Question Answering

Vanessa Murdock

Overview

- Question Answering, in general
- Question Classification
- Information Retrieval
- External Resources
- Answer Extraction
- QA Systems from TREC
- Real-Life QA Systems

Question Answering

- Question answering seeks the token or phrase (or passage, document, document set) that is the exact answer to a question
- Questions have many flavors
- Most research is focused on fact questions
- Answers are assumed to be tokens or phrases
- Complete answers are assumed to be found in a single source

Types of Questions

- Fact : Who killed Martin Luther King?
- Task : How do I apply for a passport?
- Opinion : What was the best movie this year?
- Definition : Who is Jane Goodall?
- List : What movies was Jude Law in?
- Explanation : What was the cause of the Korean war?
- Yes-No : Is it legal to turn right on red in Iowa?

Question Examples

Aspartame is also known as what? At what age did Rossini stop writing operas? Boxing Day is celebrated on what day? **Define Thalassemia** How big is our galaxy, in diameter? How cold should a refridgerator be? CPR is the abbreviation for what? How long is human gestation? How long is the Columbia River?

Fact Question Examples

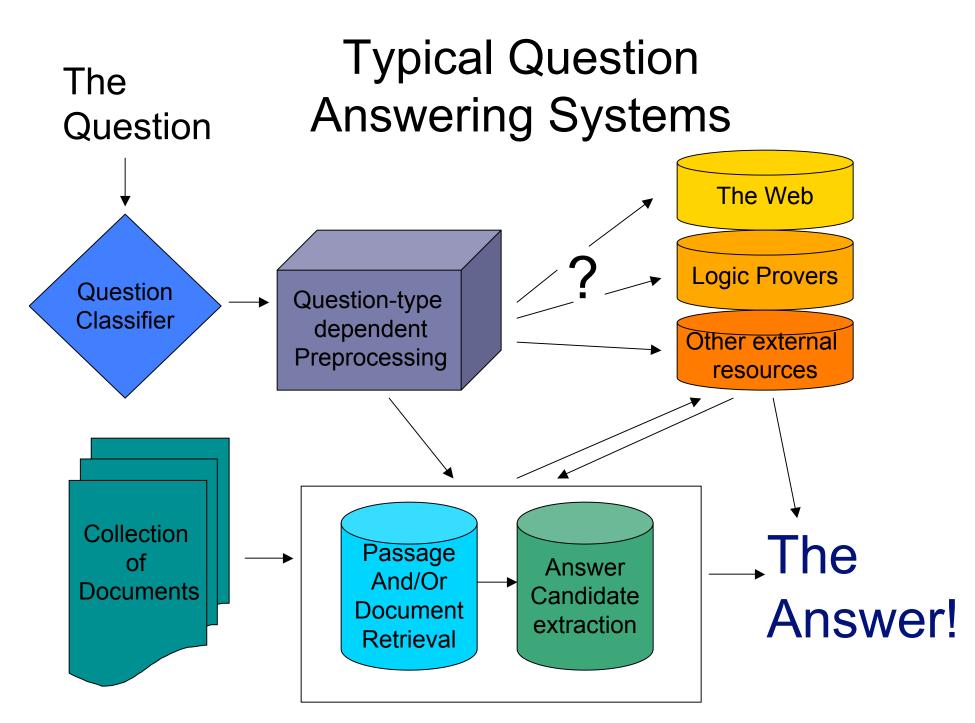
Q: When was Mozart born?

