIAL	MICROSCOPE	ROOTS
SUGAR	EQUATOR	PATIENTS	PAGE	STEEL	EMOTIONAL	MEMBRANE	FLOWERS
ENERGY	WEST	NURSE	TITLE	CLAY	LEARNING	ORGANISM	WATER
MILK	LINES	DOCTORS	SUBJECT	LEAD	FEELINGS	FOOD	FOOD
EATING	EAST	MEDICINE	PAGES	ADAM	PSYCHOLOGISTS	LIVING	GREEN
FRUITS	AUSTRALIA	NURSING	GUIDE	ORE	INDIVIDUALS	FUNGI	SEED
VEGETABLES	GLOBE	TREATMENT	WORDS	ALUMINUM	PSYCHOLOGICAL	MOLD	STEMS
WEIGHT	POLES	NURSES	MATERIAL	MINERAL	EXPERIENCES	MATERIALS	FLOWER
FATS	HEMISPHERE	PHYSICIAN	ARTICLE	MINE	ENVIRONMENT	NUCLEUS	STEM
NEEDS	LATITUDE	HOSPITALS	ARTICLES	STONE	HUMAN	CELLED	LEAF
CARBOHYDRATE	S PLACES	DR	WORD	MINERALS	RESPONSES	STRUCTURES	ANIMALS
VITAMINS	LAND	SICK	FACTS	POT	BEHAVIORS	MATERIAL	ROOT
CALORIES	WORLD	ASSISTANT	AUTHOR	MINING	ATTITUDES	STRUCTURE	POLLEN
PROTEIN	COMPASS	EMERGENCY	REFERENCE	MINERS	PSYCHOLOGY	GREEN	GROWING
MINERALS	CONTINENTS	PRACTICE	NOTE	TIN	PERSON	MOLDS	GROW

Syntactic classes

SAID	THE	MORE	ON	GOOD	ONE	HE	BE
ASKED	HIS	SUCH	AT	SMALL	SOME	YOU	MAKE
THOUGHT	THEIR	LESS	INTO	NEW	MANY	THEY	GET
TOLD	YOUR	MUCH	FROM	IMPORTANT	TWO	Ι	HAVE
SAYS	HER	KNOWN	WITH	GREAT	EACH	SHE	GO
MEANS	ITS	JUST	THROUGH	LITTLE	ALL	WE	TAKE
CALLED	MY	BETTER	OVER	LARGE	MOST	IT	DO
CRIED	OUR	RATHER	AROUND	*	ANY	PEOPLE	FIND
SHOWS	THIS	GREATER	AGAINST	BIG	THREE	EVERYONE	USE
ANSWERED	THESE	HIGHER	ACROSS	LONG	THIS	OTHERS	SEE
TELLS	А	LARGER	UPON	HIGH	EVERY	SCIENTISTS	HELP
REPLIED	AN	LONGER	TOWARD	DIFFERENT	SEVERAL	SOMEONE	KEEP
SHOUTED	THAT	FASTER	UNDER	SPECIAL	FOUR	WHO	GIVE
EXPLAINED	NEW	EXACTLY	ALONG	OLD	FIVE	NOBODY	LOOK
LAUGHED	THOSE	SMALLER	NEAR	STRONG	BOTH	ONE	COME
MEANT	EACH	SOMETHING	BEHIND	YOUNG	TEN	SOMETHING	WORK
WROTE	MR	BIGGER	OFF	COMMON	SIX	ANYONE	MOVE
SHOWED	ANY	FEWER	ABOVE	WHITE	MUCH	EVERYBODY	LIVE
BELIEVED	MRS	LOWER	DOWN	SINGLE	TWENTY	SOME	EAT
WHISPERED	ALL	ALMOST	BEFORE	CERTAIN	EIGHT	THEN	BECOME

Corpus-specific factorization (NIPS)

