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ABSTRACT
A fundamental aspect of rating-based recommender systems
is the observation process, the process by which users choose
the items they rate. Nearly all research on collaborative
filtering and recommender systems is founded on the as-
sumption that missing ratings are missing at random. The
statistical theory of missing data shows that incorrect as-
sumptions about missing data can lead to biased parameter
estimation and prediction. In a recent study, we demon-
strated strong evidence for violations of the missing at ran-
dom condition in a real recommender system. In this paper
we present the first study of the effect of non-random miss-
ing data on collaborative ranking, and extend our previous
results regarding the impact of non-random missing data on
collaborative prediction.

Categories and Subject Descriptors
H.3.3 [Information Search and Retrieval]: Information
filtering; G.3 [Probability and Statistics]: Multivariate
statistics; I.2.6 [Learning]: Parameter learning

General Terms
Algorithms, Performance

Keywords
recommender systems, collaborative filtering, ranking, prob-
abilistic models, non-random missing data

1. INTRODUCTION
Collaborative filtering and recommender systems are prin-

cipally concerned with two related problems: rating predic-
tion and ranking. The goal of the rating prediction task is
to accurately predict the rating a user would assign to an
individual item. The goal of the ranking task is to provide
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the user with a personalized list of top ranked items. Col-
laborative filtering methods attempt to solve both problems
by leveraging rating data collected from a large community
of users.

Research on recommender systems has focused almost ex-
clusively on properties of rating prediction and ranking meth-
ods including prediction accuracy [1], ranking accuracy [15],
novelty and diversity [17, 16], and explainability [5]. In this
paper, we focus on properties of the underlying rating obser-
vation process. We define the rating observation process as
the process through which users select the items they choose
to rate. In particular, we assess the impact of non-random

observation processes on rating prediction and ranking.
Most prior research on collaborative filtering and recom-

mender systems is founded on the assumption that missing
ratings are missing at random. However, the statistical the-
ory of missing data developed by Little and Rubin [6] shows
that incorrect assumptions about missing data can lead to
biased parameter estimation and prediction in a wide range
of models and methods including clustering [1], matrix fac-
torization [2] and other probabilistic models [11].

The key concept in Little and Rubin’s theory is the miss-

ing at random condition. This condition is quite intuitive in
the collaborative filtering setting. It essentially states that
the probability that a rating is missing does not depend on
the value of that rating, or the value of any other missing
rating. The condition is easily violated in recommender sys-
tems if, for example, users are more likely to supply ratings
for items that they do like, and less likely to supply rat-
ings for items that they do not like. We recently reported
substantial evidence for violations of the missing at random
condition in recommender systems based on an online study
conducted at Yahoo! Research involving over 35, 000 partic-
ipants [8].

The main contribution of this paper is the first empiri-
cal analysis of ranking in the presence of non-random miss-
ing data. We also extend our previous investigation into
the effect of non-random missing data on rating prediction
by testing two additional baseline methods: nearest neigh-
bour regression and matrix factorization. Our results show
that two methods that incorporate a non-random missing
data model, MM/CPT-v and MM/Logit-vd, outperform the
baseline methods when evaluating rating prediction and rank-
ing on items selected at random. We believe this is a more
accurate measure of performance than testing on items se-
lected by the user since it better reflects an important goal of



recommender systems: to make predictions and recommend
items that the user has not yet seen or rated.

2. MISSING DATA THEORY
A collaborative filtering data set can be represented as a

rectangular matrix x where each row in the matrix repre-
sents a user, and each column in the matrix represents an
item. xnd denotes the rating of user n for item d. Let N
be the number of users in the data set, D be the number
of items, and V be the number of rating values. To reason
about the observation process, we require a representation
for missing and observed rating values. We introduce a com-
panion matrix of response indicators r where rnd = 1 if xnd

is observed, and rnd = 0 if xnd is not observed. Hierarchical
collaborative filtering models such as clustering often con-
tain latent values that are never observed. We denote latent
values associated with data case n by zn. We denote the
corresponding random variables with capital letters.