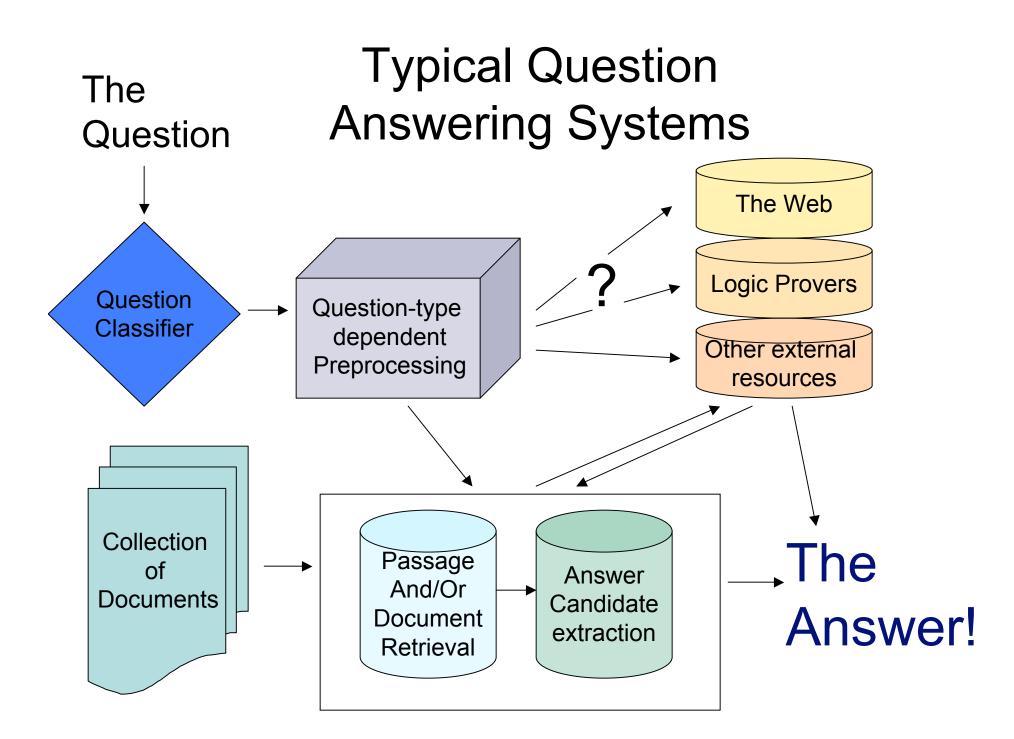
A: 1756

- Q: What is a nanometer?
- A: a billionth of a meter
- A: a millionth of a millimeter
- Q: When was The Great Depression?
- A: 1930's
- A: 1931
- A: 1932

Q: Who is Absalom?

- A: African-American leader, first black whaling ship captain, desegregated Nantucket's school system.
- A: Son of (biblical) David, who betrayed his father





Fact Question Classification classify by expected answer type

- Basically two approaches:
 - Classification
 - Advantage: easy to understand/implement, reliable
 - Disadvantage: Doesn't give information other than class
 - Regular expressions
 - Advantage: can give information in addition to class
 - Disadvantage: very brittle
- Classifier Features: POS tags, words, NE tags, WordNet, wh-words, parse trees etc.
- Regular expressions:
 - Simple: wh-words
 - Complex: QA "typology"
- State of the Art: ~90% accuracy

Question Classification: SVMs

(Zhang & Lee, SIGIR 2003) (tree kernel)

- Defined coarse and fine-grained classes
- binary features: word identity, word n-grams
- (Metzler and Croft, Information Retrieval, 2005) (linear kernel)
- Fine-grained classes
- Word identities, WordNet synonyms, POS tags

minimize
$$\langle w \bullet w \rangle + C \sum_{i} \xi_{i}$$
 s.t. $y_{i} (\langle w \bullet x \rangle + b) \ge 1 - \xi_{i}$ for all *i*

Question Classification: regex

- By wh-words, and regular expressions:
 - "Who" => person (Organization? GPE?)
 - "When" => date (Year? Season? Holiday?)
 - "Where" => location (GPE? Organization?)
 - "How"
 - "How many" => cardinal number
 - "How do" => task question
- "Question typology" extensive regex's from patterns

ISI's question typology

Semantic ontology types (I-EN-CITY) and part of speech labels (S-PROPER-NAME):

What is the capital of Uganda?

QTARGET: (((I-EN-CITY S-PROPER-NAME)) ((EQ I-EN-PROPER-PLACE)))

Parse tree roles:

Why can't ostriches fly?

Name a film in which Jude Law acted.

QA Typology nodes:

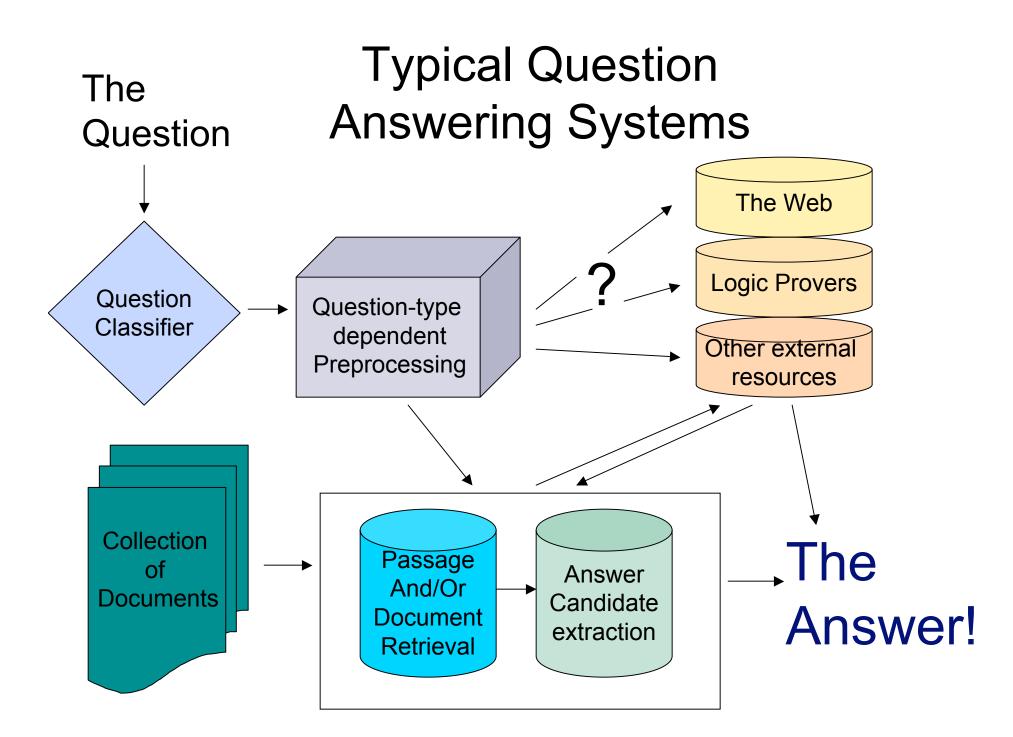
What are the Black Hills known for? Who was Whitcomb Judson? What is Occam's Razor? QTARGET: (((ROLE REASON))) QTARGET: (((SLOT TITLE-P TRUE)))

Q-WHY-FAMOUS Q-WHY-FAMOUS-PERSON Q-DEFINITION

Qargs for additional information:

Who was Betsy Ross? QTARGET: (((Q-WHY-FAMOUS-PERSON))) QARGS: (("Betsy Ross")) How is "Pacific Bell" abbreviated? QTARGET: (((Q-ABBREVIATION))) QARGS: (("Pacific Bell")) What are geckos? QTARGET: (((Q-DEFINITION))) QARGS: (("geckos" "gecko") ("animal"))

Figure 4. QA-related information, returned in the parse tree of the question.



IR for QA: models

- If we did a good job of IR, QA would be easy
- Passage/sentence retrieval is not just short document retrieval
- Vector Space model
- Query Likelihood
- Translation Models

Vector Space Model

- Represent documents as vectors of term weights
- Term weights are given by tf.idf
- Rank documents by their cosine of the angle between the query vector and the document vector.

$$weight(i, j) = \begin{cases} (1 + \log(tf_{i,j}))\log\frac{N}{df_i} & tf_{i,j} \ge 1\\ 0 & tf_{i,j} = 0 \end{cases}$$

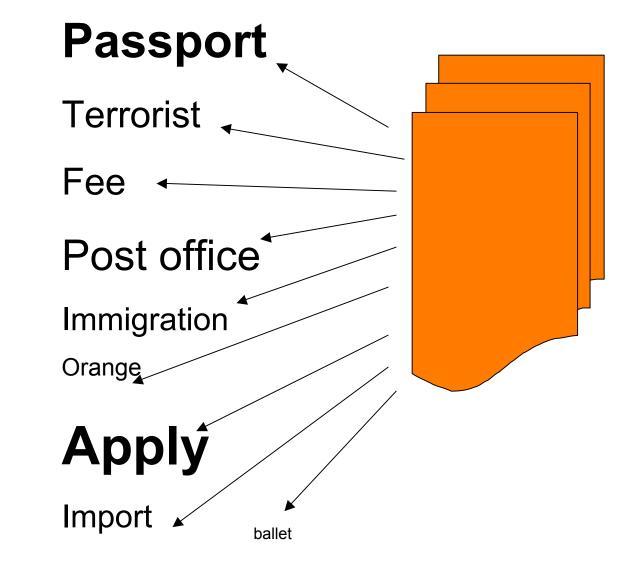
$$\cos(\vec{q}, \vec{d}) = \frac{\sum_{i} q_{i} d_{i}}{\sqrt{\sum_{i} q_{i}^{2}} \sqrt{d_{i}^{2}}}$$

Documents are represented by vectors of term weights. Why not other types of features? Other similarity metrics?

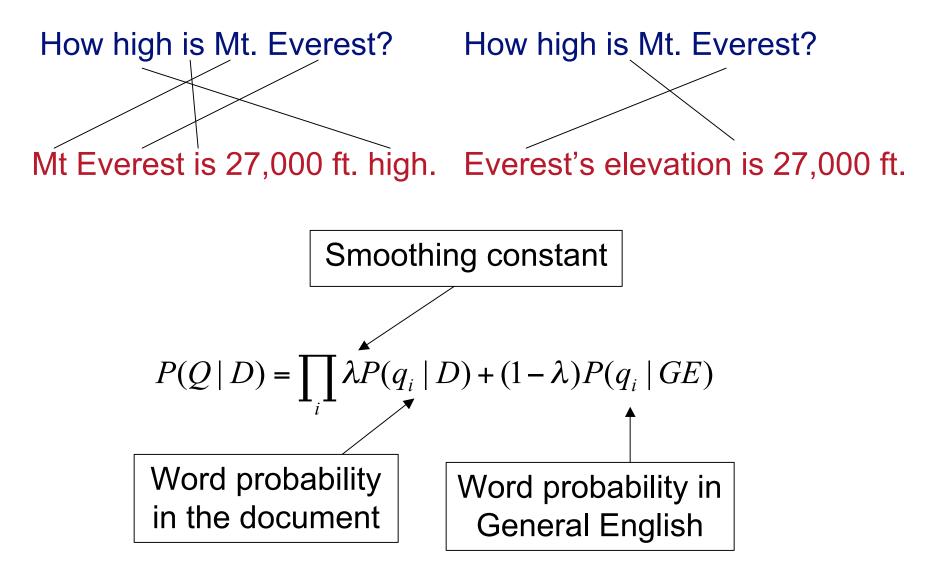
Query Likelihood, part 1

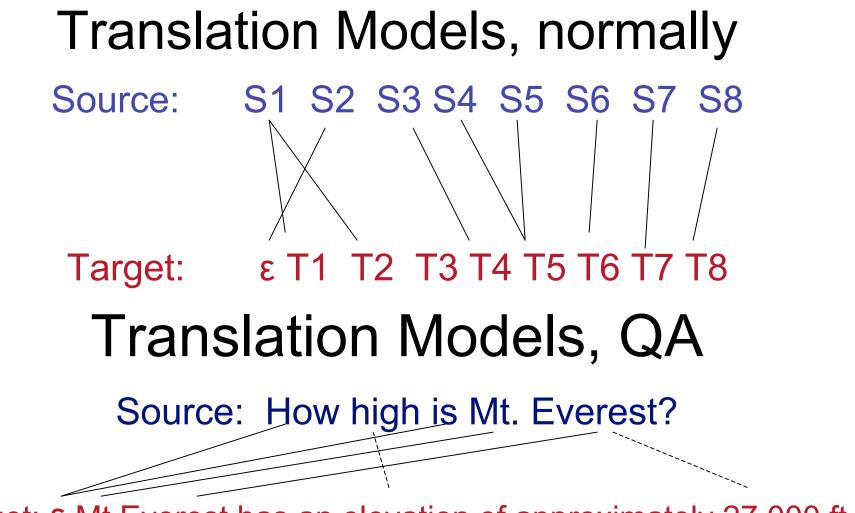
Documents can be considered bags of words. We sample words from the document.

Certain words are more frequent than others, thus have higher probability.



Query Likelihood, part 2





Target: **c** Mt Everest has an elevation of approximately 27,000 ft.

Translation Models train on a parallel corpus, in our case a set of questions and sentences containing answers.

Translation Models and Query Likelihood

Translation Model:

$$P(Q \mid A) = \prod_{i} \lambda \sum_{j} P(q_i \mid a_j) P(a_j \mid A) + (1 - \lambda) P(q_i \mid GE)$$

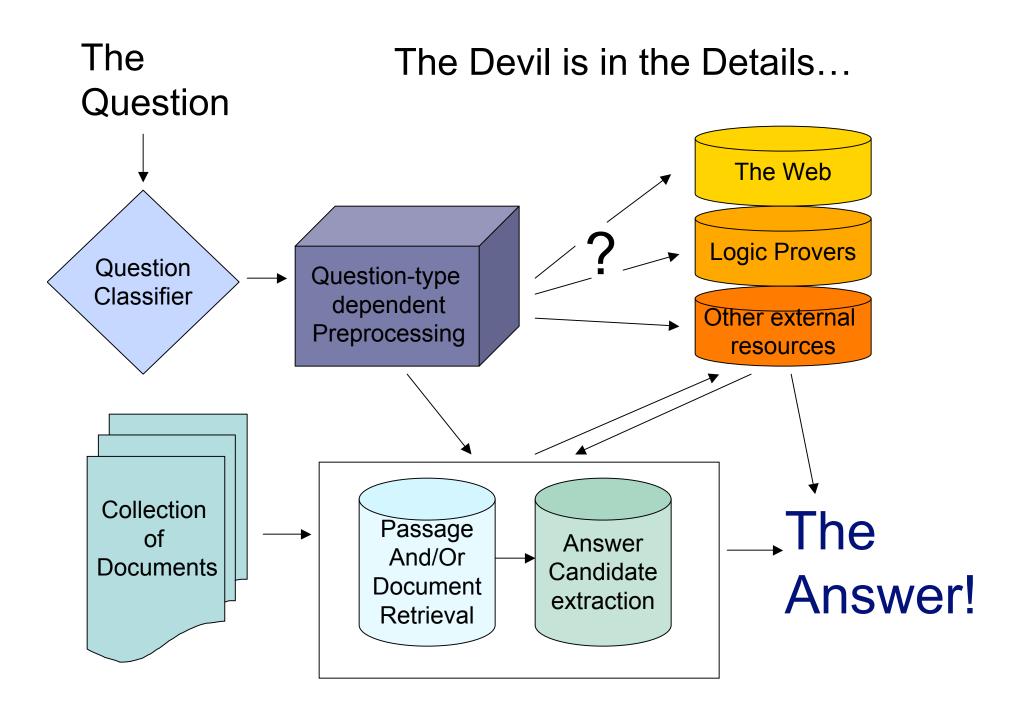
If there is only one
translation

Query Likelihood:

 $P(Q \mid A) = \prod_{i} \lambda P(q_i \mid A) + (1 - \lambda)P(q_i \mid GE)$

State of the Art in Passage Retrieval (TREC 2003)

Group	Accuracy
Language Computer Corp.	.685
Nat'l. Univ. of Singapore	.419
Univ. of Waterloo	.351
Univ. of Massachusetts	.201
Macquarie Univ.	.191
Saarland Univ.	.169
IIT Bombay	.133
CL Research	.119
Univ. of Amsterdam	.111
Queens College, CUNY	.097

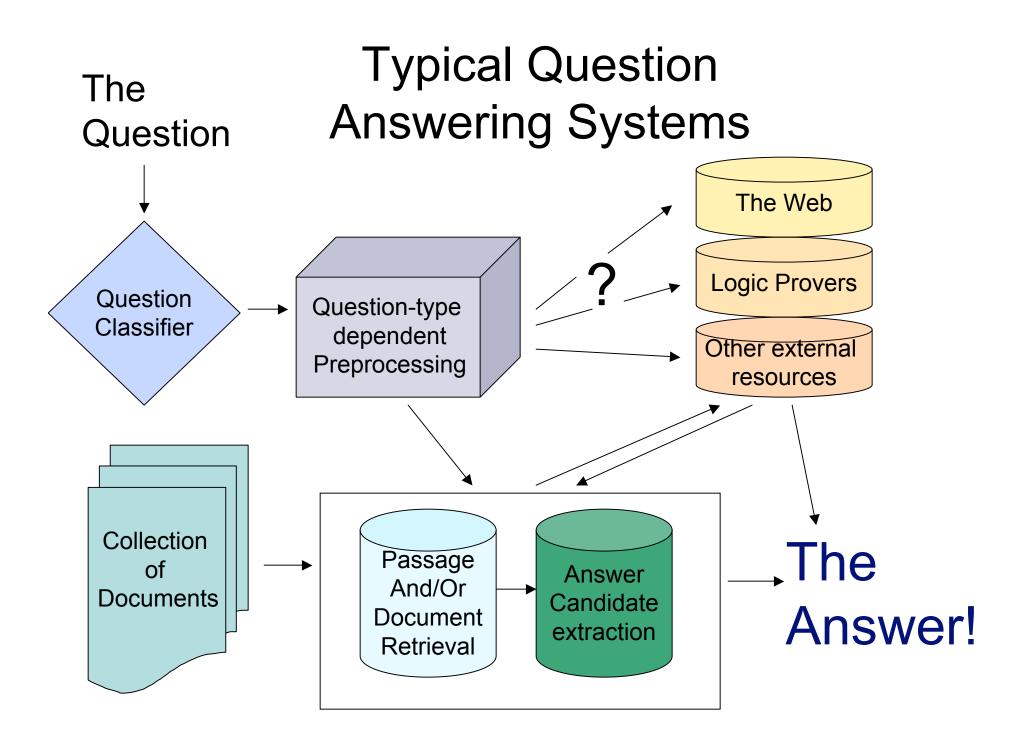


Question Type Dependent Processing

- Question rewrites for the web
 - Turn the question into a query, combine multiple evidence
- Logic provers
 - Attempt to reason about the question
- Answer filtering
 - Rule out answers that look right, but can't be
- Question analysis for patterns
 - Patterns in the question suggest patterns in the answer

External Resources

- The web (problematic)
 - Web summaries
 - Answer validation
 - Increasing training data
- POS taggers, NE extractors, noun-phrase chunkers
- Gazetteers, Ontologies, thesauri – WordNet, ConceptNet
- Logic Provers
- Previously answered questions



Answer Extraction (Simplest)

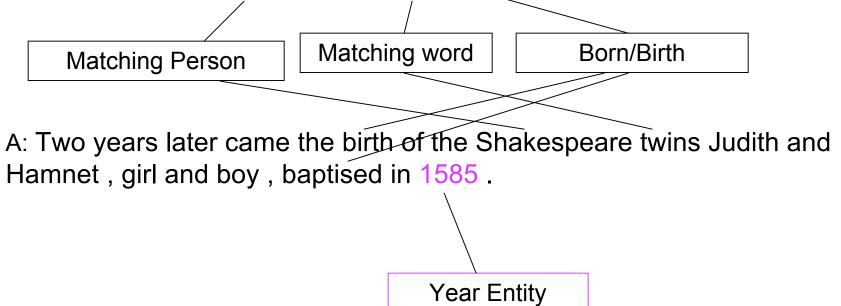
- Extract the answer token that is the correct named entity type from top sentence.
- Extract the answer tokens from top N sentences, and vote.
- Extract answer tokens candidates from top N sentences, validate on the Web

Answer Tagging

- Treat answer tagging as named-entity tagging
- Answers are frequently not a named entity type (ex. why-famous questions)
- Answer tokens are not predictable and do not always have predictable indicators
- Features of answer tokens are not directly sequential and are often long-range
- Features of one question type may not generalize to other question types

Answer Tagging (Easy)

- Determine the answer type of the question
- Retrieve a good sentence
- Return the appropriate named entity



Answer Tagging (Harder)

- Determine the answer type of the question
- Retrieve a good sentence
- Return the appropriate named entity
- Q: Where is Glasgow ?
- A: The recession came late to Glasgow, as it did to the rest of Scotland.

A: America 's cuts affect flights from all U.S. cities it serves to Zurich , Switzerland ; Munich and Dusseldorf , Germany ; Glasgow , Scotland and Budapest .

GPE Entities

Answer Patterns

- Answer Patterns are the text immediately surrounding an answer to a fact question
- Dependent on the question type
- Independent of the specific question

Answer Pattern Examples

"Inventor" pattern examples: <NAME> , invented by <ANSWER> <ANSWER>'s <NAME> <NAME> was invented by <ANSWER> <ANSWER> invented the <NAME>

Example:

And the demonstration just happens to come 115 years to the day after Edison invented the light bulb.

Answer Pattern Examples

"Discoverer" pattern examples: When <ANSWER> discovered <NAME> <ANSWER>'s discovery of <NAME> <ANSWER> discovers <NAME>. <NAME> was discovered by <ANSWER> <ANSWER> discovered SAME> Example:

Example:

Gene Shoemaker discovered the comet which will hit Jupiter starting in about eight hours.

Birth-Year Pattern Examples

Dodi Fayed was born in 1956.

- Moments after Samantha Crystal was born on July 17, 1996, doctors knew...
- In her brief life and tragic death, Jessica Dubroff (1988 – 1996) became a metaphor for everything from youthful idealism to New-Age excess.

Hard Birth-Year Pattern Examples:

- Born Israel Baline to a poor rural Russian family in 1888, Berlin taught himself to play the piano.
- Born in 1924, almost exactly contemporary with Norman Mailer, he was brought up in New York City.

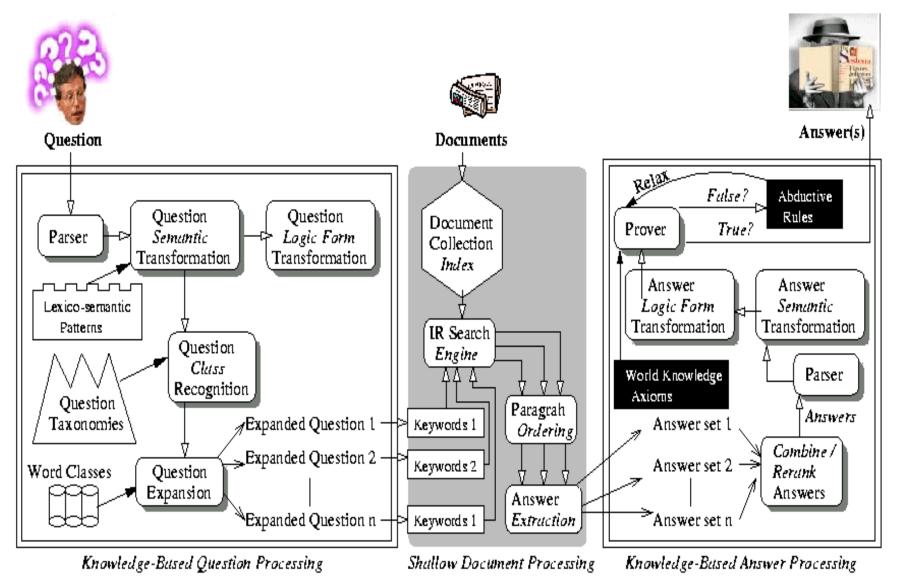
Some things to consider...