\mathbf{S}	image	data	state	membrane	chip	experts	kernel	network
Ö	images	gaussian	policy	synaptic	analog	expert	support	neural
• –	object	mixture	value	cell	neuron	gating	vector	networks
H	objects	likelihood	function	*	digital	hme	svm	output
	feature	posterior	action	current	synapse	architecture	kernels	input
	recognition	prior	reinforcement	dendritic	neural	mixture	#	training
	views	distribution	learning	potential	hardware	learning	space	inputs
emanti	#	em	classes	neuron	weight	mixtures	function	weights
$\tilde{\mathbf{v}}$	pixel	bayesian	optimal	conductance	#	function	machines	#
	visual	parameters	*	channels	vlsi	gate	set	outputs
	in	is	see	used	model	networks	however	#
	with	was	show	trained	algorithm	values	also	*
Syntax	for	has	note	obtained	system	results	then	i
$\overline{\mathcal{O}}$	on	becomes	consider	described	case	models	thus	х
1	from	denotes	assume	given	problem	parameters	therefore	t
	at	being	present	found	network	units	first	n
	using	remains	need	presented	method	data	here	-
	into	represents	propose	defined	approach	functions	now	с
	over	exists	describe	generated	paper	problems	hence	r
_	within	seems	suggest	shown	process	algorithms	finally	р

Syntactic classes in PNAS

5	8	14	25	26	30	33
IN	ARE	THE	SUGGEST	LEVELS	RESULTS	BEEN
FOR	WERE	THIS	INDICATE	NUMBER	ANALYSIS	MAY
ON	WAS	ITS	SUGGESTING	LEVEL	DATA	CAN
BETWEEN	IS	THEIR	SUGGESTS	RATE	STUDIES	COULD
DURING	WHEN	AN	SHOWED	TIME	STUDY	WELL
AMONG	REMAIN	EACH	REVEALED	CONCENTRATIONS	FINDINGS	DID
FROM	REMAINS	ONE	SHOW	VARIETY	EXPERIMENTS	DOES
UNDER	REMAINED	ANY	DEMONSTRATE	RANGE	OBSERVATIONS	DO
WITHIN	PREVIOUSLY	INCREASED	INDICATING	CONCENTRATION	HYPOTHESIS	MIGHT
THROUGHOUT	BECOME	EXOGENOUS	PROVIDE	DOSE	ANALYSES	SHOULD
THROUGH	BECAME	OUR	SUPPORT	FAMILY	ASSAYS	WILL
TOWARD	BEING	RECOMBINANT	INDICATES	SET	POSSIBILITY	WOULD
INTO	BUT	ENDOGENOUS	PROVIDES	FREQUENCY	MICROSCOPY	MUST
AT	GIVE	TOTAL	INDICATED	SERIES	PAPER	CANNOT
INVOLVING	MERE	PURIFIED	DEMONSTRATED	AMOUNTS	WORK	REMAINED
AFTER	APPEARED	TILE	SHOWS	RATES	EVIDENCE	ALSO
ACROSS	APPEAR	FULL	SO	CLASS	FINDING	THEY
AGAINST	ALLOWED	CHRONIC	REVEAL	VALUES	MUTAGENESIS	BECOME
WHEN	NORMALLY	ANOTHER	DEMONSTRATES	AMOUNT	OBSERVATION	MAG
ALONG	EACH	EXCESS	SUGGESTED	SITES	MEASUREMENTS	LIKELY

Semantic highlighting

Darker words are more likely to have been generated from the topic-based "semantics" module:

In contrast to this approach, we study here how the overall network activity can control single cell parameters such as input resistance, as well as time and space constants, parameters that are crucial for excitability and spariotemporal (sic) integration.

The integrated architecture in this paper combines feed forward control and error feedback adaptive control using neural networks.

In other words, for our proof of convergence, we require the softassign algorithm to return a doubly stochastic matrix as *sinkhorn theorem guarantees that it will instead of a matrix which is merely close to being doubly stochastic based on some reasonable metric.