Following Little and Rubin, we introduce a parametric
joint probability distribution on the data x, response indi-
cators r, and latent values z [6]. We adopt the factorization
of the joint distribution of the data random variables X, re-
sponse indicator random variables R, and latent variables
Z shown in Equation 1. µ and θ are the parameters of the
distribution.

P (R,X,Z|µ, θ) = P (R|X,Z, µ)P (X,Z|θ) (1)

Little and Rubin refer to P (R|X,Z, µ) as the missing data
model and P (X,Z|θ) as the data model. P (R|X,Z, µ) is
what we have been referring to as the observation process.
The intuition behind this factorization, under the additional
assumption that data cases are independently and identi-
cally distributed, is that all of a user’s ratings are first gen-
erated according to the data model P (Xn,Zn|θ), and the
missing data model P (Rn|Xn,Zn, µ) is then used to decide
which ratings will be observed and which will be missing.

2.1 Types of Missing Data
Little and Rubin classify missing data into several types

including missing completely at random (MCAR), missing
at random (MAR), and not missing at random (NMAR) [6,
p. 14]. The MCAR condition is defined in Equation 2, and
the MAR condition is defined in Equation 3. Under MCAR
the response probability for an item or set of items cannot
depend on the data values in any way. Under the MAR con-
dition, the data vector is divided into a missing part xmis

and an observed part xobs according to the value of r in ques-
tion: x = [xmis,xobs]. The intuition is that the probability
of observing a particular response pattern can only depend
on the elements of the data vector that are observed under
that pattern. Both MCAR and MAR require the additional
technical condition that the parameters µ and θ be distinct,
and that they have independent prior distributions.

Pmcar(R|X,Z, µ) = P (R|µ) (2)

Pmar(R|X,Z, µ) = P (R|Xobs, µ) (3)

Missing data is NMAR when the MAR condition fails to
hold. The simplest reason for MAR to fail is that the proba-
bility of not observing a particular element of the data vector
depends on the value of that element. In the collaborative

filtering case this corresponds to the idea that the probabil-
ity of observing the rating for a particular item depends on
the user’s rating for that item, which is quite natural.

2.2 Impact Of Missing Data
When missing data is missing at random, maximum likeli-

hood inference based only on the observed data xobs will be
unbiased. We demonstrate this result in Equation 7. The
key property of the MAR condition is that the response
probabilities are independent of the missing data, allowing
the complete data likelihood to be marginalized indepen-
dently of the missing data model. However, when missing
data is not missing at random, this important property fails
to hold, and it is not possible to simplify the likelihood be-
yond Equation 4 [6, p. 219]. Ignoring the missing data
mechanism will clearly lead to biased parameter estimates
and biased predictions since an incorrect likelihood function
is being used. For non-identifiable models such as mixtures,
we will use the terms “biased” and“unbiased” in a more gen-
eral sense to indicate whether the parameters are estimated
under the correct likelihood function.

Lmar(θ|x
obs, r)

=

∫

x
mis

∫

z

P (X,Z|θ)P (R|X,Z, µ)dZdXmis (4)

= P (R|Xobs, µ)

∫

x
mis

∫

z

P (X,Z|θ)dZdXmis (5)

= P (R|Xobs, µ)P (Xobs|θ) (6)

∝ P (Xobs|θ) (7)

While this analysis of the impact of non-random missing
data is based on maximum likelihood estimation, it imme-
diately extends to the case of Bayesian inference. It also
extends to learning in models like regularized matrix factor-
ization that can be cast as probabilistic models [10]. In the
case of non-parametric methods such as nearest neighbour
regression, it may be possible to correctly identify relevant
neighbours for a user or item in the presence of non-random
missing data using common similarity measures like Pearson
correlation [4]. However, it is clear that if missing data is
not missing at random, the resulting rating predictions will
be biased. Consider, for example, a case where low-valued
ratings are more likely to be missing, this would create an
over-abundance of high rating values in the observed data
and the resulting rating predictions would be biased upward.

Unfortunately, the theory does not easily extend to the
analysis of methods for learning to rank [14], or to the analy-
sis of the ranking task itself. What we do know is that learn-
ing rating prediction models will be subject to bias in the
presence of non-random missing data. Using these models
for ranking in a standard score-and-sort framework is likely
to pass some of this bias along to the inferred rankings, re-
sulting in a degradation of ranking performance. The main
question we are interested in is can we obtain better rating
prediction and ranking performance using simple models of
the non-random missing data process?

3. MODELS AND ALGORITHMS
The framework we consider for learning and prediction

with non-random missing data follows the basic outline sug-
gested by Little and Rubin [6]: We combine a probabilistic
model for complete data, in this case a multinomial mixture
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Figure 1: Graphical models illustrating the basic multinomial mixture model, the multinomial mixture/CPT-
v model, and the multinomial mixture/Logit-vd model.

clustering model, with a probabilistic model of the missing
data process. The missing data models we consider capture
some properties of a non-random missing data process, but
are necessarily simplistic since our aim is to simultaneously
estimate the parameters of both the complete data model
and the missing data model. We begin by describing three
models based on multinomial mixture clustering that incor-
porate different missing data assumptions. We also briefly
describe the baseline matrix factorization and nearest neigh-
bour methods.

3.1 Multinomial Mixture Model/MAR
The finite multinomial mixture model pictured in Figure

1(a) is a basic clustering model for discrete data. The ran-
dom variables Zn are cluster or mixture component indicator
variables. They indicate which mixture component is asso-
ciated with each data case and take values from the discrete
set {1, ..., K}. The random variables Zn are not observed
and are referred to as latent variables. The mixing propor-
tions θk give the prior probability of observing a data case
from each of the K clusters. The parameters of the mixture
component distributions are denoted by βk. The compo-
nent distributions are a product of independent multinomi-
als where βvdk = P (xnd = v|Zn = k). We denote the prior
distribution on the mixture component distributions βk with
hyper-parameters φ by P (βk|φ). We denote the prior distri-
bution on the mixing proportions θ with hyper-parameters
α by P (θ|α). We use independent Dirichlet distributions for
both P (βk|φ) and P (θ|α). We give the probabilistic model
for the multinomial mixture model in Equations 8 to 11. The
square bracket notation [s] represents an indicator function
that takes the value 1 if the statement s is true, and 0 if the
statement s is false.

P (θ|α) = D(θ|α) (8)

P (βdk|φdk) = D(βdk|φdk) (9)

P (Zn = k|θ) = θk (10)

P (xn|Zn = k, β) =
D
∏

d=1

V
∏

v=1

β
[xnd=v]
vdk (11)

Clustering models have a very natural interpretation in the
collaborative filtering domain: the latent variable zn indi-
cates the group or cluster that user n belongs to, and the
parameters βk specify the preferences of a prototypical user
that belongs to group k.

The default when dealing with missing data in a mixture
model is to invoke the missing at random assumption. Under
the missing at random assumption, the missing data model
can be ignored, and inference, learning, and prediction can
be based on the observed data only. In the multinomial
mixture model, missing data can be analytically summed
out of the observed data posterior.

3.2 Multinomial Mixture Model/CPT-v
The multinomial mixture model is a natural baseline model

for collaborative filtering. It does not include an explicit
missing data model, and hence relies on the MAR assump-
tion to deal with missing data. We now review an extension
of the multinomial mixture model that includes an explicit
non-random missing data mechanism that we call CPT-v [8].
CPT-v is a simple missing data model where the probability
that a rating is observed depends only on that underlying
rating value. This model can capture the idea that a user’s
preferences for a particular item can influence whether the
user rates that item, but the effect is the same for all items.

The CPT-v missing data model is parameterized using a
conditional probability table consisting of V Bernoulli pa-
rameters µv (hence the name CPT-v). The parameters µv

give the probability that an item will be rated if its true
rating value is v: P (rnd = 1|xnd = v) = µv. A Bayesian
network representation of the combined finite multinomial
mixture model/CPT-v model is given in Figure 1(b). The
response indicators are assumed to be independently sam-
pled for each item, leading to the missing model given in
Equation 12. The prior distribution on the µv parameters
is a Beta distribution as seen in Equation 13.

P (rn|xn, µ) =

D
∏

d=1

V
∏

v=1

(µ[rnd=1]
v (1− µv)[rnd=0])[xnd=v] (12)

P (µ|ξ) =
V
∏

v=1

B(µv|ξ0v, ξ1v) (13)

The specification of the multinomial mixture complete data
model is given by Equations 8-11.

3.3 Multinomial Mixture Model/Logit-vd
The CPT-v missing data model is restrictive in that it

asserts the same conditional missing data rates for all items.
We now present a more flexible missing data model that
we call Logit-vd. The Logit-vd model allows the probability



that a rating is missing to depend on both the value of the
underlying rating and the identity of the item. The Logit-
vd model specifies a logistic form for this relationship (hence
the name Logit-vd) as seen in Equation 14.

P (rnd = 1|xnd = v) = µvd =
1

1 + exp(−(σv + ωd))
(14)

The σv factor models a non-random missing data effect that
depends on the underlying rating value. This effect is con-
strained to be the same across all items. The ωd factor mod-
els a per-item missing data effect. This effect can be useful
if all items do not have the same exposure in a recommender
system. This situation can arise, for example, when some
items are more heavily promoted than others. A Bayesian
network representation of the combined finite multinomial
mixture model/Logit-vd model is given in Figure 1(c).

In the Logit-vd model, the response indicators are as-
sumed to be independently sampled for each item, yielding
the missing data model given in Equation 15. The model pa-
rameters σv and ωd are given Gaussian prior distributions
as seen in Equation 16. The specification of the underlying
multinomial mixture model for complete data is again given
by Equations 8 to 11.

P (rn|xn, µ) =

D
∏

d=1

V
∏

v=1

(µ
[rnd=1]
vd (1− µvd)[rnd=0])[xnd=v]

(15)

P (σ, ω|ξ, ν) =
V
∏

v=1

N (σv|0, ξ2
v) ·

D
∏

d=1

N (ωd|0, ν2
d) (16)

3.4 Logit-vd and CPT-v Model Estimation
We present a generalized Expectation Maximization (EM)

algorithm to simultaneously estimate the parameters of the
Logit-vd missing data model and the multinomial mixture
complete data model [3]. To help simplify the notation, we
introduce the auxiliary variables γdkn in Equation 17.

γdkn = (βxnddkµxndd)[rnd=1]

(

V
∑

v=1

βvdk(1− µvd)

)[rnd=0]

(17)

The EM updates for the combined multinomial mixture/Logit-
vd model are given in Algorithm 1. The σv and ωd parame-
ters are updated using a gradient step with the step length
λ set using a line search on each iteration to ensure conver-
gence.

The EM algorithm for the multinomial mixture/CPT-v
model parameters follows directly from the Logit-vd case if
we set µvd = µv for all d in Equation 17, and replace the
M-Step updates for σv and ωd given in Algorithm 1 with the
closed-form M-Step update given below.

Cv1 ←
N
∑

n=1

D
∑

d=1

[rnd = 1][xnd = v] (18)

Cv0 ←
N
∑

n=1

D
∑

d=1

qn(v, d)[rnd = 0] (19)

µv ←
ξ1v − 1 + Cv1

ξ1v + ξ0v − 2 + Cv1 + Cv0
(20)

Algorithm 1 Generalized EM for MM/Logit-vd

E-Step:

qn(k)←
θk

∏D

d=1 γdkn
∑K

k=1 θk

∏D

d=1 γdkn

qn(k, v, d)← qn(k)

(

(1− µvd)βvdk
∑

w
(1− µwd)βwdk

)[rnd=0]

qn(v, d)←
K
∑

k=1

qn(v, d)

M-Step:

θk ←
αk − 1 +

∑N

n=1 qn(k)

N −K +
∑K

k=1 αk

Cvdk =

N
∑

n=1

qn(k)[rnd = 1][xnd = v] + qn(k, v, d)[rnd = 0]

βvdk ←
φvdk − 1 + Cvdk

∑N

n=1 qn(k)− V +
∑V

v=1 φvdk

σv ← σv − λ

D
∑

d=1

N
∑

n=1

∂E[logP]

∂µvd

µvd(1− µvd)−
1

ξ2
v

(σv)

ωd ← ωd − λ
V
∑

v=1

N
∑

n=1

∂E[logP]

∂µvd

µvd(1− µvd)−
1

νd

(ωd)

µvd ←
1

1 + exp(−(σv + ωd))

We note that learning the parameters of the multinomial
mixture model under the missing at random assumption is
accomplished using the standard EM algorithm for discrete
mixtures. Further details for all models can be found in [7].

3.5 Logit-vd and CPT-v Discussion
CPT-v and Logit-vd employ simple conditional Bernoulli

selection models for the response variables. The advan-
tage of this form of missing data model is computational
tractability. Pre-computing and caching intermediate fac-
tors gives highly efficient EM algorithms for both CPT-v
and Logit-vd with approximately the same computational
cost per iteration as learning the multinomial mixture un-
der the missing at random assumption. The computational
complexity in both cases depends on the number of observa-
tions, not the data matrix size. Both models of course ignore
important information that might influence whether or not
particular items will be observed, and do not incorporate
feature-based information about users and items that could
be very helpful in overcoming the effects of non-random
missing data. Neither type of information is available for
the data set we consider, but an advantage of a probabilistic
approach is that the basic models can easily be extended to
deal with additional features and side information.

3.6 Matrix factorization
We consider a probabilistic matrix factorization model

with global mean offset as seen in Equations 21 to 23 [10].
Un denotes a length K user factor vector while Yd denotes
a length K item factor vector. µg is the global average rat-
ing. The item parameter vector Yd can be thought of as
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Figure 2: Distribution of rating values for randomly selected items (Yahoo! Random) and user-selected items
(Yahoo! User) compared to several popular collaborative filtering data sets including EachMovie, MovieLens,
and Netflix.

representing the strength of a set of features describing each
item. The user parameter vector Ud can be thought of as
representing the user’s affinity for items described by each
feature. Training for the matrix factorization model is ac-
complished by numerical optimization of the log likelihood
function. Without loss of generality we can assume σ2 = 1,
at which point learning the model is equivalent to standard
regularized matrix factorization with penalty λ = 1/σ2

0 .

P (xnd) = N (xnd|µg + UnY T
d , σ2) (21)

P (Un) = N (Un|0, σ2
0) (22)

P (Vd) = N (Yd|0, σ2
0) (23)

3.7 Item-Based Nearest Neighbour Regression
The final method we consider is item-based nearest neigh-

bour regression. We use an adjusted cosine similarity met-
ric as shown below [12], combined with the standard nearest
neighbour regression prediction rule. We found that restrict-
ing the prediction rule to positive similarities only resulted in
better prediction performance as noted previously by Takács
et al. [13]. x̄n denotes the average of user n’s observed rat-
ings while x̂nd denote the prediction for user n and item
d.

