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Abstract

This paper introduces a novel spectral framework for solving Markov decision processes
(MDPs) by jointly learning representations and optimal policies. The major components
of the framework described in this paper include: (i) A general scheme for constructing
representations or basis functions by diagonalizing symmetric diffusion operators (ii) A spe-
cific instantiation of this approach where global basis functions called proto-value functions
(PVFs) are formed using the eigenvectors of the graph Laplacian on an undirected graph
formed from state transitions induced by the MDP (iii) A three-phased procedure called
representation policy iteration comprising of a sample collection phase, a representation
learning phase that constructs basis functions from samples, and a final parameter estima-
tion phase that determines an (approximately) optimal policy within the (linear) subspace
spanned by the (current) basis functions. (iv) A specific instantiation of the RPI frame-
work using least-squares policy iteration (LSPI) as the parameter estimation method (v)
Several strategies for scaling the proposed approach to large discrete and continuous state
spaces, including the Nyström extension for out-of-sample interpolation of eigenfunctions,
and the use of Kronecker sum factorization to construct compact eigenfunctions in product
spaces such as factored MDPs (vi) Finally, a series of illustrative discrete and continuous
control tasks, which both illustrate the concepts and provide a benchmark for evaluating
the proposed approach. Many challenges remain to be addressed in scaling the proposed
framework to large MDPs, and several elaboration of the proposed framework are briefly
summarized at the end.

Keywords: Markov decision processes, reinforcement learning, value function approxi-
mation, manifold learning, spectral graph theory

1. Introduction

This paper introduces a novel spectral framework for solving Markov decision processes
(MDPs) (Puterman, 1994) where both the underlying representation or basis functions
and (approximate) optimal policies within the (linear) span of these basis functions are
simultaneously learned. This framework addresses a major open problem not addressed
by much previous work in the field of approximate dynamic programming (Bertsekas and
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Tsitsiklis, 1996) and reinforcement learning (Sutton and Barto, 1998), where the set of
“features” or basis functions mapping a state s to a k-dimensional real vector φ(s) ∈ R

k is
usually hand-engineered.

The overall framework can be summarized briefly as follows. The underlying task en-
vironment is modeled as an MDP, where the system dynamics and reward function are
typically assumed to be unknown. An agent explores the underlying state space by carry-
ing out actions using some policy, say a random walk. Central to the proposed framework
is the notion of a diffusion model (Coifman et al., 2005a; Kondor and Lafferty, 2002): the
agent constructs a (directed or undirected) graph connecting states that are “nearby”. In
the simplest setting, the diffusion model is defined by the combinatorial graph Laplacian
matrix L = D −W , where W is a symmetrized weight matrix, and D is a diagonal matrix
whose entries are the row sums of W .1 Basis functions are derived by diagonalizing the
Laplacian matrix L, specifically by finding its “smoothest” eigenvectors that correspond to
the smallest eigenvalues. Eigenvectors capture large-scale temporal properties of a transition
process. In this sense, they are similar to value functions, which reflect the accumulation of
rewards over the long run. The similarity between value functions and the eigenvectors of
the graph Laplacian sometimes can be remarkable, leading to a highly compact encoding
(measured in terms of the number of basis functions needed to encode a value function).
Laplacian basis functions can be used in conjunction with a standard “black box” parame-
ter estimation method, such as Q-learning (Watkins, 1989) or least-squares policy iteration
(LSPI) (Lagoudakis and Parr, 2003) to find the best policy representable within the space
of the chosen basis functions.

While the overall goal of learning representations is not new within the context of
MDPs—it has been addressed by Dayan (1993) and Drummond (2002) among others—
our approach is substantially different from previous work. The fundamental idea is to
construct basis functions for solving MDPs by diagonalizing symmetric diffusion operators
on an empirically learned graph representing the underlying state space. A diffusion model
is intended to capture information flow on a graph or a manifold.2 A simple diffusion model
is a random walk on an undirected graph, where the probability of transitioning from a
vertex (state) to its neighbor is proportional to its degree, that is Pr = D−1W (Chung,
1997). As we will see in Section 3, the combinatorial Laplacian operator L defined in the
previous paragraph is closely related spectrally to the random walk operator Pr. A key
advantage of diffusion models is their simplicity: it can be significantly easier to estimate
a “weak” diffusion model, such as the undirected random walk Pr or the combinatorial
Laplacian L, than to learn the true underlying transition matrix P π of a policy π.

The proposed framework can be viewed as automatically generating subspaces on which
to project the value function using spectral analysis of operators on graphs. This differs
fundamentally from many past attempts at basis function generation, for example tuning
the parameters of pre-defined basis functions (Menache et al., 2005; Kveton and Hauskrecht,

1. Section 9 describes how to generalize this simple diffusion model in several ways, including directed graphs
where the symmetrization is based on the Perron vector or the leading eigenvector associated with the
largest eigenvalue (Chung, 2005), state-action diffusion models where the vertices represent state-action
pairs, and diffusion models for temporally extended actions.

2. Intuitively, a manifold is a (finite or infinite) set that looks “locally Euclidean”, in that an invertible
mapping can be defined from a neighborhood around each element of the set to R

n. There are technical
conditions that additionally need to be satisfied for a manifold to be smooth, as explained in Lee (2003).
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2006), dynamically allocating new parametric basis functions based on state space trajecto-
ries (Kretchmar and Anderson, 1999), or generating basis functions using the Bellman error
in approximating a specific value function (Keller et al., 2006; Petrik, 2007; Parr et al., 2007;
Patrascu et al., 2002). The main contribution of this paper is to show how to construct
novel non-parametric basis functions whose shapes reflect the geometry of the environment.

In this paper, basis functions are constructed from spectral analysis of diffusion opera-
tors where the resulting representations are constructed without explicitly taking rewards
into account. This approach can be contrasted with recent approaches that explicitly use
reward information to generate basis functions (Keller et al., 2006; Petrik, 2007; Parr et al.,
2007). There are clear advantages and disadvantages to these two approaches. In the
non-reward based approach, basis functions can be more easily transferred across MDPs in
situations where an agent is required to solve multiple tasks defined on a common state (ac-
tion) space. Furthermore, basis functions constructed using spectral analysis reflect global
geometric properties, such as bottlenecks and symmetries in state spaces, that are invariant
across multiple MDPs on the same state (action) space. Finally, in the full control learning
setting studied here, the agent does not initially know the true reward function or transi-
tion dynamics, and building representations based on estimating these quantities introduces
another potential source of error. It is also nontrivial to learn accurate transition models,
particularly in continuous MDPs. However, in other settings such as planning, where the
agent can be assumed to have a completely accurate model, it is entirely natural and in-
deed beneficial to exploit reward or transition dynamics in constructing basis functions. In
particular, it is possible to design algorithms for basis function generation with provable
performance guarantees (Parr et al., 2007; Petrik, 2007), although these theoretical results
are at present applicable only to the more limited case of evaluating a fixed policy. The
proposed framework can in fact be easily extended to use reward information by building
reward-based diffusion models, as will be discussed in more detail in Section 9.

Since eigenvectors of the graph Laplacian form “global” basis functions whose support is
the entire state space, each eigenvector induces a real-valued mapping over the state space.
Consequently, we can view each eigenvector as a “proto-value” function (or PVF), and the
set of PVFs form the “building blocks” of all value functions on a state space (Mahadevan,
2005a). Of course, it is easy to construct a complete orthonormal set of basis functions
spanning all value functions on a graph: the unit vectors themselves form such a basis, and
indeed, any collection of |S| random vectors can (with high probability) be orthonormalized
so that they are of unit length and “perpendicular” to each other. The challenge is to
construct a compact basis set that is efficient at representing value functions with as few
basis functions as possible. Proto-value functions differ from these obvious choices, or indeed
other more common parametric choices such as radial basis functions (RBFs), polynomial
bases, or CMAC, in that they are associated with the spectrum of the Laplacian which has
an intimate relationship to the large-scale geometry of a state space. The eigenvectors of the
Laplacian also provide a systematic organization of the space of functions on a graph, with
the “smoothest” eigenvectors corresponding to the smallest eigenvalues (beginning with the
constant function associated with the zero eigenvalue). By projecting a given value function
on the space spanned by the eigenvectors of the graph Laplacian, the “spatial” content of a
value function is mapped into a “frequency” basis, a hallmark of classical “Fourier” analysis
(Mallat, 1989).
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It has long been recognized that traditional parametric function approximators may
have difficulty accurately modeling value functions due to nonlinearities in an MDP’s state
space (Dayan, 1993). Figure 1 illustrates the problem with a simple example.3 In particular,
as Dayan (1993) and Drummond (2002) among others have noted, states close in Euclidean
distance may have values that are very far apart (e.g., two states on opposite sides of a wall
in a spatial navigation task). While there have been several attempts to fix the shortcom-
ings of traditional function approximators to address the inherent nonlinear nature of value
functions, these approaches have lacked a sufficiently comprehensive and broad theoretical
framework (related work is discussed in more detail in Section 8). We show that by rigor-
ously formulating the problem of value function approximation as approximating real-valued
functions on a graph or manifold using a diffusion model, a more general solution emerges
that not only has broader applicability than these previous methods, but also enables a
novel framework called Representation Policy Iteration (RPI) (Mahadevan, 2005b) where
representation learning is interleaved with policy learning. The RPI framework consists of
an outer loop that learns basis functions from sample trajectories, and an inner loop that
consists of a control learner that finds improved policies.

Figure 2 shows a set of samples produced by doing a random walk in the inverted
pendulum task. In many continuous control tasks, there are often physical constraints that
limit the “degrees of freedom” to a lower-dimensional manifold, resulting in motion along
highly constrained regions of the state space. Instead of placing basis functions uniformly in
all regions of the state space, the proposed framework recovers the underlying manifold by
building a graph based on the samples collected over a period of exploratory activity. The
basis functions are then computed by diagonalizing a diffusion operator (the Laplacian) on
the space of functions on the graph, and are thereby customized to the manifold represented
by the state (action) space of a particular control task. In discrete MDPs, such as Figure 1,
the problem is one of compressing the space of (value) functions R

|S| (or R
|S|×|A| for action-

value functions). In continuous MDPs, such as Figure 2, the corresponding problem is
compressing the space of square-integrable functions on R

2, denoted as L
2(R2). In short,

the problem is one of dimensionality reduction not in the data space, but on the space of
functions on the data.4

Both the discrete MDP shown in Figure 1 and the continuous MDP shown in Figure 2
have “inaccessible” regions of the state space, which can be exploited in focusing the function
approximator to accessible regions. Parametric approximators, as typically constructed, do
not distinguish between accessible and inaccessible regions. Our approach goes beyond
modeling just the reachable state space, in that it also models the local non-uniformity of
a given region. This non-uniform modeling of the state space is facilitated by constructing
a graph operator which models the local density across regions. By constructing basis
functions adapted to the non-uniform density and geometry of the state space, our approach
extracts significant topological information from trajectories. These ideas are formalized in
Section 3.

The additional power obtained from knowledge of the underlying state space graph or
manifold comes at a potentially significant cost: the manifold representation needs to be

3. Further details of this environment and similar variants are given in Section 2.1 and Section 4.2.
4. The graph Laplacian induces a smoothing prior on the space of functions of a graph that can formally

be shown to define a data-dependent reproducing kernel Hilbert space (Scholkopf and Smola, 2001).
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Figure 1: It is difficult to approximate nonlinear value functions using traditional para-
metric function approximators. Left: a “two-room” environment with 100 total
states, divided into 57 accessible states (including one doorway state), and 43
inaccessible states representing exterior and interior walls (which are “one state”
thick). Middle: a 2D view of the optimal value function for the two-room grid
MDP, where the agent is rewarded for reaching the state marked G and its im-
mediate neighbors by +100. Access to each room from the other is only available
through a central door, and this “bottleneck” results in a strongly nonlinear op-
timal value function. Right: a 3D plot of the optimal value function, where the
axes are reversed for clarity.
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Figure 2: Left: Samples from a series of random walks in an inverted pendulum task. Due
to physical constraints, the samples are largely confined to a narrow region. The
proto-value function framework presented in this paper empirically models the
underlying manifold in such continuous control tasks, and derives customized
basis functions that exploit the unique structure of such point-sets in R

n. Right:
An approximation of the value function learned by using PVFs.
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learned, and furthermore, basis functions need to be computed from it. Although our paper
demonstrates that eigenvector-type basis functions resulting from a diffusion analysis of
graph-based manifolds can solve standard benchmark discrete and continuous MDPs, the
problem of efficiently learning manifold representations of arbitrary MDPs is beyond the
scope of this introductory paper. We discuss a number of outstanding research questions
in Section 9 that need to be addressed in order to develop a more complete solution.

One hallmark of Fourier analysis is that the basis functions are localized in frequency,
but not in time (or space). Hence, the eigenfunctions of the graph Laplacian are localized
in frequency by being associated with a specific eigenvalue λ, but their support is in general
the whole graph. This global characteristic raises a natural computational concern: can
Laplacian bases be computed and represented compactly in large discrete and continuous
spaces?5 We will address this problem in particular cases of interest: large factored spaces,
such as grids, hypercubes, and tori, lead naturally to product spaces for which the Lapla-
cian bases can be constructed efficiently using tensor products. For continuous domains,
by combining low-rank approximations and the Nyström interpolation method, Laplacian
bases can be constructed quite efficiently (Drineas and Mahoney, 2005). Finally, a variety
of other techniques can be used to sparsify Laplacian bases, including graph partitioning
(Karypis and Kumar, 1999), matrix sparsification (Achlioptas et al., 2002), and automatic
Kronecker matrix factorization (Van Loan and Pitsianis, 1993). Other sources of informa-
tion can be additionally exploited to facilitate sparse basis construction. For example, work
on hierarchical reinforcement learning surveyed in Barto and Mahadevan (2003) studies
special types of MDPs called semi-Markov decision processes, where actions are temporally
extended, and value functions are decomposed using the hierarchical structure of a task. In
Section 9, we discuss how to exploit such additional knowledge in the construction of basis
functions.

This research is related to recent work on manifold and spectral learning (Belkin and
Niyogi, 2004; Coifman and Maggioni, 2006; Roweis and Saul, 2000; Tenenbaum et al., 2000).
A major difference is that our focus is on solving Markov decision processes. Value function
approximation in MDPs is related to regression on graphs (Niyogi et al., 2003) in that both
concern approximation of real-valued functions on the vertices of a graph. However, value
function approximation is fundamentally different since target values are initially unknown
and must be determined by solving the Bellman equation, for example by iteratively finding
a fixed point of the Bellman backup operator. Furthermore, the set of samples of the
manifold is not given a priori, but is determined through active exploration by the agent.
Finally, in our work, basis functions can be constructed multiple times by interleaving policy
improvement and representation learning. This is in spirit similar to the design of kernels
adapted to regression or classification tasks (Szlam et al., 2006).

The rest of the paper is organized as follows. Section 2 gives a quick summary of the
main framework called Representation Policy Iteration (RPI) for jointly learning represen-

5. The global nature of Fourier bases have been exploited in other areas, for example they have led to
significantly improved algorithms for learning boolean functions (Jackson, 1995). Circuit designers have
discovered fast algorithms for converting state-based truth-table and decision diagram representations
of boolean functions into Fourier representations using the Hadamard transformation (Thornton et al.,
2001). The eigenvectors of the graph Laplacian on boolean hypercubes form the columns of the Hadamard
matrix (Bernasconi, 1998).
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tations and policies, and illustrates a simplified version of the overall algorithm on the small
two-room discrete MDP shown earlier in Figure 1. Section 3 motivates the use of the graph
Laplacian from several different points of view, including as a spectral approximation of
transition matrices, as well as inducing a smoothness regularization prior that respects the
topology of the state space through a data-dependent kernel. Section 4 describes a concrete
instance of the RPI framework using least-squares policy iteration (LSPI) (Lagoudakis and
Parr, 2003) as the underlying control learning method, and compares PVFs with two para-
metric bases—radial basis functions (RBFs) and polynomials—on small discrete MDPs.
Section 5 describes one approach to scaling proto-value functions to large discrete prod-
uct space MDPs, using the Kronecker sum matrix factorization method to decompose the
eigenspace of the combinatorial Laplacian. This section also compares PVFs against RBFs
on the Blockers task (Sallans and Hinton, 2004). Section 6 extends PVFs to continuous
MDPs using the Nyström extension for interpolating eigenfunctions from sampled states
to novel states. A detailed evaluation of PVFs in continuous MDPs is given in Section 7,
including the inverted pendulum, the mountain car, and the Acrobot tasks (Sutton and
Barto, 1998). Section 8 contains a brief description of previous work. Section 9 discusses
several ongoing extensions of the proposed framework, including Kronecker product matrix
factorization (Johns et al., 2007), multiscale diffusion wavelet bases (Mahadevan and Mag-
gioni, 2006), and more elaborate diffusion models using directed graphs where actions are
part of the representation (Johns and Mahadevan, 2007; Osentoski and Mahadevan, 2007).

2. Overview of The Framework

This section contains a brief summary of the overall framework, which we call Representa-
tion Policy Iteration (RPI) (Mahadevan, 2005b).6 Figure 3 illustrates the overall framework.
There are three main components: sample collection, basis construction, and policy learn-
ing. Sample collection requires a task specification, which comprises of a domain simulator
(or alternatively a physically embodied agent like a robot), and an initial policy. In the
simplest case, the initial policy can be a random walk, although it can also reflect a more
informative hand-coded policy. The second phase involves constructing the bases from the
collected samples using a diffusion model, such as an undirected (or directed) graph. This
process involves finding the eigenvectors of a symmetrized graph operator such as the graph
Laplacian. The final phase involves estimating the “best” policy representable in the span
of the basis functions constructed (we are primarily restricting our attention to linear ar-
chitectures, where the value function is a weighted linear combination of the bases). The
entire process can then be iterated.

Figure 4 specifies a more detailed algorithmic view of the overall framework. In the
sample collection phase, an initial random walk (perhaps guided by an informed policy) is
carried out to obtain samples of the underlying manifold on the state space. The number
of samples needed is an empirical question which will be investigated in further detail in
Section 5 and Section 6. Given this set of samples, in the representation learning phase,
an undirected (or directed) graph is constructed in one of several ways: two states can be

6. The term “Representation Policy Iteration” is used to succinctly denote a class of algorithms that jointly
learn basis functions and policies. In this paper, we primarily use LSPI as the control learner, but in
other work we have used control learners such as Q(λ) (Osentoski and Mahadevan, 2007).
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Figure 3: Flowchart of the unified approach to learning representation and behavior.

connected by a unit cost edge if they represent temporally successive states; alternatively,
a local distance measure such as k-nearest neighbor can be used to connect states, which is
particularly useful in the experiments on continuous domains reported in Section 7. From
the graph, proto-value functions are computed using one of the graph operators discussed
below, for example the combinatorial or normalized Laplacian. The smoothest eigenvectors
of the graph Laplacian (that is, associated with the smallest eigenvalues) are used to form
the suite of proto-value functions. The number of proto-value functions needed is a model
selection question, which will be empirically investigated in the experiments described later.
The encoding φ(s) : S → R

k of a state is computed as the value of the k proto-value functions
on that state. To compute a state action encoding, a number of alternative strategies can be
followed: the figure shows the most straightforward method of simply replicating the length
of the state encoding by the number of actions and setting all the vector components to 0
except those associated with the current action. More sophisticated schemes are possible
(and necessary for continuous actions), and will be discussed in Section 9.

At the outset, it is important to point out that the algorithm described in Figure 4 is
one of many possible designs that combine the learning of basis functions and policies. In
particular, the RPI framework is an iterative approach, which interleaves the two phases
of generating basis functions by sampling trajectories from policies, and then subsequently
finding improved policies from the augmented set of basis functions. It may be possible
to design alternative frameworks where basis functions are learned jointly with learning
policies, by attempting to optimize some cumulative measure of optimality. We discuss this
issue in more depth in Section 9.
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RPI (πm, T,N, ǫ, k,O, µ,D):

// πm: Policy at the beginning of trial m
// T : Number of initial random walk trials
// N : Maximum length of each trial
// ǫ : Convergence condition for policy iteration
// k: Number of proto-value basis functions to use
// O: Type of graph operator used
// µ: Parameter for basis adaptation
// D: Initial set of samples

Sample Collection Phase

1. Off-policy or on-policy sampling: Collect a data set of samples Dm =
{(si, ai, si+1, ri), . . .} by either randomly choosing actions (off-policy) or using the supplied
initial policy (on-policy) for a set of T trials, each of maximum N steps (terminating earlier
if it results in an absorbing goal state), and add these transitions to the complete data set
D.

2. (Optional) Subsampling step: Form a subset of samples Ds ⊆ D by some subsampling
method such as random subsampling or trajectory subsampling. For episodic tasks, option-
ally prune the trajectories stored in Ds so that only those that reach the absorbing goal
state are retained.

Representation Learning Phase

3. Build a diffusion model from the data in Ds. In the simplest case of discrete MDPs, construct
an undirected weighted graph G from D by connecting state i to state j if the pair (i, j)
form temporally successive states ∈ S. Compute the operator O on graph G, for example
the normalized Laplacian L = D−

1

2 (D −W )D−
1

2 .

4. Compute the k smoothest eigenvectors of O on the graph G. Collect them as columns of the
basis function matrix Φ, a |S| × k matrix. The state action bases φ(s, a) can be generated
from rows of this matrix by duplicating the state bases φ(s) |A| times, and setting all the
elements of this vector to 0 except for the ones corresponding to the chosen action.a

Control Learning Phase

5. Using a standard parameter estimation method (e.g., Q-learning or LSPI), find an ǫ-optimal
policy π that maximizes the action value function Qπ = Φwπ within the linear span of the
bases Φ using the training data in D.

6. Optional: Set the initial policy πm+1 to π and call RPI (πm+1, T,N, ǫ, k,O, µ,D).

a. In large continuous and discrete MDPs, the basis matrix Φ need not be explicitly formed and the
features φ(s, a) can be computed “on demand” as will be explained later.

Figure 4: This figure shows a generic algorithm for combining the learning of representation
(or basis functions) from spectral analysis of random walks, and estimation of
policies within their linear span. Elaborations of this framework will be studied
in subsequent sections.

2177



Mahadevan and Maggioni

2.1 Sample Run of RPI on the Two-Room Environment

The result of running the algorithm is shown in Figure 5, which was obtained using the
following specific parameter choices.

• The state space of the two room MDP is as shown in Figure 1. There are 100 states
totally, of which 43 states are inaccessible since they represent interior and exterior
walls. The remaining 57 states are divided into 1 doorway state and 56 interior room
states. The agent is rewarded by +100 for reaching state 89, which is the last accessible
state in the bottom right-hand corner of room 2, and its immediate neighbors. In the
3D value function plots shown in Figure 5, the axes are reversed to make it easier to
visualize the value function plot, making state 89 appear in the top left (diagonally
distant) corner.

• 3463 samples were collected using off-policy sampling from a random walk of 50
episodes, each of length 100 (or terminating early when the goal state was reached).7

Four actions (compass direction movements) were possible from each state. Action
were stochastic. If a movement was possible, it succeeded with probability 0.9. Oth-
erwise, the agent remained in the same state. When the agent reaches state 89, it
receives a reward of 100, and is randomly reset to an accessible interior state.

• An undirected graph was constructed from the sample transitions, where the weight
matrix W is simply the adjacency (0, 1) matrix. The graph operator used was the

normalized Laplacian L = D− 1
2 LD− 1

2 , where L = D−W is referred to as the combi-
natorial Laplacian (these graph operators are described in more detail in Section 3).

• 20 eigenvectors corresponding to the smallest eigenvalues of L (duplicated 4 times,
one set for each action) are chosen as the columns of the state action basis matrix
Φ. For example, the first four eigenvectors are shown in Figure 5. These eigenvectors
are orthonormal: they are normalized to be of length 1 and are mutually perpendicu-
lar. Note how the eigenvectors are sensitive to the geometric structure of the overall
environment. For example, the second eigenvector allows partitioning the two rooms
since it is negative for all states in the first room, and positive for states in the second
room. The third eigenvector is non-constant over only one of the rooms. The con-
nection between the Laplacian and regularities such as symmetries and bottlenecks is
discussed in more detail in Section 3.6.

• The parameter estimation method used was least-squares policy iteration (LSPI), with
γ = 0.8. LSPI is described in more detail in Section 4.1.

• The optimal value function using unit vector bases and the approximation produced
by 20 PVFs are compared using the 2D array format in Figure 6.

7. Since the approximated value function shown in Figure 5 is the result of a specific set of random walk
trajectories, the results can vary over different runs depending on the number of times the only rewarding
(goal) state was reached. Section 4.2 contains more detailed experiments that measures the learned policy
over multiple runs.
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Figure 5: Top: proto-value functions formed from the four “smoothest” eigenvectors of the
normalized graph Laplacian in a two-room MDP of 100 states. Bottom left: the
optimal value function for a 2 room MDP, repeated from Figure 1 for comparative
purposes. Bottom right: the approximation produced by the RPI algorithm using
20 proto-value functions, computed as the eigenvectors of the normalized graph
Laplacian on the adjacency graph. The nonlinearity represented by the walls is
clearly captured.
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Figure 6: Left: the optimal value function for the two-room MDP using unit vector bases.
Right: approximation with 20 PVFs using the RPI algorithm.

In the remainder of this paper, we will evaluate this framework in detail, providing
some rationale for why the Laplacian bases are adept at approximating value functions,
and demonstrating how to scale the approach to large discrete MDPs as well as continuous
MDPs.

3. Representation Learning by Diffusion Analysis

In this section, we discuss the graph Laplacian, specifically motivating its use as a way to
construct basis functions for MDPs. We begin with a brief introduction to MDPs, and then
describe the spectral analysis of a restricted class of MDPs where the transition matrix is
diagonalizable. Although this approach is difficult to implement for general MDPs, it pro-
vides some intuition into why eigenvectors are a useful way to approximate value functions.
We then introduce the graph Laplacian as a symmetric matrix, which acts as a surrogate
for the true transition matrix, but which is easily diagonalizable. It is possible to model
non-symmetric actions and policies using more sophisticated symmetrization procedures
(Chung, 2005), and we postpone discussion of this extension to Section 9. There are a
number of other perspectives to view the graph Laplacian, namely as generating a data-
dependent reproducing kernel Hilbert space (RKHS) (Scholkopf and Smola, 2001), as well
as a way to generate nonlinear embeddings of graphs. Although a full discussion of these
perspectives is beyond this paper, they are worth noting in order to gain deeper insight into
the many remarkable properties of the Laplacian.

3.1 Brief Overview of MDPs

A discrete Markov decision process (MDP) M = (S, A, P a
ss′ , R

a
ss′) is defined by a finite set of

discrete states S, a finite set of actions A, a transition model P a
ss′ specifying the distribution

over future states s′ when an action a is performed in state s, and a corresponding reward
model Ra

ss′ specifying a scalar cost or reward (Puterman, 1994). In continuous Markov
decision processes, the set of states ⊆ R

d. Abstractly, a value function is a mapping S → R

or equivalently (in discrete MDPs) a vector ∈ R
|S|. Given a policy π : S → A mapping states
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to actions, its corresponding value function V π specifies the expected long-term discounted
sum of rewards received by the agent in any given state s when actions are chosen using
the policy. Any optimal policy π∗ defines the same unique optimal value function V ∗ which
satisfies the nonlinear constraints

V
∗
(s) = T ∗(V ∗(s)) = max

a

(

Rsa + γ
∑

s′∈S

P a
ss′V

∗(s′)

)

,

where Rsa =
∑

s′∈s P a
ss′R

a
ss′ is the expected immediate reward. Value functions are map-

pings from the state space to the expected long-term discounted sum of rewards received
by following a fixed (deterministic or stochastic) policy π. Here, T ∗ can be viewed as an
operator on value functions, and V ∗ represents the fixed point of the operator T ∗. The value
function V π associated with following a (deterministic) policy π can be defined as

V
π

(s) = T (V π(s)) = Rsπ(s) + γ
∑

s′∈S

P
π(s)
ss′ V π(s′).

Once again, T is an operator on value functions, whose fixed point is given by V π. Value
functions in an MDP can be viewed as the result of rewards “ diffusing” through the state
space, governed by the underlying system dynamics. Let P π represent an |S|×|S| transition
matrix of a (deterministic) policy π : S → A mapping each state s ∈ S to a desired action
a = π(s). Let Rπ be a (column) vector of size |S| of rewards. The value function associated
with policy π can be defined using the Neumann series:

V π = (I − γP π)−1Rπ =
(

I + γP π + γ2(P π)2 + . . .
)

Rπ. (1)

3.2 Approximation of Value Functions

It is obviously difficult to represent value functions exactly on large discrete state spaces,
or in continuous spaces. Consequently, there has been much study of approximation archi-
tectures for representing value functions (Bertsekas and Tsitsiklis, 1996). Value functions
generally exhibit two key properties: they are typically smooth, and they reflect the un-
derlying state space geometry. A fundamental contribution of this paper is the use of an
approximation architecture that exploits a new notion of smoothness, not in the traditional
sense of Euclidean space, but smoothness on the state space graph. The notion of smooth
functions on graphs can be formalized using the Sobolev norm (Mahadevan and Maggioni,
2006). In addition, value functions usually reflect the geometry of the environment (as
illustrated in Figure 5). Smoothness derives from the fact that the value at a given state
V π(s) is always a function of values at “neighboring” states. Consequently, it is natural to
construct basis functions for approximating value functions that share these two properties.8

Let us define a set of basis functions FΦ = {φ1, . . . , φk}, where each basis function
represents a “feature” φi : S → R. The basis function matrix Φ is an |S| × k matrix, where
each column is a particular basis function evaluated over the state space, and each row

8. For low values of the discount factor γ, it is possible to construct highly non-smooth value functions,
which decay rapidly and are not influenced by nonlinearities in state space geometry. In many problems
of interest, however, the discount factor γ needs to be set close to 1 to learn a desirable policy.
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is the set of all possible basis functions evaluated on a particular state. Approximating a
value function using the matrix Φ can be viewed as projecting the value function onto the
column space spanned by the basis functions φi,

V π ≈ V̂ π = Φwπ =
∑

i

wπ
i φi .

Mathematically speaking, this problem can be rigorously formulated using the framework
of best approximation in inner product spaces (Deutsch, 2001). In fact, it is easy to show
that the space of value functions represents a Hilbert space, or a complete inner product
space (Van Roy, 1998). For simplicity, we focus on the simpler problem of approximating a
fixed policy π, which defines a Markov chain where ρπ represents its invariant (long-term)
distribution. This distribution defines a Hilbert space, where the inner product is given by

〈V1, V2〉π =
∑

s∈S

V π
1 (s)V π

2 (s)ρπ(s).

The “length” or norm in this inner product space is defined as ‖V ‖π =
√

〈V, V 〉π. Value
function approximation can thus be formalized as a problem of best approximation in a
Hilbert space (Deutsch, 2001). It is well known that if the basis functions φi are orthonormal
(unit-length and mutually perpendicular), the best approximation of the value function V π

can be expressed by its projection onto the space spanned by the basis functions, or more
formally

V π ≈
∑

i∈I

〈V π, φi〉π φi,

where I is the set of indices that define the basis set. In finite MDPs, the best approximation
can be characterized using the weighted least-squares projection matrix

Mπ
Φ = Φ(ΦT DρπΦ)−1ΦT Dρπ ,

where Dρπ is a diagonal matrix whose entries represent the distribution ρπ. We know
the Bellman “backup” operator T defined above has a fixed point V π = T (V π). Many
standard parameter estimation methods, including LSPI (Lagoudakis and Parr, 2003) and
LSTD (Bradtke and Barto, 1996), can be viewed as finding an approximate fixed point of
the operator T

V̂ π = Φwπ = Mπ
φ (T (Φwπ)) .

It can be shown that the operator T is a contraction mapping, where

‖TV1 − TV2‖π ≤ γ‖V1 − V2‖π .

A natural question that arises is whether we can quantify the error in value function ap-
proximation under a set of basis functions Fφ. Exploiting the contraction property of the
operator T under the norm defined by the weighted inner product, it can be shown that
the “distance” between the true value function V π and the fixed point V̂ π can be bounded
in terms of the distance between V π and its projection onto the space spanned by the basis
functions (Van Roy, 1998):

‖V π − V̂ π‖π ≤
1√

1− κ2
‖V π −Mπ

φ V π‖π ,
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where κ is the contraction rate defined by Bellman operator T in conjunction with the
weighted least-squares projection.

