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• We describe a class of causal, discrete latent variable models called Multiple 
Multiplicative Factor models (MMFs). 

• MMFs pair a directed (causal) model with multiplicative combination rules. The 
product formulation of MMFs allow factors to specialize to a subset of the items, while 
the causal generative semantics mean MMFs can readily accommodate missing data.

• We present a Binary/Multinomial MMF model along with variational inference and 
learning procedures. We apply the model to the task of rating prediction for 
collaborative filtering. 

• We present empirical results showing that a binary/multinomial MMF model matches 
the performance of the best existing models while learning an interesting latent space 
description of the users.
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Preference Indicators

Co-occurrence Pair (u,y): u is a user index and y is an item index.

Count Vector (n1u, n2u, … , nMu): nyu is the number of times (u,y) is observed.

Rating Triplet (u,y,r): u is a user index, y is an item index, r is a rating value.

Rating Vector (r1u, r2u, … , rMu): ryu is rating assigned to item y by user u. 
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Content-Based Features

In a pure formulation no additional features are used. A hybrid formulation 
incorporates additional content-based item and user features. 

Sequence-Based Features

In a sequential formulation the rating process is modeled as a time series. In a      
non-sequential formulation preferences are assumed to be static.
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Figure 1: Pure rating-based collaborative filtering data in matrix form.  

Preference Indicators: Ordinal rating vectors
Content-Based Features: None
Sequence-Based Features: None

Items:      y=1,…,M
Users: u=1,…,N
Ratings: r=1,…,V

Formal Description:
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• Items: y=1,…,M

• Users: u=1,…,N

• Ratings:  ruy ��{1,…,V}

• Profiles:  ru��{1,…,V, �}M

Previous Studies:

This is the formulation 
used by Resnick et al. 
(GroupLens), Breese et al 
(Empirical Evaluations), 
Hofmann (Aspect Model), 
Marlin (URP).



Figure 2: A break down of the recommendation problem into sub-tasks.  

• Recommendation: Selecting items the active user might like or find useful.

• Rating Prediction: Predicting all missing ratings in a user profile.
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Recommendation by 
Rating Prediction:

Recommendation can be 
performed by predicting all 
missing ratings in the active 
user profile, and then 
sorting the unrated items by 
their predicted ratings.

The focus of research in 
this area is developing 
highly accurate rating 
prediction methods.
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• Introduced by Resnick et al (GroupLens), 
Shardanand and Maes (Ringo).

• All variants can be seen as modifications 
of the K-Nearest Neighbor classifier.

Rating Prediction:

1. Compute similarity measure between 
active user and all users in database. 

2. Compute predicted rating for each item. 
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Learning:

• A simple mixture model with fast, reliable 
learning by EM, and low prediction time. 

• Simple but correct generative semantics.
Each profile is generated by 1 of K types.

Rating Prediction:

E-Step:

M-Step:



• Proposed by Marlin as a correct 
generative version of the aspect model for 
collaborative filtering.

• Has a rich latent space description of a 
user as a distribution over attitudes, but 
this distribution is not reflected in the 
generation of individual ratings.

• Has achieved the best results on 
EachMovie and MovieLens data sets.
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Learning:
• Model learned using variational EM. 

Prediction:

• Needs approximate inference. Variational 
methods result in an iterative algorithm.

Figure 3:
Multinomial 
Mixture Model

Figure 4:
User Rating 
Profile Model
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Features:

1. Directed graphical model: Under the 
missing at random assumption a 
directed model can handle missing 
attribute values in the input without 
additional computation.

2. Multiple latent factors: Multiple latent 
factors should underlie preferences, and 
they should all directly influence the 
rating for each item.

3. Multiplicative Combination : A factor 
can specialize to a subset of items, and 
predictive distributions can become 
sharper when factors are combined. 
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Graphical Model:

Parameters:
• ηk: Distribution over activity of factor k.
•ρmk: Distribution over rating values for item m 
according to factor k.

Variables:
• Znk: Activation level of factor k for user n.
• Rnm: Rating of item m for user n.  

Binary/Multinomial MMF:

• Binary-valued, Bernoulli distributed factor 
activation levels Znk.ηk gives the mean of Bernoulli 
distribution for factor k.

• Ordinal-valued, multinomial distributed rating 
values Rnm. Each factor k has its own distribution 
over rating values v for each item m, ρvmk.

• The combined distribution over each rating 
variable Rnm is obtained by multiplying together 
the factor distributions, taking into account the 
factor activation levels.
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Variational Inference

Variational Approximation
• Exact inference impractical for learning. We apply a standard mean-field approximation 
with a set of variational parameters µk for each user u.

Parameter Estimation
r



�������#��	������

0��1*����� ��������

Approximate Prediction:

1. Apply the variational 
approximation to the true 
posterior. 

2. Compute predictive 
distribution using a small 
number of sampled factor 
activation vectors.

Weak Generalization Experiment:

• Available ratings for each user split into 
observed and unobserved sets. Trained 
on the observed ratings, tested on the 
unobserved ratings. 

Strong Generalization Experiment:

• Users split into training set and testing 
set. Ratings for test users split into 
observed and unobserved sets. Trained 
on training users, tested on test users.
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EachMovie: Compaq Systems Research Center
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• Ratings: 2,811,983
• Sparsity: 97.6%
• Filtering: 20 ratings 

• Users: 72916
• Items: 1628 
• Rating Values: 6

• Ratings: 1,000,209
• Sparsity: 95.7%
• Filtering: 20 ratings 

• Users: 6040
• Items: 3900 
• Rating Values: 5

MovieLens: GroupLens Research Center

Figure 5:
Distribution of 
ratings in filtered 
train and test data 
sets compared to 
base data sets. 

Normalized Mean Absolute Error:

• Average over all users of the absolute 
difference between predicted and actual 
ratings. 

• Normalized by expectation of the 
difference between predicted and actual 
ratings under flat priors.

EM Train 1 EM Train 2 EM Train 3 EM Test 1 EM Test 2 EM Test 3EM Base

ML Train 1 ML Train 2 ML Train 3 ML Test 1 ML Test 2 ML Test 3ML Base



• MMF and URP attain the same minimum error rate on the EachMovie data set.

• On the MovieLens data set, MMF ties with the multinomial mixture model. 

Figure 6: EachMovie Strong Generalization Results Figure 7: MovieLens Strong Generalization Results

0��1*����������������	����
���3�����
���

Prediction Performance:



• Some factors make clear predictions about vote values while others are 
relatively uniform, indicating the presence of a specialization effect (Figure 8). 

• Combining factor distributions multiplicatively can result in sharper distributions 
than any of the individual factors (Figure 9). 

Multiplicative Factor Combination:

Figure 8: Learned factor distributions. Figure 9: Learned factor distributions and predictive 
distribution for a particular item.
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• With our learning procedure, inferred factor activation levels tend to be quite 
sparse. This justifies using a relatively small number of samples for prediction.

Factor Activation Levels:

Figure 10: Factor activation levels for a random set of 100 users. Black indicates 0 probability that the factor is 
active, white indicates the factor is on with probability 1.



Conclusions:

• Binary/Multinomial MMF differs from other CF models in that it combines the strength 
of directed models with the unique properties of multiplicative combination rules. 

• Empirical results show that MMF matches the performance of the best known 
methods for collaborative filtering while learning an interesting, sparse representation 
of the data.

• Learning in MMF is computationally expensive, but can likely be improved. 

Future Work:

• Extending the MMF architecture to model interdependence of latent factors.

• Studying other instances of the model like Integer/Multinomial and Binary/Gaussian.

• Studying additional applications like document modeling and analysis of micro arrays.