Wdd′ =

∑N

n=1 rndrnd′(xnd − x̄n)(xnd′ − x̄n)
√

∑N

n=1 rnd(xnd − x̄n)2
√

∑N

n=1 rnd′(xnd′ − x̄n)2

(24)

x̂nd =

∑

d′ 6=d
Wdd′rnd′xnd′

∑

d′ 6=d
|Wdd′ |rnd′

(25)

4. THE YAHOO! DATA SET
Our empirical analysis is based on the Yahoo! Music rat-

ings for User-Selected and Randomly Selected Songs, version

1.0 data set, which is available through the Yahoo! Web-
scope data sharing program.1 This data set is essentially
identical to the data set used in our previous study [8]. It
presents a unique opportunity to test collaborative filtering
methods that incorporate missing data models. It contains
ratings for items selected at random, in addition to ratings
for items selected by the user. It permits the evaluation of
rating prediction and ranking methods using a novel pro-

1Contact academicrelations@yahoo-inc.com or visit
http://research.yahoo.com/Academic Relations for details
on obtaining Yahoo! Webscope data sets.

tocol that considers ratings for randomly selected items as
described in Section 5.

The data set consists of ratings collected during normal
user interaction with Yahoo’s LaunchCast internet radio ser-
vice, as well as ratings for items collected using an online
survey. We will refer to the set of ratings collected through
normal interaction with the recommender system as ratings

for user-selected items and denote this set by Xu. We will
refer to the set of ratings collected through the survey as
ratings for randomly selected items and denote this set by
Xr.

The data set contains 15, 400 users, all with at least 10
ratings for user-selected items in Xu. 5, 400 of these users
also have exactly 10 ratings for randomly selected items in
the set Xr. The data set is based on 1, 000 songs selected
at random from the LaunchCast catalog. There are a total
of approximately 250, 000 ratings for user-selected items in
Xu and exactly 54, 000 ratings for randomly selected items
in Xs.

Figure 2 shows the marginal distribution of ratings for
randomly selected items in Xr compared to the distribution
of ratings for user-selected items in Xu, and several other
popular collaborative filtering data sets. The two sets of
ratings Xu and Xr in the Yahoo! data set exhibit markedly
different marginal statistics. The most pronounced feature
of the ratings for randomly selected items in the Yahoo! data
set is that they contain many fewer high ratings compared
to the ratings for user-selected items. This points strongly
to a possible violation of the missing at random condition
in the Yahoo! ratings for user-selected items. Marlin et
al. present further properties of the data set and additional
arguments supporting a possible violation of the missing at
random assumption in this data set [8].

5. EXPERIMENTAL PROTOCOL
The experimental protocol we employ is significantly more

involved than typical collaborative filtering evaluation pro-
cedures based on historical rating data as we deal with two
rating sources (user-selected and randomly selected items).
In this section we describe in detail the data set manipu-
lation needed to enable this experimental protocol, but the
basic idea is very simple: we train models on ratings for
user-selected items and test both on held-out ratings for
user-selected items and held-out ratings for randomly se-
lected items. We argue that testing on randomly selected
items is a more accurate measure of performance than test-
ing on items selected by the user since it better reflects an



important goal of recommender systems: to make predic-
tions and recommend items that the user has not yet seen
or rated.

5.1 Data Set Preparation
We begin by filtering the data so that each user has at

least 11 ratings in the set Xu instead of the original 10. We
choose 10 user-selected items from Xu to form a set of held-
out user-selected test items Xhu. The remaining ratings in
Xu form the set of user-selected observed ratings Xou. The
additional filtering insures at least one rating for each user
in Xou. All of the ratings for randomly selected items Xr

are held-out for testing.
To enable a cross-validation assessment of weak/strong

generalization error, we split the users with ratings for ran-
domly selected items (the users who participated in the on-
line survey and data collection experiment) into five equal
sized groups. For each cross-validation fold, we select one of
the five groups of users to form a set of test users. All of the
remaining users form the set of training users. We obtain
a total of six sets of ratings for each cross-validation fold:
Xou

tr ,Xou
te ,Xhu

tr ,Xhu
te ,Xr

tr, and Xr
te.