The problem of value function approximation in control learning is significantly more
difficult, in that it involves finding an approximate fixed point of the initially unknown
operator T ∗. One standard algorithm for control learning is approximate policy iteration
(Bertsekas and Tsitsiklis, 1996), which interleaves an approximate policy evaluation step of
finding an approximation of the value function V̂ πk associated with a given policy πk at
stage k, with a policy improvement step of finding the greedy policy associated with V̂ πk .
Here, there are two sources of error introduced by approximating the exact value function,
and approximating the policy. We will describe a specific type of approximate policy iter-
ation method—the LSPI algorithm (Lagoudakis and Parr, 2003)—in Section 4, which uses
a least-squares approach to approximate the action-value function. An additional problem
in control learning is that the standard theoretical results for approximate policy iteration
are often expressed in terms of the maximum (normed) error, whereas approximation meth-
ods are most naturally formulated as projections in a least-squared normed space. There
continues to be work on developing more useful weighted least-square bounds, although
these currently assume the policy is exactly representable (Munos, 2003, 2005). Also, it
is possible to design approximation methods that directly carry out max-norm projections
using linear programming, although this work usually assumes the transition dynamics is
known (Guestrin et al., 2001),

Our approach to the problem of control learning involves finding a suitable set of basis
functions by diagonalizing a learned diffusion model from sample trajectories, and to use
projections in the Hilbert space defined by the diffusion model for policy evaluation and
improvement. We first introduce the Fourier approach of finding basis functions by diag-
onalization, and then describe how diffusion models are used as a substitute for transition
models. In Section 9, we will return to discuss other approaches (Petrik, 2007; Parr et al.,
2007), where the Bellman operator T is used more directly in finding basis functions.

3.3 Spectral Analysis of Transition Matrices

In this paper, the orthogonal basis functions are constructed in the Fourier tradition by
diagonalizing an operator (or matrix) and finding its eigenvectors. We motivate this ap-
proach by first assuming that the eigenvectors are constructed directly from a (known) state
transition matrix P π and show that if the reward function Rπ is known, the eigenvectors
can be selected nonlinearly based on expanding the value function V π on the eigenvectors of
the transition matrix. Petrik (2007) develops this line of reasoning, assuming that P π and
Rπ are both known, and that P π is diagonalizable. We describe this perspective in more
detail below as it provides a useful motivation for why we use diagonalizable diffusion ma-
trices instead. One subclass of diagonalizable transition matrices are those corresponding
to reversible Markov chains (which will turn out to be useful below). Although transition
matrices for general MDPs are not reversible, and their spectral analysis is more delicate,
it will still be a useful starting point to understand diffusion matrices such as the graph
Laplacian.9 If the transition matrix P π is diagonalizable, there is a complete set of eigen-
vectors Φπ = (φπ

1 , . . . φπ
n) that provides a change of basis in which the transition matrix P π

9. In Section 9, we discuss extensions to more general non-reversible MDPs.
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is representable as a diagonal matrix. For the sub-class of diagonalizable transition matrices
represented by reversible Markov chains, the transition matrix is not only diagonalizable,
but there is also an orthonormal basis. In other words, using a standard result from linear
algebra, we have

P π = ΦπΛπ(Φπ)T ,

where Λπ is a diagonal matrix of eigenvalues. Another way to express the above prop-
erty is to write the transition matrix as a sum of projection matrices associated with each
eigenvalue:

P π =
n
∑

i=1

λπ
i φπ

i (φπ
i )T ,

where the eigenvectors φπ
i form a complete orthogonal basis (i.e., ‖ φπ

i ‖2= 1 and 〈φπ
i , φπ

j 〉 =
0, i 6= j). It readily follows that powers of P π have the same eigenvectors, but the eigenvalues
are raised to the corresponding power (i.e., (P π)kφπ

i = (λπ
i )kφπ

i ). Since the basis matrix Φ
spans all vectors on the state space S, we can express the reward vector Rπ in terms of this
basis as

Rπ = Φπαπ, (2)

where απ is a vector of scalar weights. For high powers of the transition matrix, the
projection matrices corresponding to the largest eigenvalues will dominate the expansion.
Combining Equation 2 with the Neumann expansion in Equation 1, we get

V π =
∞
∑

i=0

(γP π)iΦπαπ

=
∞
∑

i=0

n
∑

k=1

γi(P π)iφπ
kαπ

k

=
n
∑

k=1

∞
∑

i=0

γi(λπ
k)iφπ

kαπ
k

=
n
∑

k=1

1

1− γλπ
k

φπ
kαπ

k

=
n
∑

k=1

βkφ
π
k ,

where we used the property that (P π)iφπ
j = (λπ

j )iφπ
j . Essentially, the value function V π

is represented as a linear combination of eigenvectors of the transition matrix. In order
to provide the most efficient approximation, we can truncate the summation by choosing
some small number m < n of the eigenvectors, preferably those for whom βk is large. Of
course, since the reward function is not known, it might be difficult to pick a priori those
eigenvectors that result in the largest coefficients. A simpler strategy instead is to focus on
those eigenvectors for whom the coefficients 1

1−γλπ
k

are the largest. In other words, we should

pick the eigenvectors corresponding to the largest eigenvalues of the transition matrix P π

(since the spectral radius is 1, the eigenvalues closest to 1 will dominate the smaller ones):
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V π ≈
m
∑

k=1

1

1− γλπ
k

φπ
kαπ

k , (3)

where we assume the eigenvalues are ordered in non-increasing order, so λπ
1 is the largest

eigenvalue. If the transition matrix P π and reward function Rπ are both known, one can
of course construct basis functions by diagonalizing P π and choosing eigenvectors “out-of-
order” (that is, pick eigenvectors with the largest βk coefficients above). Petrik (2007) shows
a (somewhat pathological) example where a linear spectral approach specified by Equation 3
does poorly when the reward vector is chosen such that it is orthogonal to the first k basis
functions. It is an empirical question whether such pathological reward functions exhibit
themselves in more natural situations. The repertoire of discrete and continuous MDPs we
study seem highly amenable to the linear spectral decomposition approach. However, we
discuss various approaches for augmenting PVFs with reward-sensitive bases in Section 9.

The spectral approach of diagonalizing the transition matrix is problematic for several
reasons. One, the transition matrix P π cannot be assumed to be symmetric, in which case
one has to deal with complex eigenvalues (and eigenvectors). Second, we cannot assume
that the transition matrix is known. Of course, one can always use samples of the underlying
MDP generated by exploration to estimate the transition matrix, but the number of samples
needed may be large. Finally, in control learning, the policy keeps changing, causing one to
have to reestimate the transition matrix. What one would ideally like to have is a surrogate
model that is easier to estimate than a full transition matrix, is always diagonalizable, and
results in smooth basis functions that capture large scale geometry. Diffusion models serve
to fulfill this role, as discuss next.

3.4 From Transition Matrices to Diffusion Models

We now develop a line of analysis where a graph is induced from the state space of an
MDP, by sampling from a policy such as a random walk. Let us define a weighted graph
G = (V, E, W ), where V is a finite set of vertices, and W is a weighted adjacency matrix
with W (i, j) > 0 if (i, j) ∈ E, that is it is possible to reach state i from j (or vice-versa)
in a single step. A simple example of a diffusion model on G is the random walk matrix
Pr = D−1W . Figure 7 illustrates a random walk diffusion model. Note the random walk
matrix Pr = D−1W is not symmetric. However, it can be easily shown that Pr defines a
reversible Markov chain, which induces a Hilbert space with respect to the inner product
defined by the invariant distribution ρ:

〈f, g〉ρ =
∑

v∈V

f(i)g(i)ρ(i).

In addition, the matrix Pr can be shown to be self-adjoint (symmetric) with respect to the
above inner product, that is

〈Prf, g〉ρ = 〈f, Prg〉ρ.
Consequently, the matrix Pr can be shown to have real eigenvalues and orthonormal eigen-
vectors, with respect to the above inner product.

The random walk matrix Pr = D−1W is called a diffusion model because given any
function f on the underlying graph G, the powers of P t

rf determine how quickly the random

2185



Mahadevan and Maggioni

7
��
��
��
��

�
�
�

�
�
�

��
��
��

��
��
��

�
�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

1 2

3 4

5 6

7

Goal

1

6

2

3

5

4

��
��
��

��
��
��

Pr =









0 0.5 0.5 0 0 0 0
0.5 0 0 0.5 0 0 0
0.33 0 0 0.33 0.33 0 0

. . .









Figure 7: Top: A simple diffusion model given by an undirected unweighted graph connect-
ing each state to neighbors that are reachable using a single (reversible) action.
Bottom: first three rows of the random walk matrix Pr = D−1W . Pr is not sym-
metric, but it has real eigenvalues and eigenvectors since it is spectrally related
to the normalized graph Laplacian.

walk will “mix” and converge to the long term distribution (Chung, 1997). It can be shown
that the stationary distribution of a random walk on an undirected graph is given by
ρ(v) = dv

vol(G) , where dv is the degree of vertex v and the “volume” vol(G) =
∑

v∈G dv.
Even though the random walk matrix Pr can be diagonalized, for computational reasons, it
turns out to be highly beneficial to find a symmetric matrix with a closely related spectral
structure. This is essentially the graph Laplacian matrix, which we now describe in more
detail.

3.5 The Graph Laplacian

For simplicity, assume the underlying state space is represented as an undirected graph
G = (V, E, W ), where V is the set of vertices, E is the set of edges where (u, v) ∈ E
denotes an undirected edge from vertex u to vertex v. The more general case of directed
graphs is discussed in Section 9.3. The combinatorial Laplacian L is defined as the operator
L = D −W , where D is a diagonal matrix called the valency matrix whose entries are row
sums of the weight matrix W . The first three rows of the combinatorial Laplacian matrix
for the grid world MDP in Figure 7 is illustrated below, where we assume a unit weight on
each edge:
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L =









2 −1 −1 0 0 0 0
−1 2 0 −1 0 0 0
−1 0 3 −1 −1 0 0

. . .









.

Comparing the above matrix with the random walk matrix in Figure 7, it may seem like
the two matrices have little in common. Surprisingly, we will show that there is indeed an
intimate connection between the random walk matrix and the Laplacian. The Laplacian has
many attractive spectral properties. It is both symmetric as well as positive semi-definite,
and hence its eigenvalues are not only all real, but also non-negative. It is useful to view
the Laplacian as an operator on the space of functions F : V → R on a graph. In particular,
it can be easily shown that

Lf(i) =
∑

j∼i

(f(i)− f(j)),

that is the Laplacian acts as a difference operator. On a two-dimensional grid, the Laplacian
can be shown to essentially be a discretization of the continuous Laplace operator

∂2f

∂x2
+

∂2f

∂y2
,

where the partial derivatives are replaced by finite differences.

Another fundamental property of the graph Laplacian is that projections of functions on
the eigenspace of the Laplacian produce the smoothest global approximation respecting the
underlying graph topology. More precisely, let us define the inner product of two functions
f and g on a graph as 〈f, g〉 =

∑

u f(u)g(u).10 Then, it is easy to show that

〈f, Lf〉 =
∑

u∼v

wuv(f(u)− f(v))2,

where this so-called Dirichlet sum is over the (undirected) edges u ∼ v of the graph G,
and wuv denotes the weight on the edge. Note that each edge is counted only once in the
sum. From the standpoint of regularization, this property is crucial since it implies that
rather than smoothing using properties of the ambient Euclidean space, smoothing takes
the underlying manifold (graph) into account.

To make the connection between the random walk operator Pr introduced in the previous
section, and the Laplacian, we need to introduce the normalized Laplacian (Chung, 1997),
which is defined as

L = D− 1
2 LD− 1

2 .

To see the connection between the normalized Laplacian and the random walk matrix
Pr = D−1W , note the following identities:

10. For simplicity, here we consider the unweighted inner product ignoring the invariant distribution ρ

induced by a random walk.
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L = D− 1
2 LD− 1

2 = I −D− 1
2 WD− 1

2 ,

I − L = D− 1
2 WD− 1

2 ,

D− 1
2 (I − L)D

1
2 = D−1W.

Hence, the random walk operator D−1W is similar to I − L, so both have the same
eigenvalues, and the eigenvectors of the random walk operator are the eigenvectors of I−L
point-wise multiplied by D− 1

2 . We can now provide a rationale for choosing the eigenvectors
of the Laplacian as basis functions. In particular, if λi is an eigenvalue of the random walk
transition matrix Pr, then 1−λi is the corresponding eigenvalue of L. Consequently, in the
expansion given by Equation 3, we would select the eigenvectors of the normalized graph
Laplacian corresponding to the smallest eigenvalues.

The normalized Laplacian L also acts as a difference operator on a function f on a
graph, that is

Lf(u) =
1√
du

∑

v∼u

(

f(u)√
du

− f(v)√
dv

)

wuv.

The difference between the combinatorial and normalized Laplacian is that the latter models
the degree of a vertex as a local measure. In Section 7, we provide an experimental evaluation
of the different graph operators for solving continuous MDPs.

Building on the Dirichlet sum above, a standard variational characterization of eigenval-
ues and eigenvectors views them as the solution to a sequence of minimization problems. In
particular, the set of eigenvalues can be defined as the solution to a series of minimization
problems using the Rayleigh quotient (Chung, 1997). This provides a variational characteri-
zation of eigenvalues using projections of an arbitrary function g : V →R onto the subspace
Lg. The quotient gives the eigenvalues and the functions satisfying orthonormality are the
eigenfunctions:

〈g,Lg〉
〈g, g〉 =

〈g, D− 1
2 LD− 1

2 g〉
〈g, g〉 =

∑

u∼v(f(u)− f(v))2wuv
∑

u f2(u)du
,

where f ≡ D− 1
2 g. The first eigenvalue is λ0 = 0, and is associated with the constant

function f(u) = 1, which means the first eigenfunction go(u) =
√

D 1 (for an example
of this eigenfunction, see top left plot in Figure 5). The first eigenfunction (associated
with eigenvalue 0) of the combinatorial Laplacian is the constant function 1. The second
eigenfunction is the infimum over all functions g : V → R that are perpendicular to go(u),
which gives us a formula to compute the first non-zero eigenvalue λ1, namely

λ1 = inf
f⊥

√
D1

∑

u∼v(f(u)− f(v))2wuv
∑

u f2(u)du
.

The Rayleigh quotient for higher-order basis functions is similar: each function is per-
pendicular to the subspace spanned by previous functions (see top four plots in Figure 5).
In other words, the eigenvectors of the graph Laplacian provide a systematic organization
of the space of functions on a graph that respects its topology.

2188



Learning Representation and Control in Markov Decision Processes

3.6 Proto-Value Functions and Large-Scale Geometry

We now formalize the intuitive notion of why PVFs capture the large-scale geometry of a
task environment, such as its symmetries and bottlenecks. A full discussion of this topic
is beyond the scope of this paper, and we restrict our discussion here to one interesting
property connected to the automorphisms of a graph. Given a graph G = (V, E, W ), an
automorphism π of a graph is a bijection π : V → V that leaves the weight matrix invariant.
In other words, w(u, v) = w(π(u), π(v)). An automorphism π can be also represented in
matrix form by a permutation matrix Γ that commutes with the weight matrix:

ΓW = WΓ.

An immediate consequence of this property is that automorphisms leave the valency,
or degree of a vertex, invariant, and consequently, the Laplacian is invariant under an
automorphism. The set of all automorphisms forms a non-Abelian group, in that the group
operation is non-commutative. Let x be an eigenvector of the combinatorial graph Laplacian
L. Then, it is easy to show that Γx must be an eigenvector as well for any automorphism
Γ. This result follows because

LΓx = ΓLx = Γλx = λΓx.

A detailed graph-theoretic treatment of the connection between symmetries of a graph
and its spectral properties are provided in books on algebraic and spectral graph theory
(Chung, 1997; Cvetkovic et al., 1980, 1997). For example, it can be shown that if the per-
muted eigenvector Γx is independent of the original eigenvector x, then the corresponding
eigenvalue λ has geometric multiplicity m > 1. More generally, it is possible to exploit
the theory of linear representations of groups to construct compact basis functions on sym-
metric graphs, which have found applications in the study of complex molecules such as
“buckyballs” (Chung and Sternberg, 1992). It is worth pointing out that these ideas extend
to continuous manifolds as well. The use of the Laplacian in constructing representations
that are invariant to group operations such as translation is a hallmark of work in harmonic
analysis (Gurarie, 1992).