- For any given question type, there are potentially hundreds of ways to express the answer.
- Learning patterns depends on multiple unique examples of the same pattern.
- Newswire data has a limited number of examples of any given pattern.
- Newswire data is repetitive: there are many identical examples with different doc ids.

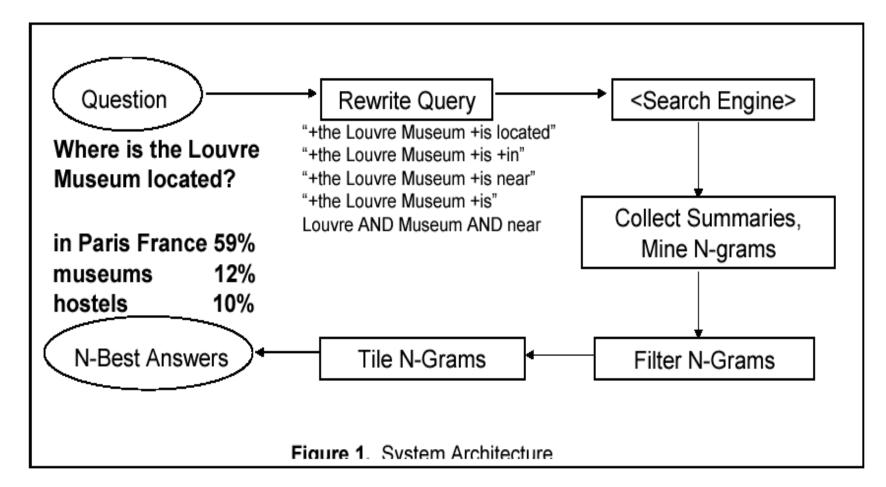
Overview

- Question Answering, in general
- Question Classification
- Information Retrieval
- External Resources
- Answer Extraction
- QA Systems from TREC
- Real-Life QA Systems

FALCON: Boosting Knowledge for Answer Engines. Sanda Harabagiu et al. The Ninth Text REtrieval Conference (TREC 9), 2000.



An Analysis of the AskMSR Question-Answering System. Eric Brill, Susan Dumais, Michele Banko. EMNLP 2002.



N-grams weighted by reliability of pattern retrieving, and frequency.

"Tiling" means voting on most frequent terms.

ISI Webclopedia

The External Use of Knowledge in Factoid QA (Hovy,Hermjakob,Lin. TREC 10)

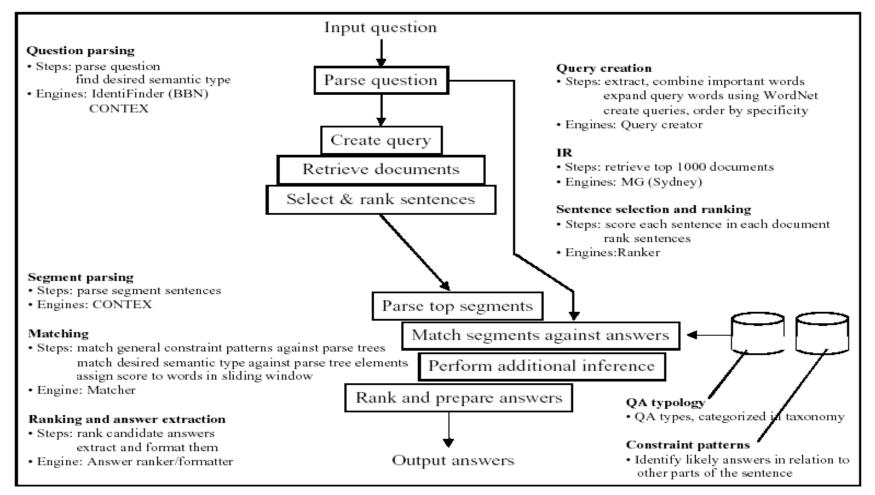


Figure 1. Webclopedia architecture.