We train models on the observed ratings for user-selected
items contained in the training user set Xou

tr . Conditioning
on each training user’s observed ratings in Xou

tr , we evalu-
ate weak generalization performance on held-out ratings for
user-selected items contained in the training user set Xhu

tr .
We separately evaluate weak generalization performance on
ratings for randomly selected items contained in the train-
ing user set Xr

tr. Next, conditioning on each test user’s
observed ratings in Xou

te , we evaluate strong generalization
performance on held-out ratings for user-selected items con-
tained in the test user set Xhu

te . We separately evaluate
strong generalization performance on ratings for randomly
selected items contained in the test user set Xr

te.

5.2 Hyper-Parameter Settings and Optimiza-
tion Details

In the experiments that follow, we train each mixture
model using 1, 5, 10 and 20 mixture components. The Logit-
vd Normal prior parameters ξ2 and ν2 were set to 10 to pro-
vide a broad prior around zero. The mixture model hyper-
parameters α and φ and the CPT-v prior parameters ξ were
all fixed to 2 to provide minimal smoothing. No attempt
was made to update the hyper-parameters in this work. For
the matrix factorization model, we trained for 10, 000 iter-
ations using limited memory BFGS [9, p. 224] or until the
change in the objective function was less than 10−5. We
considered ranks K = 1, 5, 10, 20, and regularization param-
eters 0.1, 1, 5, 10. Each of the mixture models was trained
for 10, 000 EM iterations or until the change in the average
log posterior probability was less than 10−8.

6. EVALUATION METRICS
We evaluate rating prediction performance in terms of

normalized mean absolute error (NMAE), computed as seen
below, assuming there are T test items per user with indices
i(1, n) to i(T, n). The normalizing constant (equal to 1.6
here) is the expected MAE assuming uniformly distributed
predictions and true ratings. When evaluating rating pre-
diction performance, we set the predicted rating for item d
and user n to the median of the posterior predictive distri-
bution for that user/item combination since this minimizes

the MAE in expectation. We truncate predictions to [1, 5]
when predicting ratings if the prediction method does not
guarantee this property automatically.

NMAE =
N
∑

n=1

T
∑

t=1

|xi(t,n)n − x̂i(t,n)n|

1.6NT

NDCG@L =
N
∑

n=1

∑L

l=1(2
xπ̂(l,n)n − 1)/ log(1 + l)

N
∑L

l=1(2
xπ(l,n)n − 1)/ log(1 + l)

We evaluate ranking performance using a standard metric
in information retrieval ranking applications, the normal-
ized discounted cumulative gain (NDCG@L). The NDCG@L
score is computed as seen above where π(l, n) is the index of
the item with rank l when test items are sorted in descend-
ing order by true rating xnd, π̂(l, n) is the index of the item
with rank l when items are sorted in descending order ac-
cording to their predicted ratings x̂nd. When sorting by true
and predicted ratings, ties can be broken arbitrarily without
affecting the NDCG@L score. L denotes the length of the
ranked list of items we return to the user. When evaluating
ranking performance, we set the predicted rating for item
d and user n to the mean of the posterior predictive dis-
tribution for that user/item combination. Note that lower

NAME indicates better prediction performance while higher

NDCG indicates better ranking performance.

7. RATING PREDICTION RESULTS
Figures 3(a) and 3(b) present the weak generalization

rating prediction performance on randomly selected items
and user-selected items for item-based nearest neighbour
regression (iKNN), the matrix factorization model (MF),
the multinomial mixture model (MM), the multinomial mix-
ture/ CPT-v model combination (MM/CPT-v), and the multi-
nomial mixture/Logit-vd model combination (MM/Logit-
vd) as a function of the number of latent dimensions K.
For MF the best values with respect to the regularization
parameter λ are shown for each K. Note that we use all
neighbours in the iKNN method, so its performance is con-
stant across K.

