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Abstract

Policy evaluation is a critical step in the
approximate solution of large Markov deci-
sion processes (MDPs), typically requiring
O(|S|3) to directly solve the Bellman sys-
tem of |S| linear equations (where |S| is the
state space size in the discrete case, and the
sample size in the continuous case). In this
paper we apply a recently introduced mul-
tiscale framework for analysis on graphs to
design a faster algorithm for policy evalua-
tion. For a fixed policy π, this framework effi-
ciently constructs a multiscale decomposition
of the random walk Pπ associated with the
policy π. This enables efficiently computing
medium and long term state distributions,
approximation of value functions, and the di-
rect computation of the potential operator
(I −γPπ)−1 needed to solve Bellman’s equa-
tion. We show that even a preliminary non-
optimized version of the solver competes with
highly optimized iterative techniques, requir-
ing in many cases a complexity of O(|S|).

1. Introduction

In this paper we apply a novel framework for multi-
scale analysis of Markov diffusion processes on graphs
to efficiently solving certain classes of Markov Decision
Processes (MDPs). The approach is based on learning
a multiscale tree of wavelet-type basis functions on the
state space of a MDP, which allows efficient hierarchi-
cal representation of value functions, and yields a fast
algorithm for the direct solution of the Bellman equa-
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tion for policy evaluation. The paper focuses on policy
evaluation primarily, and the resulting method can be
easily incorporated in approximate or exact policy it-
eration (PI) algorithms, such as those in (Lagoudakis
& Parr, 2003; Mahadevan, 2005; Mahadevan & Mag-
gioni, 2005).

Bellman’s equation (discussed in the next section) usu-
ally involves the solution of a (typically sparse) linear
system

V π = R + γPπV π

of size |S|, where S is the state space (or a set of sam-
ple states, in the continuous case). Here V π is the un-
known value function, R and Pπ are given (and may
change over each step of policy iteration). We can di-
vide the approaches for solving this equation in two
families: direct or iterative.

(a) Direct solution involves the computation of the in-
verse (I−γPπ)−1. While the matrix I−γP is usu-
ally sparse, its inverse is in general a full matrix,
and its computation usually takes time O(|S|3).
This is in general infeasible on large problems.
However it presents certain computational advan-
tages: very stable algorithms exist, computations
can be done to very high precision, and once the
inverse matrix has been computed, it can be ap-
plied in time O(|S|2) to any reward vector R, or
time O(|S|) if R is sparse (a constant number of
nonzero entries, small compared to |S|).

(a) Iterative solution involves iterative techniques,
such as conjugate gradient or value iteration,
which compute (I−γPπ)−1R for a given R. These
techniques have worst case complexity O(|S|2) for
sparse transition matrices, O(|S|) when the prob-
lem is well-conditioned and only low-precision is
required. No structure of the problem or of previ-
ous solutions is constructed, so the computation
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has to be repeated for different reward vectors.

We propose to use a fundamentally different approach,
based on the multiscale analysis on graphs introduced
in (Coifman & Maggioni, 2004), that yields a direct so-
lution in time O(|S|), for certain classes of transition
matrices Pπ. This is surprising because, as we ob-
served before, just writing down all the entries of the
full inverse matrix would take time O(|S|2). However,
observe that the goal is not to compute the entries
of this matrix, but to compute a structure that allows
rapidly computing (I−γPπ)−1R for any given R. The
proposed approach constructs a (multiscale) structure
that performs this computation in only O(|S|) opera-
tions. Related ideas are at the core of the Fast Fourier
Transform, which is a full matrix multiplication by a
vector, and hence would seem to necessarily require
O(|S|2) operations, but it can actually be performed
in O(|S|) operations by factoring the full matrix in a
product of matrices. A related principle is also behind
the Fast Multipole Method (Greengard & Rokhlin,
1987), which evaluates the product of full matrices
arising from potential theory by vectors in time O(|S|).

The algorithm consists of two parts:

(i) a pre-computation step, that depends on the
structure of the state space and on the policy. The
result of this step is a multiscale hierarchical de-
composition of the value function space over the
state space, and a multiscale compression of pow-
ers of the transition matrix over the state space.
This computation, for classes of problems of in-
terest in applications, has complexity O(|S|), and
complexity O(|S|3) in general.

(ii) an inversion step which uses the multiscale struc-
ture built in the pre-computation step to effi-
ciently compute the solution of Bellman’s equa-
tions for a given reward function. This phase of
the computation has complexity O(|S|) for many
problems of practical importance where the tran-
sition matrix is diffusion-like (defined precisely
below). The constants in front of this asymptotic
complexity are much smaller than those in the
pre-computation step.

In (Mahadevan & Maggioni, 2005) it was shown that
the basis functions constructed in the pre-computation
step are also very useful in approximating the value
function and can outperform parametric bases like
polynomials and RBF’s in policy improvement.

The class of problems for which the complexity of the
method is linear (up to logarithmic factors) includes

state spaces that can be represented by a finite directed
weighted graph, with all the vertices of “small” degree
in which transitions are allowed only among neighbor-
ing points, and the spectrum of the transition matrix
decays rapidly. The direct method we present offers
several advantages.

(i) The multiscale construction allows efficient ap-
proximation of value functions at multiple levels
of resolution, where the hierarchy is automatically
generated. This approach has important applica-
tions to hierarchical reinforcement learning (Barto
& Mahadevan, 2003), although this is not the ex-
plicit focus of this paper.

(ii) It is well-known that the number of iterations nec-
essary for an iterative method to converge can be
very large, depending on the condition number
of the problem, which in general depends on the
number of points, and on the precision required.
Increasing precision in the direct inversion tech-
nique we propose can be done more efficiently.

(iii) When the state space and the policy are fixed, and
many value functions corresponding to different
rewards (tasks) need to be computed, iteration
schemes do not take advantage of the common
structure between the problems. In this case, the
number of iterations for finding each solution is
multiplied by the number of solutions sought. Our
direct inversion technique efficiently encodes the
common structure of the state space in the pre-
computation step, and then takes advantage of
this in the solution of multiple problems, thus en-
abling transfer across tasks in a completely novel
manner.

2. Markov decision processes and the

Bellman equation

A finite Markov decision process (MDP) M =
(S,A, P a

ss′ , Ra
ss′) is defined by a finite set of states S,

a finite set of actions A, a transition model P a
ss′ spec-

ifying the distribution over future states s′ when an
action a is performed in state s, and a corresponding
reward model Ra

ss′ specifying a scalar cost or reward
(Puterman, 1994). In this paper, the transition prob-
abilities Pπ

ss′ defined by a policy π will be represented
as a random walk on a weighted, possibly directed,

graph G, where Pπ
ss′ = wπ(s,s′)

∑

t
wπ(s,t) . A value function

is a mapping S → R or equivalently a vector in R|S|.
Given a policy π : S → A mapping states to actions,
its corresponding value function V π specifies the ex-
pected long-term discounted sum of rewards received
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by the agent in any given state s when actions are
chosen using the policy. This paper focuses on policy
evaluation since this is usually the most expensive step
in policy iteration requiring the inversion of the transi-
tion matrix. The second phase of policy improvement
requires computing the greedy policy, and is of lower
complexity. Policy evaluation consists of solving the
(Bellman) linear system of equations

V π = R + γPπV π

where V π and R are vectors of length |S|, and Pπ is
a stochastic matrix of size |S| × |S|, and γ ∈ (0, 1]
is the discount factor. The solution is given by V π =
(I−γPπ)−1R. When γ = 1 (the non-discounted case),
the matrix (I−Pπ)−1 is called the fundamental matrix
of the Markov chain Pπ, or Green’s function, for its in-
terpretation in potential theory and physics (Kemeny
et al., 1976).

3. Multiscale analysis of state space

with diffusion wavelets

In (Coifman & Maggioni, 2004) ideas and algorithms
for natural hierarchical multiscale analysis of Markov
chains and graphs are introduced, associated with
new families of objects called diffusion wavelets. This
framework provides a multiscale analysis for functions
on a graph through basis functions automatically built
on the graph, at different locations and levels of resolu-
tion. This allows the efficient analysis, representation,
and compression of functions on graphs. Moreover this
approach provides a hierarchical compression and or-
ganization of the graph itself, including compression
of all the powers P 2j

of a Markov random walk P ,
for efficient and accurate computation of behavior of
the random walk at all time scales, and efficient com-
putation of several functions of P and its powers, in-
cluding notably the Green’s function (I − γP )−1. By
“efficient” we mean that the number of operations re-
quired is asymptotically (i.e. for fixed precision, and
large |S|), of order O(|S|), at least for certain classes
of Markov chains P .

We describe how to apply the diffusion wavelet frame-
work to MDPs. We assume the state space can be
modeled as a finite, directed or undirected, weighted
graph (S,E,W ) (our approach generalizes to Rieman-
nian manifolds, which we do not have space to discuss
here1). If any policy π is executed, it will traverse
some subset of the state space Sπ ⊆ S. We will write
x ∼ y when there is an edge between x and y, and

1For results related to sampling of Riemannian mani-
folds and approximation of the Laplacian see (Singer, 2006)
and references therein.

w(x, y) denotes the edge weight. We denote the de-
gree of x by d(x) =

∑

x∼y w(x, y). D represents the
diagonal matrix defined by D(x, x) = d(x), and W
the matrix defined by W (x, y) = w(x, y). Let P be
the natural random walk defined by P = D−1W . P is
a nonsymmetric matrix, however if the graph is undi-
rected then P is spectrally related to the symmetric
self-adjoint operator D− 1

2 (D−W )D− 1
2 which is called

the normalized graph Laplacian (Chung, 1997). Note
that the weights W can be chosen quite arbitrarily.
One choice is geometrical: for example if the state
space is sampled from a manifold, the weights can be
chosen in a way consistent with the natural random
walk on the manifold (Belkin & Niyogi, 2003; Lafon,
2004). Observe that the weights thus obtained are pol-
icy independent. Another choice is policy dependent:
for example the weights could be chosen so that P is
the current policy. Finally, one can interpolate be-
tween the two choices above, by assigning weights to
the edges both based on their geometric weights and
the current policy.

3.1. Setup and assumptions

The hypotheses on P are that P t, t ≥ 0, should be
a Markov diffusion process, in a technical sense made
precise in (Coifman & Maggioni, 2004). Qualitatively,
this means that P should be local, i.e. from every
point a random walk takes the agent to only a few
nearby points; smoothing, i.e. P tδx, for any initial
condition δx, should be a smooth probability distri-
bution centered about x; contractive, i.e. ||P ||2 ≤ 1.
For the proposed algorithm to have complexity O(|S|),
two further assumptions are needed: first, the ma-
trix P should be sparse, in the sense that only about
c|S| entries are non-zero, where c > 0 is a small con-
stant. This is the case for example for the natural
random walk on a graph where the vertices have de-
gree bounded by c. Secondly, the eigenvalues {λj} of P

should decay rapidly, for example #{j : λj ≥ ǫ2
−j

} ≤
c2−jα logα

2 (1/ǫ) for some α > 0, and some fixed small
ǫ > 0. As an example, it is shown in (Coifman &
Maggioni, 2004) that this condition is satisfied when
P is a discretization of the natural random walk on
a smooth compact Riemannian manifold of dimension
d, in which case one can choose α = d/2.

3.2. Qualitative description

We briefly describe the construction of diffusion
wavelets, referring the interested reader to (Coifman
& Maggioni, 2004) for further details. The input to
the algorithm is a weighted, possibly directed, graph
(S,E,W ) (which implicitly defines a transition matrix
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P ) and a “precision” parameter ǫ > 0. For simplic-
ity, we assume here that the graph is undirected, but
the construction, as noted in (Coifman & Maggioni,
2004), generalizes to the directed case. In this case
the natural random walk on the graph is represented
P = D−1W , which we assume reversible (this is the
case if the graph is undirected). We symmetrize it by
conjugation, and take powers to obtain

T t = D
1
2 P tD− 1

2 = (D− 1
2 WD− 1

2 )t = (I − L)t

=
∑

i≥0

(1 − λi)
tξi(·)ξi(·) . (1)

where L is the normalized Laplacian (Chung, 1997),
{λi} and {ξi} are its eigenvalues and eigenvectors:
Lξi = λiξi. Hence the eigenfunctions of T t are again
ξi and the ith eigenvalue is (1−λi)

t. A multiresolution
decomposition of the functions on the graph is a family
of nested subspaces V0 ⊇ V1 ⊇ · · · ⊇ Vj ⊇ . . . spanned
by orthogonal bases of diffusion scaling functions Φj .
If T t is interpreted as an operator on functions on the
graph, then Vj is defined as the numerical range, up

to precision ǫ, of T 2j+1−1, and the scaling functions
are smooth bump functions with some oscillations, at
scale roughly 2j+1 (measured with respect to geodesic
distance). The orthogonal complement of Vj+1 into Vj

is called Wj , and is spanned by a family of orthogo-
nal diffusion wavelets Ψj , which are smooth localized
oscillatory functions at the same scale.

3.3. A very simple example

We consider the Markov chain on 4 states {a, b, c, d}:

T =







0.8 0.2 0 0
0.2 0.75 0.05 0
0 0.05 0.75 0.2
0 0 0.2 0.8






.

This chain has a “bottleneck” between states {a, b}
and states {c, d}. We fix a precision ǫ = 10−10. See
Figure 1 for the discussion that follows. The scaling
functions Φ0 are simply {δa, δb, δc, δd}. We apply T
to Φ0 and orthonormalize to get Φ1 (Figure 1). Each
function in Φ1 is an “abstract-state”, i.e. a linear com-
bination of the original states. We represent T 2 on
Φ1, to get a matrix T2, apply to Φ1 and orthonor-
malize, and so on. At scale 5 we have the basis Φ5

and the operator T5, representing T 25

on Φ5. At the
next level, we obtain Φ6, which is only two dimen-
sional, because T5Φ5 has ǫ-rank 2 instead of 4: of the
4 “abstract-states” T5Φ5, only two of them are at least
ǫ-independent. Observe the two scaling functions in Φ6

are approximately the asymptotic distribution and the
function which distinguishes between the two clusters
{a, b} and {c, d}. Then T6 represents T 26

on Φ6 and is
a 2 by 2 matrix. At scale 10, Φ10 is one-dimensional,

and is simply the top eigenvector of T (represented in
compressed form, on the basis Φ8), and the matrix T9

is 1 by 1 and is just the top eigenvalue, 1, of T .
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Figure 1. The four panels on the top display matrices rep-
resenting compressed dyadic powers of T , with gray level
representing entry values. The four panels on the bottom
illustrate some scaling function bases on the 4-state Markov
chain.

Already in this simple example we see that the multi-
scale analysis generates a sequence of Markov chains,
each corresponding to a different time scale (i.e. power
of the original Markov chain), represented on a set
of scaling functions (“aggregates of states”) in com-
pressed form.

3.4. Construction of the scaling functions and

wavelets

We sketch the key elements of the construction of the
multiscale analysis that are relevant for our purposes,
and refer the reader to (Coifman & Maggioni, 2004)
for details. The scaling space V0 at the finest scale is
the subspace spanned by Φ0 := {δx}x∈S , where δx is
the Dirac delta (evaluation functional) at the point x.

Then consider the family Φ̃0 := {T 20

δx}x∈S , and let
Ṽ1 be the span of Φ̃0. A careful Gram-Schmidt pro-
cedure applied to Φ̃0 produces an orthonormal basis
of well-localized scaling functions Φ1, spanning a sub-
space V1 close to Ṽ1 up to the pre-specified precision
ǫ. V1 is also the subspace spanned by {ξi : λi ≥ ǫ},
hence in general dimV1 ≤ dimV0: the orthonormal-
ization will produce only dimV1 basis functions in Φ1.
T 2 is represented on the basis Φ1 via a matrix T1, and
the construction is repeated. By induction, at scale j
an orthonormal basis of localized scaling functions Φj

has been constructed, and T 2j

has been represented
on this basis via a matrix Tj . Observe that the matrix

representing T 2j

on this basis has size |Φj |×|Φj |. The
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DiffusionWaveletTree (T0, Φ0, J, ǫ):

// T0: symmetric conjugate to random walk matrix,
represented on the basis Φ0

// Φ0 : initial basis (usually Dirac’s δ-function basis),
one function per column
// J : number of levels to compute
// ǫ: precision

for j from 0 to J do,

1. Compute sparse factorization Tj ∼ǫ QjRj , with
Qj orthogonal.

2. Φj+1 ← Qj = HjR
−1

j .

3. [T 2
j

0 ]
Φj+1

Φj+1
∼jǫ Tj+1 ← RjR

∗

j .

4. Compute sparse factorization

I − Φj+1Φ
∗

j+1 = Q
′

jR
′

j ,

with Q′

j orthogonal.

5. Ψj+1 ← Q′

j .

end

Figure 2. Pseudo-code for construction of a Diffusion
Wavelet Tree

assumptions on the decay of the spectrum of T imply
that |Φj | << |Φ0| (for j > 0), and one says that T 2j

is
represented in compressed form. For the next stage let
Φ̃j := T 2j

Φj , and Vj+1 be the span of these vectors.
After orthonormalization to get a (smaller) orthonor-
mal set Φj+1 spanning Vj+1 ⊆ Vj . A set of oscillatory
functions Ψj (the wavelets) spanning Wj , the orthog-
onal complement of Vj+1 into Vj , can be constructed
similarly. They capture the detail lost from going from
Vj to Vj+1, and act as high-pass filters in the sense that
their expansion in terms of eigenfunctions of the Lapla-
cian ξi essentially only involves eigenfunctions corre-
sponding to eigenvalues λi ∈ [ǫ−2j−1, ǫ−2j+1−1]. In
particular their smoothness, is controlled. In Figure 2
this scheme is written in pseudo-code, where the op-
erations above are described in terms of matrices: the
Gram-Schmidt procedure at each level orthogonalizes
the columns of Tj into the product of an orthogonal
matrix Qj , which forms the basis of scaling functions
at the next scale, and a matrix Rj , which represents
Tj on Φj in the domain and Φj+1 in the range. The
assumptions of the process {P t} guarantee that Qj

and Rj can be constructed so that they contain only
O(|Rj |) entries above precision.

3.5. Applications

Diffusion wavelets and wavelet packets have been
shown to be an efficient tool for representation and

approximation of functions on manifolds and graphs
(Coifman & Maggioni, 2004), generalizing to these
general spaces the wavelets that have so successfully
employed for similar tasks in Euclidean spaces. Appli-
cations include the analysis of networks, graphs, docu-
ment corpora (Coifman & Maggioni, 2004), nonlinear
and anisotropic image denoising, learning tasks, and
value function approximation (Mahadevan & Mag-
gioni, 2005).

4. Direct multiscale solution of

Bellman’s equation

In this section we show that the multiscale construc-
tion outlined in Section 3 enables a fast direct solution
of Bellman’s equation.

The starting point are the identities

V π = (I − γPπ)−1R =
∑

k≥0

(γΠ− 1
2 TπΠ

1
2 )kR

=
∏

k≥0

(I + γ2k

Π− 1
2 (Tπ)2

k

Π
1
2 )R ,

(2)

where Pπ = Π− 1
2 TπΠ

1
2 , Π is the matrix whose di-

agonal is the asymptotic distribution of P , and R is
the reward vector. The first identity follows by the
definition of Tπ, the second is the usual Neumann se-
ries expansion for the inverse, and the last identity is
called the Schultz formula. The equality holds since
each term of the Neumann series appears once and
only once in the product, since every integer has a
unique binary expansion. Observe that reordering the
terms of the summation is allowed because both the
sum and the product are absolutely convergent. The
formulas hold for γ ≤ 1 and f not in the kernel of
(I − γPπ). Observe that since γ ