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1.0 Introduction
Problem: In this work we consider the problem of sparse, block-
structured Gaussian precision matrix (inverse covariance matrix) 
estimation when the blocks are not known a priori. 

Motivation: Estimating a covariance matrix from high dimensional data 
using a small number of samples is known to be statistically 
challenging, and yet it is a problem that arises frequently in practice. 
For some kinds of data, it is reasonable to assume that the variables 
can be clustered or grouped into types that share similar connectivity or 
correlation patterns. For example, genes can be grouped into 
pathways, and connections within a pathway might be more likely than 
connections between pathways. 

Our interest is in devising methods that simultaneously infer the block 
structure and a block-sparse precision matrix to provide improved 
regularization when there is no known block structure. 

2.0 Related Work
Tikhonov Regularization: A very simple approach, which we shall call 
Tikhonov regularization, is to increase the diagonal of the empirical 
covariance matrix by adding a scalar multiple of the identity matrix.

L1 Regularized Precision Estimation: Sparse precision matrix 
estimation can be cast as a convex optimization problem in the 
penalized maximum likelihood framework. An L1 penalty is imposed on 
the elements of the precision matrix [Yuan07, Banerjee06].

Group L1 Regularized Precision Estimation: If the group structure is
known, one can extend the L1 penalized likelihood framework in a 
straightforward way, by penalizing the infinity norm [Duchi08] or the 
two-norm [Schmidt09] of each block separately. The resulting objective 
function is still convex, and encourages block-wise sparse graphs.

Sparse Dependency Networks: An alternative approach to sparse 
precision estimation is to learn the underlying graph by regressing each 
node on all the others using an L1 penalty [Meinshausen06]. 

3.0 Model & Algorithm
Overview: We propose a two-stage method for learning sparse 
precision matrices or GGMs with unknown block structure:

(1) Optimize a pseudolikelihood criterion combined with a sparsity 
promoting prior on the weights, similar to the approach of 
Meinshausen & Buhlmann. The sparsity level of each edge (i,j) is 
controlled by the clusters to which nodes i and j belong, as well as 
the probability of an edge between these cluster types.

(2) Having identified the clusters, we then estimate the precision 
matrix  using the group L1/L2 method [Schmidt09].

The Model:
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4.1 CMU Results
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CMU Motion Capture Data Set (D= 60): 

Variational Approximation: 

Learning Algorithm: 

  [1] Initialize with all nodes in the same cluster
  [2] While not converged
  [3]     Iterate variational updates to convergence
  [4]     Use graph cut on W to propose cluster splits
  [5]     Accept first split that increases objective function
  [6] Extract MAP clustering. Apply group L1/L2 to estimate precision
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Conclusions: We have shown how to estimate a block-sparse 
precision matrix while simultaneously estimating the blocks. Our two 
stage approach uses a hierarchical dependency network model to infer 
the blocks, and fast convex methods to estimate the precision matrix 
given the blocks.

Future Work: In work appearing at UAI 2009, we present an alternative 
approach that avoids the dependency network by converting the L1 and 
group L1/L2 regularization functions into priors on the space of positive 
definite matrices. We deal with the intractable normalization constants 
using novel lower bounds [Marlin09].
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• T:            Tikhonov regularization
• IL1:         Independent L1 penalized likelihood
• UGL1:    Our dependency network model (unknown groups)
• UGL1F:  Our dependency network model (unknown groups, fast updates)
• KGL1:    Group L1/L2 penalized likelihood (known groups)

Image adapted from Gasch et al. (2000) supplemental materials.