Figures 3(c) and 3(d) show the strong generalization per-
formance on randomly selected items and user-selected items
for each of the five models. Strong generalization results are
reported for the complexity K giving the best weak gen-
eralization performance. The optimal model complexities
were chosen independently for user-selected and randomly
selected items. Note that the standard errors are repre-
sented on the plots using error bars.

The results on randomly selected test items clearly show
that the MM/Logit-vd model achieves slightly better rat-
ing prediction performance than MM/CPT-v, while both
achieve significantly better performance than the iKNN, MM
and MF models that operate under the missing at random
assumption. On user-selected items, the basic MM model
significantly out-performs both MM/CPT-v and MM/Logit-
vd. The best results we obtained with the MF and iKNN
models are worse than for MM. This is likely due to the fact
that the data is highly sparse and the MM model has the
fewest parameters to learn (4, 000K for MM versus 16, 000K
for MF). More advanced forms of regularization may yield
better performance for MF on user-selected items. The lim-
ited effect with respect to K for all methods is again likely
also due to the relatively small data set size.
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Figure 3: Figures (a) and (b) present the weak generalization rating prediction performance on randomly
selected items and user-selected items. Figures (c) and (d) present the strong generalization rating prediction
performance on randomly selected and user-selected items. The results show that the MM/Logit-vd model
achieves the best rating prediction performance on randomly selected items.

We note again that computing the prediction error on ran-
domly selected test items is more relevant than prediction
error on user-selected test items when the models are sub-
sequently used in a score-and-sort ranking framework. Es-
timating prediction error on user-selected items only gives
an estimate of prediction performance on items that were
previously selected by the user. This is clearly an unreliable
estimate of prediction performance over the whole rating
matrix in the case of the Yahoo! data set, or the results on
the two test sets would be equal.

8. RANKING RESULTS
The collaborative ranking task is to produce an ordered

top-L list of highest rated items for each user. The NDCG@L
score provides a measure of quality for top-L lists. Actu-
ally evaluating NDCG@L in the collaborative ranking case
is complicated by the fact that we do not have access to the
true ratings for all of the items each user has not rated. The
standard procedure for estimating ranking performance is to
use held-out lists of user-selected items. A unique feature
of the Yahoo! data set is that we have access to an addi-
tional set of randomly selected test items. Due to the small
overlap between randomly selected items and user-selected
items when the Yahoo! data set was collected, the randomly
selected items are a good approximation to a random sample
of items not rated by each user.

We perform ranking experiments on the Yahoo! data set
based on held-out lists of 10 randomly selected items and
10 user-selected items. Weak generalization NDCG@L es-
timates were computed for models with 1, 5, 10, and 20
latent dimensions. The optimal model complexity was de-
termined independently for each value of the list length L
based on weak generalization performance, and the corre-
sponding strong generalization NDCG@L value is displayed.
Figure 4(a) shows the strong generalization NDCG@L per-
formance for each model estimated on lists of 10 randomly
selected items, while Figure 4(b) shows the same compari-
son based on lists of 10 user-selected items. The results show
that on the user-selected items, the MM model performs as
well as MM/Logit-vd and MM/CPT-v, and all three out-
perform MF and iKNN. On lists of randomly selected items,
MM/Logit-vd and MM/CPT-v both perform significantly
better than the basic MM and MF models.

9. CONCLUSIONS AND FUTURE DIREC-
TIONS

We have presented new empirical results comparing the
ranking and rating prediction performance of methods that
assume the MAR condition and methods that include a
model of the missing data mechanism. Results show that
methods that include a non-random missing data model
out-perform methods that assume the MAR condition on
both the prediction and ranking tasks when the evaluation is
based on randomly selected test items. We have argued that
the use of randomly selected test items more accurately re-
flects the tasks of interest: prediction and ranking for items
not previously rated by the user. A very interesting direction
for future research is to consider combining methods that
optimize ranking performance, as in the work of [14], while
simultaneously accounting for the presence of non-random
missing data.
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