Furthermore, considerable work in spectral graph theory as well as its applications in AI
uses the properties of the Fiedler eigenvector (the eigenvector associated with the smallest
non-zero eigenvalue), such as its sensitivity to bottlenecks, in order to find clusters in data
or segment images (Shi and Malik, 2000; Ng et al., 2002). To formally explain this, we
briefly review spectral geometry. The Cheeger constant hG of a graph G is defined as

hG(S) = min
S

|E(S, S̃)|
min(vol S, vol S̃)

.

Here, S is a subset of vertices, S̃ is the complement of S, and E(S, S̃) denotes the set
of all edges (u, v) such that u ∈ S and v ∈ S̃. The volume of a subset S is defined as
vol S =

∑

x∈S dX . Consider the problem of finding a subset S of states such that the edge
boundary ∂S contains as few edges as possible, where

∂S = {(u, v) ∈ E(G) : u ∈ S and v /∈ S}.
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The relation between ∂S and the Cheeger constant is given by

|∂S| ≥ hG vol S.

In the two-room grid world task illustrated in Figure 1, the Cheeger constant is mini-
mized by setting S to be the states in the first room, since this will minimize the numer-
ator E(S, S̃) and maximize the denominator min(vol S, vol S̃). A remarkable inequality
connects the Cheeger constant with the spectrum of the graph Laplacian operator. This
theorem underlies the reason why the eigenfunctions associated with the second eigenvalue
λ1 of the graph Laplacian captures the geometric structure of environments, as illustrated
in Figure 5.

Theorem 1 (Chung, 1997): Define λ1 to be the first (non-zero) eigenvalue of the normal-
ized graph Laplacian operator L on a graph G. Let hG denote the Cheeger constant of G.

Then, we have 2hG ≥ λ1 >
h2

G

2 .

In the context of MDPs, our work explores the construction of representations that
similarly exploit large-scale geometric features, such as symmetries and bottlenecks. In
other words, we are evaluating the hypothesis that such representations are useful in solving
MDPs, given that topology-sensitive representations have proven to be useful across a wide
variety of problems both in machine learning specifically as well as in science and engineering
more generally.

4. Representation Policy Iteration

In this section, we begin the detailed algorithmic analysis of the application of proto-value
functions to solve Markov decision processes. We will describe a specific instantiation of the
RPI framework described previously, which comprises of an outer loop for learning basis
functions and an inner loop for estimating the optimal policy representable within the given
set of basis functions. In particular, we will use least-square policy iteration (LSPI) as the
parameter estimation method. We will analyze three variants of RPI, beginning with the
most basic version in this section, and then describing two extensions of RPI to continuous
and factored state spaces in Section 5 and Section 6.

4.1 Least-Squares Approximation of Action Value Functions

The basics of Markov decision processes as well as value function approximation was briefly
reviewed in Section 3. Here, we focus on action-value function approximation, and in
particular, describe the LSPI method (Lagoudakis and Parr, 2003). In action-value learning,
the goal is to approximate the true action-value function Qπ(s, a) for a policy π using a set
of basis functions φ(s, a) that can be viewed as doing dimensionality reduction on the space
of functions. The true action value function Qπ(s, a) is a vector in a high dimensional space
R
|S|×|A|, and using the basis functions amounts to reducing the dimension to R

k where
k ≪ |S| × |A|. The approximated action value is thus

Q̂π(s, a; w) =
k
∑

j=1

φj(s, a)wj ,
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where the wj are weights or parameters that can be determined using a least-squares
method. Let Qπ be a real (column) vector ∈ R

|S|×|A|. φ(s, a) is a real vector of size k
where each entry corresponds to the basis function φj(s, a) evaluated at the state action
pair (s, a). The approximate action-value function can be written as Q̂π = Φwπ, where wπ

is a real column vector of length k and Φ is a real matrix with |S|× |A| rows and k columns.
Each row of Φ specifies all the basis functions for a particular state action pair (s, a), and
each column represents the value of a particular basis function over all state action pairs.
The least-squares fixed-point approximation tries to find a set of weights wπ under which
the projection of the backed up approximated Q-function TπQ̂π onto the space spanned by
the columns of Φ is a fixed point, namely

Q̂π = Φ(ΦT Φ)−1ΦT (TπQ̂π),

where Tπ is the Bellman backup operator. It can be shown (Lagoudakis and Parr, 2003)
that the resulting solution can be written in a weighted least-squares form as Awπ = b,
where the A matrix is given by

A =
(

ΦT Dπ
ρ (Φ− γP πΦ)

)

,

and the b column vector is given by

b = ΦT Dπ
ρ R,

where Dπ
ρ is a diagonal matrix whose entries reflect varying “costs” for making approxima-

tion errors on (s, a) pairs as a result of the nonuniform distribution ρπ(s, a) of visitation
frequencies. A and b can be estimated from a database of transitions collected from some
source, for example, a random walk. The A matrix and b vector can be estimated as the
sum of many rank-one matrix summations from a database of stored samples.

Ãt+1 = Ãt + φ(st, at)
(

φ(st, at)− γφ(s′t, π(s′t))
)T

,

b̃t+1 = b̃t + φ(st, at)rt,

where (st, at, rt, s
′
t) is the tth sample of experience from a trajectory generated by the agent

(using some random or guided policy). Once the matrix A and vector b have been con-
structed, the system of equations Awπ = b can be solved for the weight vector wπ either by
taking the inverse of A (if it is of full rank) or by taking its pseudo-inverse (if A is rank-
deficient). This defines a specific policy since Q̂π = Φwπ. The process is then repeated,
until convergence (which can be defined as when the L

2- normed difference between two
successive weight vectors falls below a predefined threshold ǫ). Note that in succeeding
iterations, the A matrix will be different since the policy π has changed. Figure 8 describes
a specific instantiation of RPI, using LSPI as the control learning method.

4.2 Evaluating RPI on Simple Discrete MDPs

In this section, we evaluate the effectiveness of PVFs using small discrete MDPs such as
the two-room discrete MDP used above, before proceeding to investigate how to scale the
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RPI (πm, T,N, ǫ, k,O, µ,D):

// πm: Policy at the beginning of trial m
// T : Number of initial random walk trials
// N : Maximum length of each trial
// ǫ : Convergence condition for policy iteration
// k: Number of proto-value basis functions to use
// O: Type of graph operator used
// µ: Parameter for basis adaptation

Sample Collection Phase

1. See Figure 4 on page 2177.

Representation Learning Phase

2. See Figure 4 on page 2177.

Control Learning Phase (LSPI)

3. Initialize w0 ∈ R
k to a random vector.

4. Repeat the following steps:

(a) Set i ← i + 1. Using the stored transitions (st, at, s
′

t, a
′

t, rt) ∈ D, compute the matrix
A and vector b as follows:

Ãt+1 = Ãt + φ(st, at) (φ(st, at)− γφ(s′t, π(st)))
T

.

b̃t+1 = b̃t + φ(st, at)rt.

(b) Solve the linear system of equations Ãwi = b̃ using any standard method.a

(c) Optional basis adaptation step: Prune the basis matrix Φ by discarding basis
functions (columns) whose coefficients are smaller than µ.

(d) until ‖wi − wi+1‖2 ≤ ǫ.

5. Set πm+1(s) = argmaxa∈AQ̂i(s, a) where Q̂i = Φwi is the ǫ-optimal approximation to the
optimal value function within the linear span of basis functions Φ.

6. Optional: Repeat the above procedure by calling RPI (πm+1, T,N, ǫ, k,O, µ,D).

a. If A is of full rank, it can be inverted, otherwise if it is rank-deficient, the pseudo-inverse of A can be
used. It is possible to avoid matrix inversion entirely by using the incremental Sherman-Woodbury-

Morrison method (Lagoudakis and Parr, 2003).

Figure 8: Pseudo-code of the representation policy iteration (RPI) using the least-squares
policy iteration (LSPI) fix-point method as the control learning component.
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framework to larger discrete and continuous MDPs.11 PVFs are evaluated along a number
of dimensions, including the number of bases used, and its relative performance compared
to parametric bases such as polynomials and radial basis functions. In subsequent sections,
we will probe the scalability of PVFs on larger more challenging MDPs.

Two-room MDP: The two-room discrete MDP used here is a 100 state MDP, where the
agent is rewarded for reaching the top left-hand corner state in Room 2. As before, 57 states
are reachable, and the remaining states are exterior or interior wall states. The state space
of this MDP was shown earlier in Figure 1. Room 1 and Room 2 are both rectangular grids
connected by a single door. There are four (compass direction) actions, each succeeding
with probability 0.9, otherwise leaving the agent in the same state. The agent is rewarded
by 100 for reaching the goal state (state 89), upon which the agent is randomly reset back
to some starting (accessible) state.

Number of Basis Functions: Figure 9 evaluates the learned policy by measuring the
number of steps to reach the goal, as a function of the number of training episodes, and as
the number of basis functions is varied (ranging from 10 to 35 for each of the four actions).
The results are averaged over 10 independent runs, where each run consisted of a set of
training episodes of a maximum length of 100 steps, where each episode was terminated if
the agent reached the absorbing goal state. Around 20 basis functions (per action) were
sufficient to get close to optimal behavior, and increasing the number of bases to 35 produced
a marginal improvement. The variance across runs is fairly small for 20 and 35 bases, but
relatively large for smaller numbers of bases (not shown for clarity). Figure 9 also compares
the performance of PVFs with unit vector bases (table lookup), showing that PVFs with
25 bases closely tracks the performance of unit vector bases on this task. Note that we are
measuring performance in terms of the number of steps to reach the goal, averaged over a
set of 10 runs. Other metrics could be plotted as well, such as the total discounted reward
received, which may be more natural. However, our point is simply to show that there are
significant differences in the quality of the policy learned by PVFs with that learned by the
other parametric approximators, and these differences are of such an order that they will
clearly manifest themselves regardless of the metric used.

Comparison with Parametric Bases: One important consideration in evaluating PVFs
is how they compare with standard parametric bases, such as radial basis functions and
polynomials. As Figure 1 suggests, parametric bases as conventionally formulated may
have difficulty representing highly nonlinear value functions in MDPs such as the two room
task. Here, we test whether this poor performance can be ameliorated by varying the
number of basis functions used. Figure 9 evaluates the effectiveness of polynomial bases
and radial basis functions in the two room MDP. In polynomial bases, a state i is mapped
to the vector φ(i) = (1, i, i2, . . . ik−1) for k basis functions—this architecture was studied
by (Koller and Parr, 2000; Lagoudakis and Parr, 2003).12 In RBFs, a state i is mapped

11. In Section 9, we describe more sophisticated diffusion models for grid-world tasks in the richer setting of
semi-Markov decision processes (SMDPs), using directed state-action graphs with temporally extended
actions, such as “exiting a room”, modeled with distal edges (Osentoski and Mahadevan, 2007).

12. The performance of polynomial bases gets worse for higher degrees, partly due to the numerical instability
caused by taking large powers of state indices.
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Figure 9: This experiment contrasts the performance of Laplacian PVFs (top left) with
unit vector bases (top right), handcoded polynomial basis functions (bottom left)
and radial basis functions (bottom right) on a 100 state two-room discrete MDP.
Results are averaged over 10 runs. The performance of PVFs (with 25 bases)
closely matches that of unit vector bases, and is considerably better than both
polynomials and RBFs on this task.

to φj(i) = exp− (i−j)2

2σ2 , where j is the center of the RBF basis function. In the experiments
shown, the basis centers were placed equidistantly from each other along the 100 states.
The results show that both parametric bases under these conditions performed worse than
PVFs in this task. 13

Additional Results: Figure 10 shows an experiment on a larger 15 × 15 two-room
MDP, with the same dynamics and goal structure as the smaller 10 × 10 two-room MDP.
In this environment, there were a total of 225 states, with 157 of these being accessible
interior states, and the remaining 68 representing “wall” states. Results are shown only for
PVFs in this domain. The plotted result is averaged over 10 independent learning runs. As

13. Our results do not contradict any theoretical findings regarding the generality of RBFs or systems
of orthogonal polynomials, since such results generally pertain to their asymptotic performance. Our
evaluation of polynomials and RBFs gauges their performance on particular parameter settings.
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Figure 10: This figure shows results on a larger 15 × 15 two-room grid world MDP of 225
total states. The dynamics are identical to the two-room MDP. The results
shown are using 25− 75 PVFs.

the number of PVFs is increased, the variance reduces and the performance significantly
improves.

Figure 11 shows an additional experiment on a four-room MDP, where the agent is
tasked to reach the state marked G. Results are shown only for PVFs in this domain. The
plotted result is averaged over 10 independent learning runs. Here, the agent was trained
on sample random walk trajectories that terminated in goal state G.
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Figure 11: This figure shows results on a four-room grid world MDP of 100 total states.
The dynamics are identical to the two-room MDP. The results shown are using
25 PVFs.

5. Scaling Proto-Value Functions: Product Spaces

Thus far, we have restricted our discussion of proto-value functions to small discrete MDPs.
In this and the next section, we explore the issue of scaling the Laplacian framework to
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larger discrete and continuous domains. Computing and storing proto-value functions in
large continuous or discrete domains can be intractable: spectral analysis of the state space
graph or diagonalization of the policy transition matrix can be an infeasible eigenvector
computation in large domains, even if the matrices are inherently sparse. To address this
scaling issue, we explore a number of approaches, from exploiting the large-scale regular
structure of product spaces described in this section, to the use of sparsification through
sampling for continuous states described in the next section.

In this section, we describe a general framework for scaling proto-value functions to
large factored discrete spaces using properties of product spaces, such as grids, cylinders,
and tori. A crucial property of the graph Laplacian is that its embeddings are highly regular
for structured graphs (see Figure 13). We will explain the reason for this property below,
and how to exploit it to construct compact encodings of Laplacian bases. We should also
distinguish the approach described in this section, which relies on an exact Kronecker de-
composition of the Laplacian eigenspace in product spaces, with the approximate Kronecker
decomposition for arbitrary MDPs described in Section 9. The approach described here is
applicable only to MDPs where the state space can be represented as the Kronecker sum of
simpler state spaces (this notion will be defined more precisely below, but it covers many
standard MDPs like grids). More generally, the weight matrices for arbitrary MDPs can
also be factorized, although using the Kronecker product, where, however, the factorization
is an approximation (Van Loan and Pitsianis, 1993).

5.1 Product Spaces: Complex Graphs from Simple Ones

Building on the theory of graph spectra (Cvetkovic et al., 1980), we now describe a hier-
archical framework for efficiently computing and compactly storing proto-value functions.
Many RL domains lead to factored representations where the state space is generated as
the Cartesian product of the values of state variables (Boutilier et al., 1999). Consider a
hypercube Markov decision process with d dimensions, where each dimension can take on
k values. The size of the resulting state space is O(kd), and the size of each proto-value
function is O(kd). Using the hierarchical framework presented below, the hypercube can
be viewed as the Kronecker sum of d path or chain graphs, each of whose transition matrix
is of size (in the worst case) O(k2). Now, each factored proto-value function can be stored
in space O(dk2), and the cost of spectral analysis greatly reduces as well. Even greater
savings can be accrued since usually only a small number of basis functions are needed
relative to the size of a state space. We present detailed experimental results on a large
factored multiagent domain of > 106 states, where proto-value functions are constructed
from diagonalizing Laplacian matrices of size only 100×100, a huge computational savings!
Figure 12 illustrates the idea of scaling proto-value functions to large product spaces.14

Following Cvetkovic et al. (1980), various compositional schemes can be defined for
constructing complex graphs from simpler graphs. We focus on compositions that involve
the Kronecker (or the tensor) sum of graphs. Let G1, . . . , Gn be n undirected graphs whose
corresponding vertex and edge sets are specified as Gi = (Vi, Ei). The Kronecker sum graph

14. Even greater reduction in the size of PVFs can be realized by exploiting the group invariance property
of Laplacian operators, as described in Section 3.6. In particular, the graphs shown in Figure 12 have
large automorphism groups, which can be exploited in significantly reducing the size of the corresponding
Laplacian eigenspaces.
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Figure 12: The spectrum and eigenspace of structured state spaces, including grids, hyper-
cubes, cylinders, and tori, can be efficiently computed from “building block” sub-
graphs, such as paths and circles. Applied to MDPs, this hierarchical framework
greatly reduces the computational expense of computing and storing proto-value
functions.

G = G1 ⊕ . . . ⊕ Gn has the vertex set V = V1 × . . . Vn, and edge set E(u, v) = 1, where
u = (u1, . . . , un) and v = (v1, . . . , vn), if and only if uk is adjacent to vk for some uk, vk ∈ Vk

and all ui = vi, i 6= k. For example, the grid graph illustrated in Figure 12 is the Kronecker
sum of two path graphs; the hypercube is the Kronecker sum of three or more path graphs.

The Kronecker sum graph can also be defined using operations on the component ad-
jacency matrices. If A1 is a (p, q) matrix and A2 is a (r, s) matrix, the Kronecker product
matrix 15 A = A1 ⊗ A2 is a (pr, qs) matrix, where A(i, j) = A1(i, j) ∗ A2. In other words,
each entry of A1 is replaced by the product of that entry with the entire A2 matrix. The
Kronecker sum of two graphs G = G1 ⊕ G2 can be defined as the graph whose adjacency
matrix is the Kronecker sum A = A1⊗I2+A2⊗I1, where I1 and I2 are the identity matrices
of size equal to number of rows (or columns) of A1 and A2, respectively. The main result
that we will exploit is that the eigenvectors of the Kronecker product of two matrices can
be expressed as the Kronecker products of the eigenvectors of the component matrices. The
following result is well-known in the literature (Graham, 1981).

Theorem 2 Let A and B be full rank square matrices of size r× r and s× s, respectively,
whose eigenvectors and eigenvalues can be written as

Aui = λiui, 1 ≤ i ≤ r Bvj = µjvj , 1 ≤ j ≤ s.

Then, the eigenvalues and eigenvectors of the Kronecker product A⊗B and Kronecker
sum A⊕B are given as

15. The Kronecker product of two matrices is often also referred to as the tensor product in the literature
(Chow, 1997).
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(A⊗B)(ui ⊗ vj) = λiµj(ui ⊗ vj)

(A⊕B)(ui ⊗ vj) = (A⊗ Is + Ir ⊗B)(ui ⊗ vj) = (λi + µj)(ui ⊗ vj).

The proof of this theorem relies on the following identity regarding Kronecker products
of matrices: (A ⊗ B)(C ⊗D) = (AC) ⊗ (BD) for any set of matrices where the products
AC and BD are well defined. We denote the set of eigenvectors of an operator T by the
notation X(T ) and its spectrum by Σ(T ). A standard result that follows from the above
theorem shows that the combinatorial graph Laplacian of a Kronecker sum of two graphs
can be computed from the Laplacian of each subgraph.16

Theorem 3 If L1 = L(G1) and L2 = L(G2) are the combinatorial Laplacians of graphs
G1 = (V1, E1, W1) and G2 = (V2, E2, W2), then the spectral structure of the combinatorial
Laplacian L(G) of the Kronecker sum of these graphs G = G1 ⊕G2 can be computed as

(Σ(L), X(L)) = {λi + κj , li ⊗ kj}, 1 ≤ i ≤ |V1|, 1 ≤ j ≤ |V2|,

where λi is the ith eigenvalue of L1 with associated eigenvector li and κj is the jth eigenvalue
of L2 with associated eigenvector kj.

The proof is omitted, but fairly straightforward by exploiting the property that the
Laplace operator acts on a function by summing the difference of its value at a vertex with
those at adjacent vertices. Figure 13 illustrates this theorem, showing that the eigenvectors
of the combinatorial Laplacian produce a regular embedding of a grid in 2D as well as
a cylinder in 3D. These figures were generated as follows. For the grid shown on the
left, the eigenvectors were generated as the Kronecker product of the eigenvectors of the
combinatorial Laplacian for two chains of size 10. The figure shows the embedding of
the grid graph where each state was embedded in R

2 using the second and third smallest
eigenvector. For the cylinder on the right, the eigenvectors were generated as the Kronecker
product of the eigenvectors of the combinatorial Laplacian for a 10 state closed chain and a
5 state open chain. The embedding of the cylinder shown on the right was produced using
the third and fourth eigenvector of the combinatorial Laplacian.

For the combinatorial Laplacian, the constant vector 1 is an eigenvector with associated
eigenvalue λ0 = 0. Since the eigenvalues of the Kronecker sum graph are the sums of
the eigenvalues of the individual graphs, 0 will be an eigenvalue of the Laplacian of the
sum graph as well. Furthermore, for each eigenvector vi, the Kronecker product vi⊗ 1
will also be an eigenvector of the sum graph. One consequence of these properties is that
geometry is well preserved, so for example the combinatorial Laplacian produces well-defined
embeddings of structured spaces. Figure 13 shows the embedding of a cylinder (Kronecker
sum of a closed and open chain) under the combinatorial Laplacian.

16. In contrast, the normalized Laplacian is not well-defined under sum, but has a well-defined semantics
for the Kronecker or direct product of two graphs. The Kronecker product can also be used as a general
method to approximate any matrix by factorizing it into the product of smaller matrices. We discuss
the use of this approach to scaling PVFs in Section 9.
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Figure 13: Left: this figure shows an embedding in R
2 of a 10× 10 grid world environment

using “low-frequency” (smoothest) eigenvectors of the combinatorial Laplacian,
specifically those corresponding to the second and third smallest eigenvalues.
Right: the embedding of a “cylinder” graph using two low-order eigenvectors (3rd

and 4th) of the combinatorial Laplacian. The cylinder graph is the Kronecker
sum of a closed and open chain graph.

5.2 Factored Representation Policy Iteration for Structured Domains

We derive the update rule for a factored form of RPI (and LSPI) for structured domains
when the basis functions can be represented as Kronecker products of elementary basis
functions on simpler state spaces. Basis functions are column eigenvectors of the diago-
nalized representation of a graph operator, whereas embeddings φ(s) are row vectors rep-
resenting the first k basis functions evaluated on state s. By exploiting the property that
(A⊗B)T = AT⊗BT , it follows that embeddings for structured domains can be computed as
the Kronecker products of embeddings for the constituent state components. As a concrete
example, a grid world domain of size m × n can be represented as a graph G = Gm ⊕ Gn

where Gm and Gn are path graphs of size m and n, respectively. The basis functions for the
entire grid world can be written as the Kronecker product φ(s) = φm(sr) ⊗ φn(sc), where
φm(sr) is the basis (eigen)vector derived from a path graph of size m (in particular, the row
sr corresponding to state s in the grid world), and φn(sc) is the basis (eigen)vector derived
from a path graph of size n (in particular, the column sc corresponding to state s in the
grid world).

Extending this idea to state action pairs, the basis function φ(s, a) can written as eI(a)⊗
φ(s), where eI(a) is the unit vector corresponding to the index of action a (e.g., action a1

corresponds to e1 = [1, 0, . . .]T ). Actually, the full Kronecker product is not necessary if only
a relatively small number of basis functions are needed. For example, if 50 basis functions
are to be used in a 10×10×10 hypercube, the full state embedding is a vector of size 1000,
but only the first 50 terms need to be computed. Such savings imply proto-value functions
can be efficiently computed even in very large structured domains. For a factored state
space s = (s1, . . . , sm), we use the notation si to denote the value of the ith component. We
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can restate the update rules for factored RPI and LSPI as follows:

Ãt+1 = Ãt + φ(st, at)
(

φ(st, at)− γφ(s′t, π(s′t))
)T

= Ãt + eI(at) ⊗
∏

⊗
φi(s

i
t)

×
(

eI(at)

∏

⊗
φi(s

i
t)− γeI(π(s′t))

⊗
∏

⊗
φi(s

′
t
i
)

)T

.

The corresponding update equation for the reward component is:

b̃t+1 = b̃t + φ(st, at)rt = b̃t + rteI(at) ⊗
∏

⊗
φi(s

i
t).

5.3 Experimental Results
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Figure 14: Left: the exact value function on a 10 × 10 grid world with a reward of +100
at the center. Right: a factored (combinatorial) Laplacian approximation using
basis functions constructed by taking Kronecker products of basis functions for
chain graphs (of length corresponding to row and column sizes).

To illustrate the Kronecker factorization presented in the previous section, we begin
with a simple MDP. Figure 14 shows the results of using the factored RPI algorithm on
a 10 × 10 grid world domain. There are four (compass direction) actions, each of which
succeeds with probability 0.9. Any “illegal” action (going “north” from the first row) leaves
the agent in the same state. The only reward of +100 is received for reaching the center
of the grid. The discount factor was set at γ = 0.9. If a “flat” approach was used, each
basis function is a vector of size 100 and requires diagonalizing a Laplacian matrix of size
100 × 100. The factored PVFs are computed as the Kronecker product of the PVFs on
a 10 node chain graph, which requires both significantly smaller space of size 10 × k for
k basis functions, and much less computational effort (diagonalizing a Laplacian of size

2200



Learning Representation and Control in Markov Decision Processes

10× 10). These computational savings obviously magnify in larger grid world domains. In
a grid world with 106 states, “flat” proto-value functions require k × 106 space and time
proportional to (106)3 to be computed, whereas the factored basis functions only require
space k × 103 to store with much less computational cost to find.

5.4 The Blocker Task
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Figure 15: Two versions of the blocker domain are shown, each generating a state space of
> 106 states. Interior walls shown create an “irregular” factored MDP whose
overall topology can be viewed as a “perturbed” variant of a pure product of
grids or cylinders (for the “wrap-around” case).

We now present a detailed study using a much larger factored multiagent domain called
the “Blockers” task, which was first proposed by Sallans and Hinton (2004). This task,
illustrated in Figure 15, is a cooperative multiagent problem where a group of agents try
to reach the top row of a grid, but are prevented in doing so by “blocker” agents who move
horizontally on the top row. If any agent reaches the top row, the entire team is rewarded
by +1; otherwise, each agent receives a negative reward of −1 on each step. The agents
always start randomly placed on the bottom row of the grid, and the blockers are randomly
placed on the top row. The blockers remain restricted to the top row, executing a fixed
strategy. The overall state space is the Cartesian product of the location of each agent. Our
experiments on the blocker domain include more difficult versions of the task not studied
in Sallans and Hinton (2004) specifically designed to test the scalability of the Kronecker
product bases to “irregular” grids whose topology deviates from a pure hypercube or toroid.
In the first variant, shown on the left in Figure 15, horizontal interior walls extend out from
the left and right side walls between the second and third row. In the second variant, an
additional interior wall is added in the middle as shown on the right.17

The basis functions for the overall Blocker state space were computed as Kronecker
products of the basis functions over each agent’s state space. Each agent’s state space was
modeled as a grid (as in Figure 14) or a cylinder (for the “wrap-around” case). Since the
presence of interior walls obviously violates the pure product of cylinders or grids topology,
each individual agent’s state space was learned from a random walk. The overall basis

17. In the Blocker domain, the interior walls are modeled as having “zero width”, and hence all 100 states
in each grid remain accessible, unlike the two-room environment.
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functions were then constructed as Kronecker products of Laplacian basis functions for
each learned (irregular) state grid.

Figure 16 compares the performance of the factored Laplacian bases with a set of radial
basis functions (RBFs) for the first Blocker domain (shown on the left in Figure 15). The

width of each RBF was set at 2|Sa|
k

where |Sa| is the size of each individual agent’s grid,
and k is the number of RBFs used. The RBF centers were uniformly spaced. The results
shown are averages over 10 learning runs. On each run, the learned policy is measured every
25 training episodes. Each episode begins with a random walk of a maximum of 70 steps
(terminating earlier if the top row was reached). After every 25 such episodes, RPI is run on
all the samples collected thus far. The learned policy is then tested over 500 test episodes.
The graphs plot the average number of steps to reach the goal. The experiments were
conducted on both “normal” grids (not shown) and “wrap around” cylindrical grids. The
results show that RBFs converge faster, but learn a worse policy. The factored Laplacian
bases converge slower than RBFs, but learn a substantially better policy. Figure 16 also
shows results for the second Blocker domain (shown on the right in Figure 15 with both side
and interior middle walls), comparing 100 factored Laplacian bases with a similar number of
RBFs. The results show a significant improvement in performance of the factored Laplacian
bases over RBFs.

In terms of both space and time, the factored approach greatly reduces the computa-
tional complexity of finding and storing the Laplacian bases. A worst-case estimate of the
size of the full Laplacian matrix is O(|S|2). Diagonalizing a |S| × |S| symmetric matrix and
finding k eigenvectors requires time O(k|S|2) and O(k|S|) space. Instantiating these general
estimates for the Blocker domain, let n refer to the number of rows and columns in each
agent’s state space (n = 10 in our experiments), and k refer to the number of basis functions
(k = 100 in our experiments). Then, the size of the state space is |S| = (n2)3, implying
that the non-factored approach requires O(k(n2)3) space and O(k(n6)2) time, whereas the
factored approach requires O(kn2) space and O(k(n2)2) time. Note these are worse-case
estimates. The Laplacian matrix is in fact highly sparse in the Blocker domain, requiring
far less than O(|S|2) space to be stored. In fact, even in such a deterministic MDP where
the Laplacian matrix can be stored in O(|S|) space, the non-factored approach will still
take O(kn3) space and O(kn6) time, whereas the factored approach takes O(kn) space and
O(kn2) time.

6. Scaling Proto-Value Functions: Continuous Domains

Thus far, the construction of proto-value functions was restricted to discrete MDPs. We
now show how proto-value functions can be constructed for continuous MDPs, which present
significant challenges not encountered in discrete state spaces. The eigenfunctions of the
Laplacian can only be computed and stored on sampled real-valued states, and hence must
be interpolated to novel states. We apply the Nyström interpolation method. While this
approach has been studied previously in kernel methods (Williams and Seeger, 2000) and
spectral clustering (Belongie et al., 2002), our work represents the first detailed study of
the Nyström method for learning control, as well as a detailed comparison of graph normal-
ization methods (Mahadevan et al., 2006).
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Figure 16: Comparison of factored (Laplacian) PVF basis functions with hand coded radial
basis functions (RBF) on a 10 × 10 “wrap-around” grid with 3 agents and 2
blockers of > 106 states. Both approaches were tested using 100 basis functions.
The plots show performance of PVFs against RBFs on the two blocker domains
in Figure 15.

There is a rich and well-developed theory of the Laplace operator on manifolds, which we
can only briefly summarize here. The Laplace-Beltrami operator has been extensively stud-
ied in the general setting of Riemannian manifolds (Rosenberg, 1997). Riemannian mani-
folds have been actively studied recently in machine learning in several contexts, namely in
the context of designing new types of kernels for supervised machine learning (Lafferty and
Lebanon, 2005) and faster policy gradient methods using the natural Riemannian gradient
on a space of parametric policies (Kakade, 2002; Bagnell and Schneider, 2003; Peters et al.,
2003).

The Laplacian on Riemannian manifolds and its eigenfunctions (Rosenberg, 1997), which
form an orthonormal basis for square-integrable functions on the manifold (Hodge’s the-
orem), generalize Fourier analysis to manifolds. Historically, manifolds have been applied
to many problems in AI, for example configuration space planning in robotics, but these
problems assume a model of the manifold is known (Latombe, 1991; Lavalle, 2006), unlike
here where only samples of a manifold are given.

6.1 Nyström Extension

To learn policies on continuous MDPs, it is necessary to be able to extend eigenfunctions
computed on a set of points ∈ R

n to new unexplored points. We describe here the Nyström
method, which can be combined with iterative updates and randomized algorithms for low-
rank approximations. The Nyström method interpolates the value of eigenvectors computed
on sample states to novel states, and is an application of a classical method used in the
numerical solution of integral equations (Baker, 1977). The eigenfunction problem can be
stated as

∫

D

K(x, y)φ(y)dy = λφ(x),∀x ∈ D, (4)
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where D can be any domain, for example, R. Using the standard quadrature approximation,
the above integral can be written as

∫

D

K(x, y)φ(y)dy ≈
n
∑

i=1

wik(x, si)φ̂(si), (5)

where wi are the quadrature weights, si are n selected sample points, and φ̂ is an approxi-
mation to the true eigenfunction. Combining Equation 4 and Equation 5 gives us

n
∑

i=1

wik(x, si)φ̂(si) = λ̂φ̂(x).

By letting x denote any set of n points, for example the set of quadrature points si itself,
the kernel k(si, sj) becomes a symmetric matrix. This enables computing the approximate
eigenfunction at any new point as

φ̂m(x) =
1

λ̂

n
∑

i=1

wik(x, si)φ̂m(si). (6)

Let us instantiate Equation 6 in the context of the normalized Laplacian L = I −
D− 1

2 WD− 1
2 . First, note that if λi is an eigenvalue of L, then 1 − λi is the corresponding

eigenvalue of the diffusion matrix D− 1
2 WD− 1

2 . Applying the the Nyström extension for
computing the eigenfunctions of the normalized Laplacian Lφi = λiφi, we get the equation

φi(x) =
1

1− λi

∑

y∼x

w(x, y)
√

d(x)d(y)
φi(y),

where d(z) =
∑

y∼z w(z, y), and x is a new vertex in the graph. Note that the weights
w(x, y) from the new state x to its nearest neighbors y in the previously stored samples
is determined at “run time” using the same nearest neighbor weighting algorithm used to
compute the original weight matrix W . An extensive discussion of the Nyström method is
given in Drineas and Mahoney (2005), and more details of its application to learning control
in MDPs are given in Mahadevan et al. (2006).