The aim is to construct a **portfolio** with a maximal **expected** return for a given risk level and time **horizon** while simultaneously obeying *institutional or *legally required constraints.

The left graph is the standard experiment the right from a training with # samples.

The graph G is called the *guest graph, and H is called the host graph.

Social Network Analysis: Group and Topic Discovery

Xuerui Wang and Andrew McCallum

Groups and Topics

- Input:
 - Observed relations between people
 - Attributes on those relations (text, or categorical)
- Output:
 - Attributes clustered into "topics"
 - Groups of people---varying depending on topic

Discovering Groups from Observed Set of Relations

Student Roster	Academic Admiration
Adams	Acad(A, B) Acad(C, B)
Bennett	Acad(A, D) Acad(C, D)
Carter	Acad(B, E) Acad(D, E)
Davis	Acad(B, F) Acad(D, F)
Edwards	Acad(E, A) Acad(F, A)
Frederking	Acad(E, C) Acad(F, C)

Admiration relations among six high school students.

Adjacency Matrix Representing Relations

Student Roster	Academic Admiration
Adams	Acad(A, B) Acad(C, B)
Bennett	Acad(A, D) Acad(C, D)
Carter	Acad(B, E) Acad(D, E)
Davis	Acad(B, F) Acad(D, F)
Edwards	Acad(E, A) Acad(F, A)
Frederking	Acad(E, C) Acad(F, C)

Group Model: Partitioning Entities into Groups

Stochastic Blockstructures for Relations

[Nowicki, Snijders 2001]

Enhanced with arbitrary number of groups in [Kemp, Griffiths, Tenenbaum 2004]

Two Relations with Different Attributes

Student Roster	Ac	ade	emic	: Ac	imb	ratio	on			Sc	ocia		dmi	irat	ion		
Adams	Aca	ad(A	۹, B) Ac	ad((C, E	3)	Soc	ci(/	А, В) S	oci(A, [D) S	Soci	(A,	F)
Bennett	Aca	ad(A	۹, D) Ac	cad((C, [D)	Soc	-		-	-		-		-	-
Carter	Aca	ad(E	3, E) Ac	ad(Ď, E	E)	Soc	ci(C	С, В) S	oci(C, I	D) S	Soci	i(C,	F)
Davis	Aca	ad(E	3, F) Ac	ad(D, F	-)	Soc	ci(E), A	.) S	oci(D, (C) S	Soci	i(D,	E)
Edwards	Aca	ad(E	Ξ, Α) Ac	ad((F, A	()	Soc	ci(E	Ξ, Β) S	oci(E, [D) S	Soci	(E,	F)
Frederking	Aca	ad(E	Ξ, C) Ac	cad((F, C	C)	Soc	ci(F	⁼ , A) So	oci(F, (C) S	Soci	(F, E	E)
		A G1	C G1	B G2	D G2	E G3	F G3	-			A G1	C G1	Е G1	В G2	D 62	F G2	
A	G1								Ą	G1							
С	G1							(С	G1							
В	G2							E	E	G1							
D	G 2							E	B	G2							
E	G3] [C	G2							
F	G3									G2							

The Group-Topic Model: Discovering Groups and Topics Simultaneously

[Wang, Mohanty, McCallum 2006]

Inference and Estimation

Gibbs Sampling:

- Many r.v.s can be integrated out

- Easy to implement
- Reasonably fast

We assume the relationship is symmetric.