Evaluation

- Precision at rank one
 - Percent of questions answered correctly
- MRR
 - 1/(rank of first correct answer)
- F-measure: 2PRP+R
- TREC:

Fact score is precision

Def score is approximately F-measure for definition components

List score is F-measure for list components

Fact Questions from TREC 2003

Group	Fact Score	Def Score	Final Score	
Language Computer Corp.	.700	.442	.559	
Nat'l. Univ. of Singapore	.562	.473	.479	
LexiClone	.622	.159	.363	
USC (ISI)	.337	.461	.313	
BBN	.206	.555	.266	
MIT	.293	.309	.256	
ITC-irst	.235	.317	.216	
IBM Research	.298	.175	.212	
Univ. of Albany	.240	.146	.178	
Fudan University	.191	.192	.165	

Final Score = $\frac{1}{2}$ Fact score + $\frac{1}{4}$ list score + $\frac{1}{4}$ def score

http://www.trec.nist.gov

TREC 2004

3	Hale Bopp comet		
	3.1	FACTOID	When was the comet discovered?
	3.2	FACTOID	How often does it approach the earth?
	3.3	LIST	In what countries was the comet visible on its last return?
	3.4	OTHER	
21	Club I	Med	
	21.1	FACTOID	How many Club Med vacation spots are there worldwide?
	21.2	LIST	List the spots in the United States.
	21.3	FACTOID	Where is an adults-only Club Med?
	21.4	OTHER	-
22	Franz Kafka		
	22.1	FACTOID	Where was Franz Kafka born?
	22.2	FACTOID	When was he born?
	22.3	FACTOID	What is his ethnic background?
	22.4	LIST	What books did he author?
	22.5	OTHER	

TREC 2004 Results

rable 2. Evaluation seores for runs with the best detoid component.									
		Accuracy							
Run Tag	Submitter	All	Initial	Non-Initial	NIL Prec	NIL Recall			
lee1	Language Computer Corp.	0.770	0.839	0.744	0.857	0.545			
uwbqitekat04	Univ. of Wales, Bangor	0.643	0.694	0.625	0.247	0.864			
NUSCHUA1	National Univ. of Singapore	0.626	0.710	0.595	0.333	0.273			
mk2004qar1	Saarland University	0.343	0.419	0.315	0.177	0.500			
IBM1	IBM Research	0.313	0.435	0.268	—	0.000			
mitl	MIT	0.313	0.468	0.256	0.083	0.045			
irst04higher	ITC-irst	0.291	0.355	0.268	0.167	0.091			
FDUQA13a	Fudan University (Wu)	0.257	0.355	0.220	0.167	0.091			
KUQA1	Korea University	0.222	0.226	0.220	0.042	0.045			
shef04afv	University of Sheffi eld	0.213	0.177	0.226	0.071	0.136			

Table 2: Evaluation scores for runs with the best factoid component.

Real-Life QA Systems

- AskJeeves (is not a QA system): <u>http://www.ask.com</u>
- BrainBoost:

http://www.brainboost.com/

• START:

http://start.csail.mit.edu/

• LCC:

http://www.languagecomputer.com/solutions/que stion_answering/index.html

Summary

- QA systems are comprised of components that are cobbled together – it's not always obvious how (or why) they work.
- Failure in one component propagates through the system
- Answers have a high degree of variation
- Most systems are brittle unexpected types of questions fail

Open Problems

- Is there a unifying mathematical framework?
- What are the uses for question answering?
- Non-fact questions
- Generating natural language answers
 - Sentences provide context
 - We would like exact answer sentences, but how?
- Interactive Question Answering

Open Problems

- Combining multiple sources
 - How do we compare results from multiple sources?
 - Stitch together sentences?
 - Combine sentences into paragraphs?
 - Do we choose similar or novel pieces of information?
 - How do we combine structured and unstructured data?

Open Problems

- Answer granularity
 - Fact questions:
 - Token?
 - Phrase?
 - More than a phrase?
 - Which questions require what size answer?
 - Questions not answerable with facts:
 - What are they answerable with?
 - Forms?
 - A narrative document?
 - A table?

Resources

- TREC QA Track
 - Data: <u>http://trec.nist.gov/data/qa.html</u>
 - Publications: <u>http://trec.nist.gov/pubs.html</u>
- Conferences such as ACL, EMNLP, SIGIR frequently have QA tracks or workshops:
 - NAACL/HLT Workshop on Interactive QA: <u>http://www.ils.albany.edu/IQA06/</u>
 - ACL Workshop on Task-Focused Summarization and Question-Answering:

http://research.microsoft.com/~lucyv/WS7.htm