Figure 17 illustrates the basic idea. Note that the Nyström method does not require re-
calculating eigenvectors—in essence, the embedding of a new state is computed by averaging
over the already computed embeddings of “nearby” states. In practice, significant speedups
can be exploited by using the following optimizations. We have empirically observed that
roughly only 10% of the overall samples needed for learning a good policy are necessary
to construct basis functions. Once the bases is defined over these sub-sampled states, the
Nyström extended embeddings of the remaining 90% of training samples needs to be cal-
culated only once, and henceforth can be cached during repeated runs of policy iteration.
During testing, the Nyström embeddings of novel states encountered must be computed,
but since the eigenvectors are defined over a relatively small core set of sample states, the
extensions can be computed very efficiently using a fast nearest neighbor algorithm.18
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Figure 17: This figure illustrates the Nyström interpolation method for extending eigen-
functions on samples to new states. Left: the 3rd eigenvector of the Laplacian
plotted on a set of samples (shown as filled dots) drawn from a random walk
in the inverted pendulum domain, as well as its Nyström interpolated values.
Right: the Nyström interpolated 6th eigenvector illustrated the entire state space
as well as on the actual samples (again shown as filled dots).

6.2 Representation Policy Iteration for Continuous Domains

Figure 18 presents the modified RPI algorithm for continuous Markov decision processes.
The core of the algorithm remains the same as before, but there are important differences
from the discrete case. First, the proto-value functions are computed on a subsampled set of
states, for two reasons: the number of samples needed to compute the proto-value functions
is much less than that needed to learn a good policy using RPI, as the experiments in
Section 7 reveal. In Figure 18, DZ denotes the subsampled set of states. The choice of
the subsampling method can make a significant difference, as explained below. The second
major difference is the use of the Nyström method to extend proto-value functions from the
samples stored in DZ to all the states visited during the initial random walk (denoted D in
Figure 18), as well as new states encountered during the testing of a learned policy.

6.3 Sampling from Point Sets ∈ R
n

One challenge in continuous MDPs is how to choose a subset of samples from which a
graph can be built and proto-value functions computed. The set of samples collected during
the course of exploration can be very large, and a much smaller set of samples is usually
sufficient to learn proto-value functions. Many ways of constructing a subsample from the

18. In our experiments, we used the TSTOOLS MATLAB nearest neighbor package.
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RPI (πm, T,N,Z, ǫ, k,O,D):

// πm: Initial policy
// T : Number of initial random walk trials
// N : Maximum length of each trial
// ǫ : Convergence condition for policy iteration
// k: Number of proto-value basis functions to use
// O: Type of graph operator used
// D: Data set of transitions

Sample Collection Phase

1. See Figure 4 on page 2177.

Representation Learning Phase

2. Build an undirected weighted graph G from the set of subsampled transitions Ds ⊆ D using
the method described in Section 6.4 on graph construction from point sets ∈ R

n. Compute
the operator O on graph G as discussed in Section 6.4.

3. Compute the k “smoothest” eigenvectors of O on the sub-sampled graph Ds, and collect
them as columns of the basis function matrix Φ, a |Ds| × k matrix. The embedding of a
state action pair φ(s, a) where s ∈ Ds is given as ea ⊗ φ(s), where ea is the unit vector
corresponding to action a, φ(s) is the sth row of Φ, and ⊗ is the Kronecker product.

Control Learning Phase:

4. See Figure 8 on page 2192. For all transitions involving a state s /∈ Ds, its embedding is
computed using the Nyström extension described in Section 6.1.

5. Optional: Repeat the above procedure by calling RPI (πm+1, T,N, ǫ, k,O, µ,D).

Figure 18: Pseudo-code of the representation policy iteration algorithm for continuous
MDPs.

overall sample can be devised. The simplest method is of course to randomly subsample
from the complete set, but this might not be the most efficient way of using the samples.
Figure 19 illustrates two methods for subsampling in the mountain car domain, including
random subsampling and trajectory-based subsampling. The trajectory-based algorithm
follows a greedy strategy: starting with the null set, add samples to the subset that are
not within a specified distance to any sample currently in the subset. A maximal subset
is returned when no more samples can be added. The trajectory-based method also tries
to retain “important” samples, such as goal states or states with high reward. Note that
the random subsampling method clearly loses important information about the trajectory,
which is nicely retained by the trajectory method.

More formally, the trajectory based subsampling algorithm works as follows. We define
an ǫ-net of points in S ′ to be a subset S ′′ such that no two points are closer than ǫ, and
that for every point y in S ′, there is a point in S ′′ which is not farther than ǫ from y. One
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Figure 19: The problem of subsampling is illustrated in the mountain car domain. On the
left is shown the original states visited during a random walk. In the middle is
the subsampled data using a random subsampling algorithm. On the right is a
trajectory based subsampling method.

can construct a (random) ǫ-net in S ′ as follows. Pick x0 ∈ S ′ at random. By induction,
for k ≥ 1 suppose x0, x1, . . . , xk have been picked so that the distance between any pair is
larger than ǫ. If

Rk := S ′ \ (∪k
l=1Bǫ(xl))

is empty, stop, otherwise pick a point xk+1 in Rk. By definition of Rk the distance between
xk+1 and any of the points x0, . . . , xk is not smaller than ǫ. When this process stops, say
after k∗ points have been selected, for any y ∈ S ′ we can find a point in S ′′ not farther than
ǫ, for otherwise y ∈ Rk∗ and the process would not have stopped.

In the experiments reported in Section 7, where states are continuous vectors ∈ R
n,

typically < 10% of the transitions in the original set of random walks are necessary to
learn an adequate set of basis functions. For example, in the mountain car task, around
700 samples are sufficient to form the basis functions, whereas usually > 7000 samples are
needed to learn a close to optimal policy.19

6.4 Graph Construction from Point Sets ∈ R
n

Given a data set {xi} in R
n, we can associate different weighted graphs to this point set.

There are different choices of edges and for any such choice there is a choice of weights
on the edges. In the experiments below, the following construction was used. Edges were
inserted between a pair of states xi and xj if:

• xj is among the k nearest neighbors of xi, where k > 0 is a parameter.

Weights were assigned to the edges in the following way:

• W (i, j) = α(i)e−
||xi−xj ||

2
Rn

σ , where σ > 0 is a parameter, and α a weight function to be
specified.

19. In Section 9, we describe how Kronecker factorization can be used to significantly compress the size of
the basis matrices.
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Observe that for undirected graphs, since xj can be among the K nearest neighbors of
xi but xi may not be among the K nearest neighbors of xj , the above construction will still
yield asymmetric weight matrices. We used an additional symmetrization step where we
replaced the weight matrix W constructed by the symmetric W +W T . If the states {xi} are
drawn uniformly from a Riemannian manifold, then it is shown in Belkin and Niyogi (2004)
that the above construction, with α = 1, approximates the continuous Laplace-Beltrami
operator on the underlying manifold. If {xi} is not drawn uniformly from the manifold,
as it typically happens in MDPs when the space is explored by an agent, it is shown
in Lafon (2004) that a pre-processing normalization step can (must) be performed that
yields the weight function α, so that the above construction yields an approximation to the
Laplace-Beltrami operator. Various ways of normalizing the weight matrix were explored
in our experiments in Section 7. In particular, we compared the normalized Laplacian
L = D− 1

2 (D −W )D− 1
2 and the combinatorial Laplacian, L = D −W operators.

7. Fully Interleaved Representation and Policy Learning: Continuous

MDPs

In this section, we present a detailed analysis of fully interleaved representation and policy
learning on continuous MDPs. By “fully interleaved”, we mean that the overall learning run
is divided into a set of discrete episodes of sample collection, basis construction, and policy
learning. At the end of each episode, a set of additional samples is collected using either a
random walk (off-policy) or the currently best performing policy (on-policy), and then basis
functions are then recomputed and a new policy is learned. In all the experiments below,
the trajectory based method was used to build the graph from which proto-value functions
were learned. We discuss alternate approaches for interleaving basis function generation
and control learning in Section 9.

7.1 Three Control Tasks

We explored the effectiveness and stability of proto-value functions in three continuous
domains—the Acrobot task, the inverted pendulum task, and the mountain car task—that
have long been viewed as benchmarks in the field. These three domains are now described
in more detail.

The Inverted Pendulum: The inverted pendulum problem requires balancing a pendu-
lum of unknown mass and length by applying force to the cart to which the pendulum is
attached. We used the implementation described in Lagoudakis and Parr (2003). The state
space is defined by two variables: θ, the vertical angle of the pendulum, and θ̇, the angular
velocity of the pendulum. The three actions are applying a force of -50, 0, or 50 Newtons.
Uniform noise from -10 and 10 is added to the chosen action. State transitions are defined
by the nonlinear dynamics of the system, and depend upon the current state and the noisy
control signal, u.

θ̈ =
g sin(θ)− αmlθ̇2 sin(2θ)/2− α cos(θ)u

4l/3− αml cos2(θ)
,
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where g is gravity, 9.8 m/s2, m is the mass of the pendulum, 2.0 kg, M is the mass of the
cart, 8.0 kg, l is the length of the pendulum, .5 m, and α = 1/(m + M). The simulation
time step is set to 0.1 seconds. The agent is given a reward of 0 as long as the absolute value
of the angle of the pendulum does not exceed π/2. If the angle is greater than this value
the episode ends with a reward of -1. The discount factor was set to 0.95. The maximum
number of episodes the pendulum was allowed to balance was fixed at 3000 steps. Each
learned policy was evaluated 10 times.

Mountain Car: The goal of the mountain car task is to get a simulated car to the top
of a hill as quickly as possible (Sutton and Barto, 1998). The car does not have enough
power to get there immediately, and so must oscillate on the hill to build up the necessary
momentum. This is a minimum time problem, and thus the reward is -1 per step. The state
space includes the position and velocity of the car. There are three actions: full throttle
forward (+1), full throttle reverse (-1), and zero throttle (0). Its position, xt and velocity
ẋt, are updated by

xt+1 = bound[xt + ẋt+1]

ẋt+1 = bound[ẋt + 0.001at +−0.0025, cos(3xt)],

where the bound operation enforces −1.2 ≤ xt+1 ≤ 0.6 and −0.07 ≤ ẋt+1 ≤ 0.07. The
episode ends when the car successfully reaches the top of the mountain, defined as position
xt >= 0.5. In our experiments we allow a maximum of 500 steps, after which the task is
terminated without success. The discount factor was set to 0.99.

The Acrobot Task: The Acrobot task (Sutton and Barto, 1998) is a two-link under-
actuated robot that is an idealized model of a gymnast swinging on a highbar. The only
action available is a torque on the second joint, discretized to one of three values (positive,
negative, and none). The reward is −1 for all transitions leading up to the goal state. The
detailed equations of motion are given in Sutton and Barto (1998). The state space for
the Acrobot is 4-dimensional. Each state is a 4-tuple represented by (θ1, θ̇1, θ2, θ̇2). θ1 and
θ2 represent the angle of the first and second links to the vertical, respectively, and are
naturally in the range (0, 2π). θ̇1 and θ̇2 represent the angular velocities of the two links.
Notice that angles near 0 are actually very close to angles near 2π due to the rotational
symmetry in the state space.

Figure 20 plots the Acrobot state space projected onto the subspace spanned by the two
joint angles θ1 and θ2. This subspace is actually a torus. To approximate computing dis-
tances on the torus, the original states were projected upwards to a higher dimensional state
space⊂ R

6 by mapping each angle θi to (sin(θi), cos(θi)). Thus, the overall state space is now
(sin(θ1), cos(θ1), θ̇1, sin(θ2),
cos(θ2), θ̇2). The motivation for this remapping is that now Euclidean distances in this
augmented space better approximate local distances on the torus. In fact, ignoring the
wrap-around nature of the Acrobot state space by simply using a local Euclidean distance
metric on the four-dimensional state space results in significantly poorer performance. This
example illustrates how overall global knowledge of the state space, just like in the Blockers
domain, is valuable in designing a better local distance function for learning PVFs. This
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Figure 20: The state space of the Acrobot (shown on the left) exhibits rotational sym-
metries. The figure on the right plots its projection onto the subspace of R

2

spanned by the two joint angles θ1 and θ2, which can be visualized as a torus.
The angular velocities θ̇1 and θ̇2 were set to 0 for this plot. The points shown
on the torus are subsampled states from a random walk. The colors indicate the
value function, with red (darker) regions representing states with higher values.

domain serves to reemphasize that basis construction is dependent on a good choice of a
local distance metric.

7.2 RPI with Off-Policy Sampling

In the first set of experiments, we used off-policy random walks in Step 1 of the sample
collection phase in the RPI algorithm since we wanted to compare the effects of different
parameter choices (graph operator, number of nearest neighbors, number of bases) using
the same set of samples. In Section 7.4 we will see that significantly better results were
obtained using a modified form of on-policy sampling. Table 1 summarizes the range of
parameters over which the RPI algorithm was tested in these domains. The results for the
following experiments were (median) averaged over 30 runs. To avoid clutter, variances are
shown only on selected plots.

As Table 1 reveals, the type of off-policy sample collection used in the experiments
below varied, from a long series of short random walks (inverted pendulum) to a short
series of long random walks (Acrobot). In particular, in the inverted pendulum, samples
were collected using a series of short random walks, typically of length < 20 before the
episode terminated because the pole was dropped. This simple strategy was sufficient to
explore the underlying manifold. By contrast, in the mountain car domain, longer random
walks were needed to explore the manifold. One reason for this difference is the nature of
the underlying manifold: the samples in the inverted pendulum are in a relatively narrow
region around the 45 degree line. In contrast, the samples in the mountain car domain are
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distributed across a wider region of the state space. Finally, in the Acrobot domain, the
random walks were very long, terminating when the goal state was reached.

Another difference in sample collection in these domains was in initialization. In the
inverted pendulum and Acrobot domains, the initial state was always set the same, with
the pole starting from the vertical position at rest, or the arm at rest. In the mountain car
domain, however, starting the car from a position of rest at the bottom of the hill produced
poorer results than starting from the bottom with the velocities initialized randomly. The
experiments reported below scaled the raw state variables to make the dimensions of each
variable more commensurate. The scaling used is shown in Table 1.

While performance in all three domains is measured by the number of steps, note that
for the Acrobot and mountain car task, lower numbers indicate better performance since
we are measuring the steps to reach the goal. In the inverted pendulum, however, since we
are measuring the number of steps that the pole remained upright, higher numbers indicate
better performance.

Local Distance Metric: In the first experiment, illustrated in Figure 21, the effect of
varying the local distance metric used in constructing the graph Laplacian was evaluated,
from a low setting of k = 10 nearest neighbors to a higher setting of k = 50 nearest
neighbors. All the plots in the figure show median-averaged plots over 30 learning runs.
Variances are not shown to avoid clutter. The effect of varying k was most pronounced in
the inverted pendulum domain, with less tangible results in the mountain car and Acrobot
domains. Note that in the inverted pendulum domain, the differences between k = 25 and
k = 50 are negligible, and the corresponding runs tightly overlap.

Number of Basis Functions: Figure 22 varied the number of proto-value functions
used. Here, there were significant differences, and the results reveal a nonlinear relationship
between the number of PVFs used and the best performance. In the Acrobot task, the best
results were obtained for 25 and 100 PVFs, and significantly poorer results for 50 PVFs.
In the inverted pendulum domain, 10 PVFs was significantly better than using 30 PVFs,
but was closely matched by using 60 PVFs. Finally, in the mountain car domain, 30 PVFs
produced the best results, followed by 50 PVFs and a setting of 10 PVFs produced the
worst results.

Type of Graph Operator: Figure 23 investigates the effect of varying the graph operator
in the three domains. The two operators compared were the normalized Laplacian L =
I − D− 1

2 WD− 1
2 and the combinatorial Laplacian L = D −W . In both the Acrobot and

mountain car domains, the normalized Laplacian operator produced significantly better
results than the combinatorial Laplacian. However, in the inverted pendulum domain, the
combinatorial Laplacian was better than the normalized Laplacian operator. These results
suggest an interesting dependence between the graph operator and the type of manifold.
Note that in both the Acrobot and mountain car domains, the manifold is significantly
more spread out spatially than the inverted pendulum task.