$$P(t_b | \mathbf{V}, \mathbf{g}, \mathbf{w}, \mathbf{t}_{-b}, \alpha, \beta, \eta)$$

$$\propto \frac{\prod_{v=1}^{V} \prod_{x=1}^{e_v^{(b)}} (\eta_v + c_{t_b v} - x)}{\prod_{x=1}^{\sum_{v=1}^{V} e_v^{(b)}} \left(\sum_{v=1}^{V} (\eta_v + c_{t_b v}) - x \right)}$$

$$\times \prod_{g=1}^{G} \prod_{h=g}^{G} \frac{\prod_{k=1}^{2} \Gamma(\beta_k + m_{ghk}^{(b)})}{\Gamma(\sum_{k=1}^{2} (\beta_k + m_{ghk}^{(b)}))},$$

$$P(g_{st}|\mathbf{V}, \mathbf{g}_{-st}, \mathbf{w}, \mathbf{t}, \alpha, \beta, \eta)$$

$$\propto \frac{\alpha_{g_{st}} + n_{tg_{st}} - 1}{\sum_{g=1}^{G} (\alpha_g + n_{tg}) - 1} \prod_{b=1}^{B} \left(I(t_b = t) \right)$$

$$\times \prod_{h=1}^{G} \frac{\prod_{k=1}^{2} \prod_{x=1}^{d_{g_{st}hk}^{(b)}} \left(\beta_k + m_{g_{st}hk}^{(b)} - x \right)}{\prod_{x=1}^{\sum_{k=1}^{2} d_{g_{st}hk}^{(b)}} \left((\sum_{k=1}^{2} (\beta_k + m_{g_{st}hk}^{(b)}) - x \right) \right)$$

Dataset #1: U.S. Senate

- 16 years of voting records in the US Senate (1989 2005)
- a Senator may respond Yea or Nay to a resolution
- 3423 resolutions with text attributes (index terms)
- 191 Senators in total across 16 years

S.543

Title: An Act to reform Federal deposit insurance, protect the deposit insurance funds, recapitalize the Bank Insurance Fund, improve supervision and regulation of insured depository institutions, and for other purposes. Sponsor: Sen Riegle, Donald W., Jr. [MI] (introduced 3/5/1991) Cosponsors (2) Latest Major Action: 12/19/1991 Became Public Law No: 102-242. Index terms: Banks and banking Accounting Administrative fees Cost control Credit Deposit insurance Depressed areas and other 110 terms

Adams (D-WA), **Nay** Akaka (D-HI), **Yea** Bentsen (D-TX), **Yea** Biden (D-DE), **Yea** Bond (R-MO), **Yea** Bradley (D-NJ), **Nay** Conrad (D-ND), **Nay**

Topics Discovered (U.S. Senate)

Mixture of Unigrams

Group-Topic Model

Education	Energy	Military Misc.	Economic		
education	energy	government	federal		
school	power	military	labor		
aid	water	foreign	insurance		
children	nuclear	tax	aid		
drug	gas	congress	tax		
students	petrol	aid	business		
elementary	research	law	employee		
prevention	pollution	policy	care		
Education	Eoroign	Economic	Social Security + Medicare		
+ Domestic	Foreign	Economic			
education	foreign	labor	social		
school	trade	insurance	security		
federal	chemicals	tax	insurance		
aid	tariff	congress	medical		
government	congress	income	care		
tax	drugs	minimum	medicare		
energy communicable		wage	disability		
research	diseases	business	assistance		

Groups Discovered (US Senate)

Groups from topic *Education* + *Domestic*

Group 1	Group 3	Group 4
73 Republicans	Cohen(R-ME)	Armstrong(R-CO)
Krueger(D-TX)	Danforth(R-MO)	Garn(R-UT)
Group 2	Durenberger(R-MN)	Humphrey(R-NH)
90 Democrats	Hatfield(R-OR)	McCain(R-AZ)
Chafee,L.(R-RI)	Heinz(R-PA)	McClure(R-ID)
Jeffords(I-VT)	Jeffords(R-VT)	Roth(R-DE)
	Kassebaum(R-KS)	Symms(R-ID)
	Packwood(R-OR)	Wallop(R-WY)
	Specter(R-PA)	Brown(R-CO)
	Snowe(R-ME)	DeWine(R-OH)
	Collins(R-ME)	Thompson(R-TN)
		Fitzgerald(R-IL)
		Voinovich(R-OH)
		Miller(D-GA)
		Coleman(R-MN)

Senators Who Change Coalition the most Dependent on Topic

Senator	Group Switch Index
Shelby(D-AL)	0.6182
Heflin(D-AL)	0.6049
Voinovich(R-OH)	0.6012
Johnston(D-LA)	0.5878
Armstrong(R-CO)	0.5747

e.g. Senator Shelby (D-AL) votes with the Republicans on Economic with the Democrats on Education + Domestic with a small group of maverick Republicans on Social Security + Medicaid

Dataset #2:

The UN General Assembly

- Voting records of the UN General Assembly (1990 2003)
- A country may choose to vote Yes, No or Abstain
- 931 resolutions with text attributes (titles)
- 192 countries in total
- Also experiments later with resolutions from 1960-2003

Vote on <u>Permanent Sovereignty of Palestinian People</u>, 87th plenary meeting

The draft resolution on permanent sovereignty of the Palestinian people in the occupied Palestinian territory, including Jerusalem, and of the Arab population in the occupied Syrian Golan over their natural resources (document A/54/591) was adopted by a recorded vote of 145 in favour to 3 against with 6 abstentions:

In favour: Afghanistan, Argentina, Belgium, Brazil, Canada, China, France, Germany, India, Japan, Mexico, Netherlands, New Zealand, Pakistan, Panama, Russian Federation, South Africa, Spain, Turkey, and other 126 countries. Against: Israel, Marshall Islands, United States. Abstain: Australia, Cameroon, Georgia, Kazakhstan, Uzbekistan, Zambia.

Topics Discovered (UN)

	Everything Nuclear	Human Rights	Security in Middle East	
Mixture of	nuclear	rights	occupied	
Unigrams	weapons	human	israel	
	use	palestine	syria	
	implementation	situation	security	
	countries	israel	calls	
Group-Topic	Nuclear Non-proliferation	Nuclear Arms Race	Human Rights	
Model	nuclear	nuclear	rights	
Model	states	arms	human	
	united	prevention	palestine	
	weapons	race	occupied	
	nations	space	israel	

Groups Discovered (UN)

The countries list for each group are ordered by their 2005 GDP (PPP) and only 5 countries are shown in groups that have more than 5 members.

G	Nuclear Arsenal	Human Rights	Nuclear Arms Race
R	nuclear	rights	nuclear
0	states	human	arms
U	united	palestine	prevention
P	weapons	occupied	race
\downarrow	nations	israel	space
	Brazil	Brazil	UK
	Columbia	Mexico	France
1	Chile	Columbia	Spain
	Peru	Chile	Monaco
	Venezuela	Peru	East-Timor
	USA	Nicaragua	India
	Japan	/ Papua	Russia
2	Germany	Rwanda	Micronesia
	UK	Swaziland	
	Russia	Fiji	
	China	USA	Japan
	India	Japan	Germany
3	Mexico	Germany	Italy
	Iran	UK /	Poland
	Pakistan	Russia	Hungary
	Kazakhstan	China	China
	Belarus	India	Brazil
4	Yugoslavia	Indonesia	Mexico
	Azerbaijan	Thailand	Indonesia
	Cyprus	Philippines	Iran
	Thailand	Belarus	USA
5	Philippines	Turkmenistan	Israel
	Malaysia	Azerbaijan	Palau
	Nigeria	Uruguay	
	Tunisia	Kyrgyzstan	

Groups and Topics, Trends over Time (UN)

Time				Group distributions for Topic 3				
Period	Topic 1	Topic 2	Topic 3	Group 1	Group2	Group3	Group4	Group5
	Nuclear	Procedure	Africa Indep.	India	USA	Argentina	USSR	Turkey
60-75	operative	committee	calling	Indonesia	Japan	Colombia	Poland	
	general	amendment	right	Iran	UK	Chile	Hungary	
	nuclear	assembly	africa	Thailand	France	Venezuela	Bulgaria	
	power	deciding	self	Philippines	Italy	Dominican	Belarus	
	Independence	Finance	Weapons	Cuba	India	Algeria	USSR	USA
	territories	budget	nuclear	Albania	Indonesia	Iraq	Poland	Japan
65-80	independence	appropriation	UN		Pakistan	Syria	Hungary	UK
	self	contribution	international		Saudi	Libya	Bulgaria	France
	colonial	income	weapons		Egypt	Afganistan	Belarus	Italy
	N. Weapons	Israel	Rights	Mexico	China	USA	Brazil	India
	nuclear	israel	africa	Indonesia		Japan	Turkey	USSR
70-85	international	measures	territories	Iran		UK	Argentina	Poland
	UN	hebron	south	Thailand		France	Colombia	Vietnam
	human	expelling	right	Philippines		Italy	Chile	Hungary
	Rights	Israel/Pal.	Disarmament	Mexico	USA	Algeria	China	India
	south	israel	UN	Indonesia	Japan	Vietnam	Brazil	
75-90	africa	arab	international	Iran	UK	Iraq	Argentina	
	israel	occupied	nuclear	Thailand	France	Syria /	Colombia	
	rights	palestine	disarmament	Philippines	USSR	Libya	Chile	
	Disarmament	Conflict	Pal. Rights	USA	China	Japan	Guatemala	Malawi
	nuclear	need	rights	Israel	India	UK	St Vincent	
80-95	US	israel	palestine		Russia	France	Dominican	
	disarmament	palestine	israel		Spain	Italy		
	international	secretary	occupied		Hungary	Canada		
	Weapons	Rights	Israel/Pal.	Poland	China	USA	Russia	Cameroon
85-00	nuclear	rights	israeli	Czech R.	India	Japan	Argentina	Congo
	weapons	human	palestine	Hungary	Brazil	UK	Ukraine	Ivory C.
	use	fundamental	occupied	Bulgaria	Mexico	France	Belarus	Liberia
	international	freedoms	disarmament	Albania	Indonesia	Italy	Malta	

Social Networks in Research Literature

- Better understand structure of our own research area.
- Structure helps us learn a new field.
- Aid collaboration
- Map how ideas travel through social networks of researchers.
- Aids for hiring and finding reviewers!

Traditional Bibliometrics

- Analyses a small amount of data (e.g. 19 articles from a single issue of a journal)
- Uses "journal" as a proxy for "research topic" (but there is no journal for information extraction)
- Uses impact measures almost exclusively based on simple citation counts.

How can we use topic models to create new, interesting impact measures?

Our Data

- Over 1 million research papers, gathered as part of *Rexa.info* portal.
- Cross linked references / citations.

Finding Topics with TNG

Traditional unigram LDA run on 1 million titles / abstracts (200 topics)

...select ~300k papers on ML, NLP, robotics, vision...

Find 200 TNG topics among those papers.

Topic	Topic Unigrams
Web1 (98)	web information search digital user li-
	brary users pages content libraries
Web2 (156)	web semantic ontology services world
	wide based ontologies hypermedia
	metadata
Computer Vision	recognition object face tracking objects
(5)	based system image video human
Game Theory (111)	decision making utility equilibrium
	games theory game choice preferences
	model
System (160)	system performance communication
	operating parallel implementation net-
	work applications message high

Topic	Topic Unigrams and Ngrams		
Digital Libraries	digital electronic library metadata ac-		
	cess		
(102)	"digital libraries" "digital library"		
	"electronic commerce" "dublin core"		
	"cultural heritage"		
Web Pages	web site pages page www sites		
(129)	"world wide web" "web pages" "web		
	sites" "web site" "world wide"		
Ontologies	semantic ontology ontologies rdf		
(186)	semantics meta		
	"semantic web" "description logics"		
	"rdf schema" "description logic" "re-		
	source description framework"		
Web Services	web services service xml business		
(184)	"web services" "web service" "markup		
	language" "xml documents" "xml schema"		

Topical Bibliometric Impact Measures

[Mann, Mimno, McCallum, 2006]

- Topical Citation Counts
- Topical Impact Factors
- Topical Longevity
- Topical Diversity
- Topical Precedence
- Topical Transfer

Topical Diversity

Entropy of the topic distribution among papers that cite this paper (this topic).

Impact Diversity	
2.95	L
3.09	C
3.21	
3.31	
3.32	
3.77	
4.5	
4.55	
4.55	
4.57	ŀŀ
4.59	C
	$ \begin{array}{c} 2.95 \\ 3.09 \\ 3.21 \\ 3.31 \\ 3.32 \\ \hline 3.77 \\ 4.5 \\ 4.55 \\ 4.55 \\ 4.55 \\ 4.57 \\ \end{array} $

Low Diversity

High Diversity

Topical Diversity

Can also be measured on particular papers...

Topical	Citations	Title
Diversity		
4.00	618	A tutorial on hidden Markov models and selected applications in speech processing
3.80	138	The self-organizing map
3.77	163	Hierarchical mixtures of experts and the EM algorithm
3.74	65	Quantifying Inductive Bias: AI Learning Algorithms and
3.74	144	Knowledge Acquisition via Incremental Conceptual Clustering
3.73	155	A Tutorial on Learning With Bayesian Networks
3.72	244	Term-Weighting Approaches in Automatic Text Retrieval
3.71	294	Finding Structure in Time
3.7	173	An introduction to hidden Markov models
3.7	132	Nearest neighbor pattern classification

Topical Precedence "Early-ness"

Within a topic, what are the earliest papers that received more than *n* citations?

Information Retrieval:

On Relevance, Probabilistic Indexing and Information Retrieval, Kuhns and Maron (1960) Expected Search Length: A Single Measure of Retrieval Effectiveness Based on the Weak Ordering Action of Retrieval Systems, Cooper (1968) Relevance feedback in information retrieval. Rocchio (1971) Relevance feedback and the optimization of retrieval effectiveness, Salton (1971) New experiments in relevance feedback, Ide (1971) Automatic Indexing of a Sound Database Using Self-organizing Neural Nets, Feiten and Gunzel (1982)

Topical Precedence "Early-ness"

Within a topic, what are the earliest papers that received more than *n* citations?

Speech Recognition:

Some experiments on the recognition of speech, with one and two ears, E. Colin Cherry (1953) Spectrographic study of vowel reduction, B. Lindblom (1963) Automatic Lipreading to enhance speech recognition, Eric D. Petajan (1965) Effectiveness of linear prediction characteristics of the speech wave for..., B. Atal (1974) Automatic Recognition of Speakers from Their Voices, B. Atal (1976)

Topical Transfer

Transfer from Digital Libraries to other topics

Other topic	Cit's	Paper Title
Web Pages	31	Trawling the Web for Emerging Cyber- Communities, Kumar, Raghavan, 1999.
Computer Vision	14	On being 'Undigital' with digital cameras: extending the dynamic
Video	12	Lessons learned from the creation and deployment of a terabyte digital video
Graphs	12	Trawling the Web for Emerging Cyber- Communities
Web Pages	11	WebBase: a repository of Web pages

Topical Transfer

Citation counts from one topic to another. Map "producers and consumers"

Outline

Social Network Analysis with Topic Models

- Role Discovery (Author-Recipient-Topic Model, ART)
- Group Discovery (Group-Topic Model, GT)
- Enhanced Topic Models
 - Correlations among Topics (Pachinko Allocation, PAM)
 - Time Localized Topics (Topics-over-Time Model, TOT)
 - Markov Dependencies in Topics (Topical N-Grams Model, TNG)
- Bibliometric Impact Measures enabled by Topics

Multi-Conditional Mixtures

Topic Model Musings

- 3 years ago Latent Dirichlet Allocation appeared as a complex innovation ...but now these methods & mechanics are well-understood.
- Innovation now is to understand data and modeling needs, how to structure a new model to capture these.