7.3 RPI with On-Policy Sampling

As noted earlier, the performance of PVFs can be improved using a modified form of on-
policy sampling in Step 1 of the sample collection phase in the RPI algorithm. Specifically,
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Figure 21: Performance of PVFs on the Acrobot, inverted pendulum, and mountain car
domains as a function of the number of nearest neighbors used to compute the
graph Laplacian. Results are median averages over 30 learning runs. In all
three domains, the graph operator used was the normalized Laplacian. For the
Acrobot domain, the number of PVFs was set at 100, whereas in the mountain
car and inverted pendulum tasks, the number of PVFs was set to 30.
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Figure 22: Performance of PVFs on the Acrobot, inverted pendulum, and mountain car
domains as a function of the number of basis functions. Results shown are
median averages over 30 learning runs. In all three domains, the normalized
Laplacian was used as the graph operator. The number of nearest neighbors
k = 25 in the Acrobot and inverted pendulum domains, and k = 30 in the
mountain car domain.

we kept track of the best-performing policy (in terms of the overall performance measure
of the number of steps). If the policy learned in the current round of RPI improved on
the best-performing policy thus far, samples were collected in the next iteration of RPI
using the newly learned policy (which was then viewed as the best performing policy in
subsequent runs). Otherwise, samples were collected using an off-policy random walk. We
also found that using shorter episodes of sample collection in between rounds of representa-
tion construction and policy estimation also produced better results. Figure 24 shows the
results of these two modifications in the Acrobot domain, whereas Figure 25 and Figure 27
show the corresponding results from the inverted pendulum and mountain car domains.
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Figure 23: Performance of PVFs in the Acrobot, inverted pendulum, and mountain car
domains as a function of the graph operator. Results shown are median averages
over 30 learning runs. In the Acrobot task, 100 PVFs were used, whereas 30
basis functions were used in the mountain car task, and 10 basis functions were
used in the inverted pendulum task.

Comparing these results with the corresponding off-policy results in Figure 21, Figure 22,
and Figure 23 shows significantly faster convergence of PVFs in all three domains.

7.4 Comparing PVFs with RBFs on Continuous MDPs

In this section, we compare the performance of PVFs with radial basis functions (RBFs),
which are a popular choice of basis functions for both discrete and continuous MDPS. We
restrict our comparison of PVFs and RBFs in this section to the inverted pendulum and
mountain car domains. To choose a suitable set of parameters for RBFs, we initially relied
on the values chosen in the published study of LSPI for the inverted pendulum domain
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Figure 24: Performance of PVFs with on-policy sampling in the Acrobot task. The plot on
the left shows the median average number of steps to goal averaged over 30 runs.
The plot on the right shows the variance, after scaling the y axis to magnify the
plot.

(Lagoudakis and Parr, 2003). However, we found that by tuning the kernel widths, we
were able to significantly improve the performance of RBFs over that previously reported
in their experiments. Table 2 shows the parameters of the RBF used in the comparisons
below. Generally speaking, the results demonstrate that PVFs are significantly quicker
to converge, by almost a factor of two in both the inverted pendulum and mountain car
domains. Asymptotically, both approaches to converge to the same result. We emphasize
that these comparisons are meant to be suggestive, and not definitive. For example, we
did not fine tune the centers of the RBF bases, or incorporate the scaling factors used in
the experiments with PVFs. Our goal here is to provide a reasonable set of benchmarks
to compare PVFs against, commensurate with that shown in earlier studies using such
parametric approximators.

Inverted Pendulum: We begin by comparing the performance of PVFs with a linear
RBF approximation architecture for the inverted pendulum domain. Figure 25 plots the
effect of varying the kernel width for RBFs in the inverted pendulum domain (left plot). It
is seen that the best results are obtained for a kernel width σ = 0.25. We compare a varying
number of RBF architectures with using 15 PVFs in Figure 25 (right plot). PVFs converge
significantly faster to the final goal of balancing the pendulum for 3000 steps: PVFs take
20 trials to converge, but RBFs take roughly twice as long. Figure 26 plots the variance
across 100 learning runs for both PVFs and RBFs, showing that PVFs not only converge
faster, but also have significantly less variance.

Mountain Car: As with the inverted pendulum, we were able to improve the performance
of RBFs by fine-tuning the kernel width, although the differences are less significant than
in the inverted pendulum domain. Figure 27 plots the effect of varying the kernel width
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Parameter Inverted Pendulum Mountain Car Acrobot
Episodes T (20 to 160) (50 to 300) (5 to 40)

Episode Length N ≤ 20 ≤ 70 ≤ 800
Nearest neighbors ω {10, 25, 50} {10, 25, 50} {25, 50, 100 }
Number of PVFs k {10, 30, 60} {10, 30, 50} { 25, 50, 100 }
Graph Operator O (Norm., Comb.) (Norm., Comb.) (Norm., Comb.)

Scaling (3θ, θ̇) (x, 3ẋ) (θ1, θ2, 0.5θ̇1, 0.3θ̇2)

Table 1: Parameter values (as defined in Figure 18) for Acrobot, inverted pendulum and
mountain car domains. Comb. and Norm. refer to the combinatorial and normal-
ized Laplacian operators.
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Figure 25: Left: The performance of a linear parametric RBF architecture is analyzed for
varying kernel widths in the inverted pendulum domain. Right: A comparison of
15 PVFs with several choices of RBFs on the inverted pendulum task, focusing
on the initial 100 episodes averaged over 100 runs.
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Number of RBFs Inverted Pendulum RBF Parameters

10 3 x-axis, 3 y-axis, σ = 1, 0.5, 0.25, 0.125

13 4 x-axis, 3 y-axis, σ = 0.25

17 4 x-axis, 4 y-axis, σ = 0.25

Number of RBFs Mountain Car RBF Parameters

13 4 x-axis, 3 y-axis, σ = 0.5, 0.1, 0.05

Table 2: RBF parameter settings for inverted pendulum and mountain car experiments.

for RBFs using 13 basis functions in the mountain car domain (left plot). We also found
increasing the number of RBF basis functions above 13 worsened their performance. The
figure also plots the best performing RBF architecture (13 basis functions) compared with
the PVF approach (25 basis functions). Given sufficient training experience, both converge
to approximately the same result, although PVFs seem to converge to a slightly better result.
However, as with the inverted pendulum results, PVFs converge significantly quicker, and
clearly outperform RBFs for smaller numbers of samples.

Figure 28 shows the variances over 30 runs for both PVFs and RBFs in the mountain
car domain. As in the inverted pendulum, we note that PVFs clearly converge more quickly
to a more stable performance than RBFs, although the differences are not as dramatic as
in the inverted pendulum domain.

8. Related Work

In this section, we briefly review related work, beginning with methods for approximat-
ing value functions, followed by a description of past research on representation learning,
concluding with a short summary of recent work on manifold and spectral learning.

8.1 Value Function Approximation

Value function approximation has been studied by many researchers. Bertsekas and Tsitsik-
lis (1996) provide an authoritative review. Parametric approaches using linear architectures,
such as radial basis functions (Lagoudakis and Parr, 2003), and nonlinear architectures,
such as neural networks (Tesauro, 1992), have been extensively explored. However, most
approaches (with notable exceptions discussed below) are based on a fixed parametric archi-
tecture, and a parameter estimation method is used to approximate value functions, such
as temporal-difference learning (Sutton and Barto, 1998; Tsitsiklis and Van Roy, 1997),
least squares projection (Bradtke and Barto, 1996; Boyan, 1999; Nedic and Bertsekas, 2003;
Lagoudakis and Parr, 2003), and linear programming (de Farias, 2003; Guestrin et al., 2003).
There has also been significant work on non-parametric methods for approximating value
functions, including nearest neighbor methods (Gordon, 1995) and kernel density estimation
(Ormoneit and Sen, 2002). Although our approach is also non-parametric, it differs from
kernel density estimation and nearest neighbor techniques by extracting a distance mea-
sure through modeling the underlying graph or manifold. Non-parametric kernel methods
based on Hilbert spaces have also been applied to value function approximation, including
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Figure 26: This plot shows that PVFs (right) have significantly less variance compared to
RBFs (left) in the inverted pendulum task. Both plots show median-averaged
number of steps the pole was balanced over 100 learning runs.
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Figure 27: Left: The performance of a linear parametric RBF architecture is analyzed for
varying kernel widths in the mountain car domain. Right: A comparison of 25
PVFs and 13 RBFs on the mountain car task. Higher number of RBFs produced
worse results.
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Figure 28: Left: The variance in performance of a linear parametric RBF architecture is
analyzed over 30 learning runs in the mountain car domain. Right: Variance
across 30 runs for PVFs in the mountain car task.

support vector machines (Dietterich and Wang, 2002) and Gaussian processes (Engel et al.,
2003; Rasmussen and Kuss, 2004). Note that in this approach, the kernel is largely hand-
engineered, such as the Gaussian kernel. Our approach can be viewed as extending this
work using an automatically generated data-dependent graph or diffusion kernel (Kondor
and Vert, 2004). There are interesting connections between the graph Laplacian matrix and
covariance matrices (Ben-Chen and Gotsman, 2005).

8.2 Representation Learning

The problem of learning representations has a long history in AI. Amarel (1968) was an
early pioneer, advocating the study of representation learning through global state space
analysis. Amarel’s ideas motivated much subsequent research on representation discovery
(Subramanian, 1989; Utgoff and Stracuzzi, 2002), and many methods for discovering global
state space properties like “bottlenecks” and “symmetries” have been studied (McGovern,
2002; Ravindran and Barto, 2003; Mannor et al., 2004). However, this past research lacked
a formal framework showing how the geometrical analysis of a state space analysis can
be transformed into representations for approximating value functions, a hallmark of our
approach.

There have been several attempts at overcoming the limitations of traditional function
approximators, such as radial basis functions. In particular, it has been recognized that
Euclidean smoothing methods do not incorporate geometric constraints intrinsic to the envi-
ronment: states close in Euclidean distance may be far apart on the manifold. Dayan (1993)
proposed the idea of building successor representations. While this approach was restricted
to policy evaluation in simple discrete MDPs, and did not formally build on manifold or
graph-theoretic concepts, the idea of constructing representations that are faithful to the
underlying dynamics of the MDP was a key motivation underlying this work. Drummond
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(2002) also pointed out the nonlinearities that value functions typically exhibit, and used
techniques from computer vision to detect nonlinearities. Neither of these studies formu-
lated the problem of value function approximation as approximating functions on a graph or
manifold, and both were restricted to discrete MDPs. There have been several attempts to
dynamically allocate basis functions to regions of the state space based on the nonuniform
occupancy probability of visiting a region (e.g., Kretchmar and Anderson, 1999), but these
methods do not construct the basis functions adaptively. Finally, there has also been re-
search on finding common structure among the set of value functions on a given state space,
where only the goal location is changed (Foster and Dayan, 2002), assuming a probabilistic
generative (mixture) model of a value function, and using maximum likelihood estimation
techniques. Proto-value functions can be viewed similarly as the building block of the set of
value functions on a given state space, except that they are constructed without the need
to make such parametric assumptions.

8.3 Manifold and Spectral Learning

This research also builds on recent work on manifold and spectral learning, including dif-
fusion maps (Coifman et al., 2005a,b,c), ISOMAP (Tenenbaum et al., 2000), LLE (Roweis
and Saul, 2000), and Laplacian eigenmaps (Belkin and Niyogi, 2004; Jones et al., 2007).
One major difference is that these methods have largely (but not exclusively) been applied
to nonlinear dimensionality reduction and semi-supervised learning on graphs, whereas our
work focuses on approximating (real-valued) value functions on graphs. Although related
to regression on graphs (Niyogi et al., 2003), the problem of value function approximation
is fundamentally different: the set of target values is not known a priori, but must be in-
ferred through an iterative process of computing an approximate fixed point of the Bellman
backup operator, and projecting these iterates onto subspaces spanned by the basis func-
tions. Furthermore, value function approximation introduces new challenges not present in
supervised learning or dimensionality reduction: the set of samples is not specified a priori,
but must be collected through active exploration of the state space.

9. Discussion and Future Research

The fundamental contribution of this paper is an algorithmic framework called RPI that
combines the learning of representations (basis functions) and policies. RPI is based on some
specific design choices, and we have naturally restricted our description of the framework to
the simplest settings. The scope of RPI can easily be extended to more general situations.
Many extensions of the framework are being actively explored, and we briefly summarize
these ongoing investigations.

9.1 Analysis of RPI and Variants

RPI is based on a two-phased procedure, where basis functions are learned from spec-
tral analysis of trajectories generated by simulating policies, and improved policies are
found by a control learning algorithm using the newly generated basis functions. Section 7
evaluated both the off-policy setting, where basis functions were learned purely from ran-
dom walks, as well as the on-policy setting, where additional samples were generated from
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newly learned improved policies and combined with the random-walk samples. In both ap-
proaches, a smaller subset of samples were extracted using a subsampling method described
in Section 6.3. Many questions remain to be addressed about the specific properties of
architectures like RPI as well as other related architectures that combine the learning of
representation and behavior. We summarize some key issues that need to be addressed in
future research:

• How can we modify the design of RPI, so that basis functions are learned simulta-
neously with the learning of policies? Recent work on Bellman-error basis functions
(Keller et al., 2006; Petrik, 2007; Parr et al., 2007) suggests an alternative approach
where basis functions are learned in-situ during the policy evaluation phase itself, by
explicitly modeling the error in approximating the value function using the Bellman
residual. In such approaches, the basis functions generated are very sensitive to a spe-
cific reward function, whose shapes reflect the error in approximating a given value
function. Can such in-situ basis-function learners be combined with offline approaches
such as RPI, where basis functions are generated using a more global analysis of the
state space as a whole, to yield more robust provably optimal control learners? For ex-
ample, Petrik (2007) proposes combining reward-specific Krylov bases with Laplacian
bases as a way of integrating localized high-frequency reward-specific bases with more
global long-term eigenvector bases such as PVFs. We discuss below other approaches
for integrating local vs. global basis functions, such as diffusion wavelets.

• Is it possible to specify optimality metrics for basis function generation, similar to
metrics used in control learning such as maximizing the cumulative long-term dis-
counted sum of rewards (or average reward)? How can the cost of learning basis
functions be amortized over multiple problems? Does this tradeoff suggest a way to
balance the learning of reward-based and reward-independent basis functions?

• What are the pros and cons of off-policy sampling vs. on-policy sampling in design-
ing the outer loop of RPI? For example, is it possible to construct problems where
on-policy sampling results in oscillation, as samples are increasingly generated from
policies that visit increasingly restricted portions of the state space? In the experi-
ments in Section 7, newly generated samples are combined with previously generated
samples to avoid overfitting basis functions to narrow regions of the state space, but
this strategy may be computationally expensive in large MDPs.

• Under what assumptions can RPI be shown to converge? It is clear from the ex-
periments presented in Section 7 that RPI converges extremely quickly in problems
like the inverted pendulum, whereas in other problems such as the mountain car or
Acrobot, convergence takes significantly longer. Can we characterize more formally
conditions on the underlying state (action) manifold under which RPI can be shown
to reliably converge?

9.2 Combining Nonparametric Graph-based and Parametric Basis Functions

Proto-value functions are given information about the underlying state space manifold in
terms of the underlying graph that captures non-local smoothness, whereas parametric
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bases generally make fairly broad uniformity assumptions about the underlying state space
topology. It is reasonable to try to combine the graph-based approach with parametric
methods, such as RBFs, to combine the advantages of the two approaches. For example,
geodesic Gaussian kernels (Sugiyama et al., 2007) are based on learning a graph of the
underlying MDP from random walks, and using the shortest path between any two states
as the distance metric for a set of RBFs defined on the graph. The Gaussian exponen-
tial term in the RBF approximator can be shown to be the solution of a diffusion kernel
(Kondor and Lafferty, 2002) or heat kernel (Chung, 1997) defined by a differential equation,
whose solution can be expressed as a matrix exponential function of the graph Laplacian.
Interestingly, matrix exponentials can serve as generators of manifold structures called Lie
groups (Baker, 2001), of which some interesting varieties are rotation and motion groups
discussed in more detail in Section 9.8. The Laplacian can also be viewed as an inverse
covariance matrix (Ben-Chen and Gotsman, 2005), defining a smoothing prior on the space
of functions, which can be contrasted with other priors such as Gaussian processes (Ras-
mussen and Kuss, 2004; Rasmussen and Williams, 2006). It is possible to combine the graph
Laplacian smoothness functional with other parametric smoothing kernels using manifold
regularization methods (Belkin et al., 2006).

9.3 Proto-Value Functions From Directed Graphs

In this paper, we constructed PVFs by diagonalizing a symmetric diffusion operator on an
undirected graph. This approach can be readily generalized to more elaborate diffusion
models which capture asymmetry of actions using directed graphs. In particular, PVFs
can be constructed by diagonalizing the directed graph Laplacian (Chung, 2005), which is
defined as

LD = Dφ −
DφP + P T Dφ

2
,

where Dφ is a diagonal matrix whose entries are given by φ(v), the Perron vector or leading
eigenvector associated with the spectral radius of the transition matrix P specifying the di-
rected random walk on G. For a strongly connected directed graph G, the Perron-Frobenius
theorem can be applied to show that the transition matrix is irreducible and non-negative,
and consequently the leading eigenvector associated with the largest (real) eigenvalue must
have all positive components φ(v) > 0. In an initial study (Johns and Mahadevan, 2007),
we have found that the directed graph Laplacian can result in a significant improvement
over the undirected Laplacian in some discrete and continuous MDPs. For example, in a
modified two-room task where there are two “one-way” doors leading from one room to the
other, PVFs constructed from the directed Laplacian significantly outperformed the non-
directional PVFs constructed from undirected graphs for certain locations of the goal state
(e.g., near one of the one-way doors). Directed PVFs also appeared to yield improvements
in some continuous control tasks, such as the inverted pendulum.

9.4 Scaling PVFs by Kronecker Product Factorization

Proto-value functions can be made more compact using a variety of sparsification methods,
some of which have been explored in the literature on kernel methods. These include ma-
trix sparsification techniques (Achlioptas et al., 2002), low-rank approximation techniques
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(Frieze et al., 1998), graph partitioning (Karypis and Kumar, 1999), and Kronecker product
approximation (Van Loan and Pitsianis, 1993). We discuss one specific approach that we
have implemented for continuous MDPs, and that has given us promising results (Johns
et al., 2007). A random walk weight matrix Pr = D−1W constructed through the methods
specified above in Section 6 can be approximated by a Kronecker product of two smaller
stochastic matrices Pa and Pb, which minimizes the Frobenius norm of the error:

f(Pa, Pb) = min (‖Pr − Pa ⊗ Pb‖F ) .

We have implemented the approach specified in Van Loan and Pitsianis (1993) to con-
struct two smaller stochastic matrices whose Kronecker product approximates the original
random walk matrix Pr.

20 To ensure that the decomposed matrices are not only stochastic,
but also diagonalizable, which the Kronecker factorization procedure does not guarantee,
we incorporate an additional step using the Metropolis Hastings algorithm (Billera and
Diaconis, 2001) to make the smaller matrices Pa and Pb reversible. Then, the PVFs for
the original random walk matrix Pr can be approximated as the Kronecker product of the
PVFs of the factorized smaller reversible matrices P r

a and P r
b (since the smaller matrices are

reversible, they can also be symmetrized using the normalized Laplacian, which makes the
numerical task of computing their eigenvectors much simpler). In an initial study (Johns
et al., 2007), we have been able to significantly reduce the size of the random walk weight
matrices for the inverted pendulum, mountain car, and the Acrobot tasks with modest loss
in performance compared to the full matrix. For example, in the Acrobot task, the original
basis matrix is compressed by a factor of 36 : 1, which resulted in a policy slightly worse
than the original larger basis matrix. One important point to emphasize is that the full
basis matrix never needs to be stored or computed in constructing the state embeddings
from the smaller matrices. The factorization can be carried out recursively as well, leading
to a further reduction in the size of the basis matrices.

9.5 Multiscale Diffusion Wavelet Bases

In this paper, proto-value functions were constructed by diagonalization, that is by finding
eigenvectors, of a symmetrized diffusion operator such as the Laplacian on an undirected
graph. Formally, such eigenvectors are essentially global Fourier bases and their properties
have been extensively studied in Euclidean spaces (Mallat, 1989). One well-known limita-
tion of global Laplacian bases is that they are poor at representing piecewise linear (value)
functions. We have extended the approach presented in this paper to construct multiscale
diffusion bases, using the recently proposed diffusion wavelet framework (Coifman and Mag-
gioni, 2006; Bremer et al., 2006). Diffusion wavelets provide an interesting alternative to
global Fourier eigenfunctions for value function approximation, since they encapsulate all
the traditional advantages of wavelets (Mallat, 1989): basis functions have compact sup-
port, and the representation is inherently hierarchical since it is based on multi-resolution
modeling of processes at different spatial and temporal scales. In Mahadevan and Maggioni

20. It is important to distinguish this approach from the Kronecker decomposition approach described in
Section 5, where the factorization was not an approximation, but an exact decomposition assuming the
overall state space was a product space. Here, the Kronecker factorization can be applied to arbitrary
weight matrices, but the decomposition is an approximation.
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(2006) we compare the performance of diffusion wavelet bases and Laplacian bases on a
variety of simple MDPs. In Maggioni and Mahadevan (2006), we present an efficient direct
method for policy evaluation by using the multiscale diffusion bases to invert the Bellman
matrix I − γP π. We are currently exploring faster methods of constructing multiscale
diffusion wavelet bases.

9.6 Policy and Reward-Sensitive PVFs

In the PVF framework presented above, basis functions are constructed without taking
rewards into account. This restriction is not intrinsic to the approach, and reward or policy
information when available can easily be incorporated into the construction of PVFs. One
recent approach studied in Petrik (2007) assumes that the reward function Rπ and policy
transition matrix P π are known, and combines Laplacian PVF bases with Krlyov bases.
This approach is restricted to policy evaluation, which consists of solving the system of
linear equations

(I − γP π)V π = Rπ.

This equation is of the well-studied form Ax = b, and Krylov bases are used extensively
in the solution of such linear systems of equations. The Krylov space is defined as the space
spanned by the vectors

(

b Ab A2b . . . Am−1b
)

.

The use of Krylov bases to compress the belief space of a partially-observable Markov
decision process (POMDP) is investigated in Poupart and Boutilier (2003), which explores
how to exploit the factored representation of the transition dynamics specified by a dy-
namic Bayes net. As discussed earlier, Keller et al. (2006) and Parr et al. (2007) both
investigate constructing reward-sensitive basis functions by explicitly estimating the error
in approximating the value function using the Bellman residual. These approaches can also
be combined with Laplacian PVFs in several ways, for example by combining low-frequency
Laplacian bases with the more high-frequency reward-specific Krylov bases, or by using the
estimated Bellman residuals to set the weights of the graph.

A more direct way to incorporate reward-sensitive information into PVFs is to modify
the weight matrix W to take into account the gradient of the value function to be approx-
imated. Formally, this approach is similar to estimating a function by knowing not only
its values at sample points, but also its gradient. Of course, any errors in the estimation
of such gradients will then be reflected in the weight matrix, and such an approach is not
also without some drawbacks. While making bases sensitive to rewards can lead to superior
results, if the reward function or policy is modified, reward-sensitive basis functions would
need to be re-learned. In comparison, reward-independent bases may be more generally
applicable across different tasks.

9.7 Learning State Action PVFs

In our paper, the basis functions φ(s) are originally defined over states, and then extended
to state action pairs φ(s, a) by duplicating the state embedding |A| times and “zeroing”
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out elements of the state-action embedding corresponding to actions not taken. That is,
φ(s, a) = φ(s) ⊗ Ia where Ia is a vector indicator function for action a (all elements of
Ia are 0 except for the chosen action). This construction is somewhat wasteful, especially
in domains where the number of actions can vary significantly from one state to another.
We have recently implemented PVFs on state action graphs, where vertices represent state
action pairs. Thus, the pair (s, a) is connected by an edge to the pair (s′, a′) if action a in
state s resulted in state s′ from which action a′ was next attempted. State action graphs are
naturally highly directional, and we used the directed Laplacian to compute basis functions
over state action graphs. Our initial results (Osentoski and Mahadevan, 2007) show that
state action bases can significantly improve the performance of PVFs in discrete MDPs.

9.8 Group-Theoretic Methods for Constructing Proto-Value Functions

As we discussed earlier in Section 3.6, there is a long tradition in mathematics of construct-
ing representations that are invariant under a group operator, including Fourier and wavelet
transforms (Mallat, 1989). One interesting extension is to exploit the properties of linear
(matrix) representations of groups to construct compact PVFs. In particular, many of the
continuous MDPs we studied, including the inverted pendulum and the Acrobot, define
continuous manifolds that have been extensively studied in mathematics (Baker, 2001) and
robotics (Lavalle, 2006). In addition, the product spaces described in Section 5 generate
graphs with large automorphism groups, which can be exploited in reducing the size of their
associated Laplacian eigenspaces.

To make this more concrete, consider the set of points generated by a rotation of a
rigid object in R

2. This manifold can be modeled as a Lie (matrix) group called SO(2),
which stands for special orthogonal group of order 2. This rotation group is defined by
all orthogonal matrices whose determinant is 1. Rotations and translations in R

2 can be
represented by another Lie group called SE(2) (special Euclidean group). Finally, problems
like the Acrobot task are instances of kinematic chains, which can be modeled by products
of SE(2) matrices. These groups generalize correspondingly to higher dimensions. Note
that SE(n) groups are non-Abelian because rotations do not commute with translations—
the order matters! A detailed overview of Fourier analysis on non-Abelian groups is given
in Chirikjian and Kyatkin (2001), with an emphasis on rotation and motion groups useful
in robotics. An interesting direction for future work is to exploit such group representations
to construct compact PVFs.

9.9 Proto-Value Functions for Semi-Markov Decision Processes

Proto-value functions provide a way of constructing function approximators for hierarchical
reinforcement learning (Barto and Mahadevan, 2003), as well as form a theoretical foun-
dation for some recent attempts to automate the learning of task structure in hierarchical
reinforcement learning, by discovering “symmetries” or “bottlenecks” (McGovern, 2002;
Ravindran and Barto, 2003; Mannor et al., 2004; Şimşek et al., 2005). In particular, Şimşek
et al. (2005) use the second eigenvector of the discrete graph Laplacian operator I−D−1W
to find bottlenecks in (undirected) state space graphs. Ravindran and Barto (2003) explore
the use of group homomorphisms on state action spaces to abstract semi-MDPs, which can
be combined with PVFs as a way of solving large SMDPs.
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Another direction that we have begun exploring is to construct PVFs for temporally
extended actions, such as “exiting a room”. These temporally extended actions result in
longer “distal” edges connecting non-adjacent vertices (such as the vertices corresponding
to interior states in a room with those representing the “door” state). Our initial results
reported in Osentoski and Mahadevan (2007) suggest that constructing PVFs over state-
action graphs using these distal edges can significantly improve the performance over PVFs
constructed over state graphs with only primitive actions.

9.10 Theoretical Analysis

Theoretical guarantees on the efficiency of proto-value functions in approximating value
functions are being investigated. Some results follow immediately from the construction of
proto-value functions. For example, it can be shown easily that the approximation produced
by projecting a given function on a graph on the subspace spanned by the smallest k
proto-value functions produces globally the smoothest approximation taking the graph or
manifold into account (Mahadevan and Maggioni, 2006). There are also classical results
on the efficiency of Fourier bases for approximating smooth functions in a Sobolev space
(Mallat, 1989), which can be carried over to the discrete case of graphs. Belkin and Niyogi
(2005) and Hein et al. (2007) study the sampling conditions under which the various graph
Laplacians converge to the Laplace-Beltrami operator on the underlying manifold. For
example, Hein et al. (2007) show that under non-uniform sampling conditions, the random
walk Laplacian converges to a weighted Laplace-Beltrami operator. These results need to
be combined with exploration techniques to investigate the conditions under which these
sampling conditions can be met in the context of MDPs. We are also currently exploring
the stability of the subspaces defined by proto-value functions using the tools of matrix
perturbation theory (Stewart and Sun, 1990; Sato, 1995), which quantifies the degree to
which small perturbations of (positive definite) matrices lead to bounded changes in the
spectrum and eigenspace as well.

9.11 Transfer Across Tasks

Proto-value functions are learned not from rewards, but from the topology of the underlying
state space (in the “off-policy” case). Consequently, they suggest a solution to the well-
known problem of transfer in reinforcement learning (Mahadevan, 1992; Sherstov and Stone,
2005). One key advantage of proto-value functions is that they provide a theoretically
principled approach to transfer, which respects the underlying state (action) space manifold.
We have recently begun to investigate a framework called proto-transfer learning to explore
the transfer of learned representations from one task to another (in contrast to transferring
learned policies) (Ferguson and Mahadevan, 2006).

10. Summary

This paper describes a novel spectral framework for learning both representation and con-
trol in Markov decision processes, where basis functions called proto-value functions are
constructed by diagonalization of a symmetric diffusion operator learned from samples col-
lected during a random walk of the underlying state space. Proto-value functions can
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be defined in several ways: this paper focused principally on using the graph Laplacian
on undirected graphs. Eigenfunctions of the graph Laplacian provide geometrically cus-
tomized basis functions that capture large-scale properties such as bottlenecks and symme-
tries. Projections of a value function onto the eigenfunctions of the graph Laplacian provide
the globally smoothest approximation that respects the underlying graph or manifold. A
general algorithmic framework called representation policy iteration (RPI) was presented
consisting of three components: sample collection, basis function construction, and control
learning. A specific instance of RPI was described that uses the least-squares policy iter-
ation (LSPI) method as the underlying control learner. Several directions for scaling the
approach were described, including Kronecker sum matrix factorization for large factored
MDPs, and sparse sampling combined with the Nystrom̈ interpolation method for contin-
uous MDPs. Detailed experimental results were provided using benchmark discrete and
continuous MDPs, which evaluated the effectiveness of the proto-value function approach,
and compared their performance to handcoded parametric function approximators, such as
polynomials and radial basis functions. Many extensions of the proposed framework are
possible, and a few promising directions were elaborated.
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O. Şimşek, A. Wolfe, and A. Barto. Identifying useful subgoals in reinforcement learning by
local graph partitioning. In Proceedings of the Twenty-Second International Conference
on Machine Learning, pages 816–823, 2005.

G. Stewart and J. Sun. Matrix Perturbation Theory. Academic Press, 1990.

D. Subramanian. A Theory of Justified Reformulations. Ph.D. Thesis, Stanford University,
1989.

M. Sugiyama, H. Hachiya, C. Towell, and S. Vijaykumar. Value function approximation on
non-linear manifolds for robot motor control. In Proceedings of the IEEE Conference on
Robots and Automation (ICRA), 2007.

R. Sutton and A. G. Barto. An Introduction to Reinforcement Learning. MIT Press, 1998.

A. Szlam, M. Maggioni, and R. Coifman. A general framework for adaptive regularization
based on diffusion processes on graphs. Technical Report YALE/DCS/TR1365, Yale
Univ, July 2006.

2233



Mahadevan and Maggioni

J. Tenenbaum, V. de Silva, and J. Langford. A global geometric framework for nonlinear
dimensionality reduction. Science, 290:2319–2323, 2000.

G. Tesauro. Practical issues in temporal difference learning. Machine Learning, 8:257–278,
1992.

M. Thornton, R. Drechsler, and D. Miller. Spectral Methods for VLSI Design. Kluwer
Academic, 2001.

J. Tsitsiklis and B. Van Roy. An analysis of temporal-difference learning with function
approximation. IEEE Transactions on Automatic Control, 42:674–690, 1997.

P. Utgoff and D. Stracuzzi. Many-layered learning. Neural Computation, 14:2497–2529,
2002.

C. Van Loan and N. Pitsianis. Approximation with Kronecker products. In Linear Algebra
for Large Scale and Real Time Applications, pages 293–314. Kluwer Publications, 1993.

B. Van Roy. Learning and Value Function Approximation in Complex Decision Processes.
PhD thesis, MIT, 1998.

C. Watkins. Learning from Delayed Rewards. PhD thesis, King’s College, Cambridge,
England, 1989.

C. Williams and M. Seeger. Using the Nyström method to speed up kernel machines. In
Proceedings of the International Conference on Neural Information Processing Systems,
pages 682–688, 2000.

2234


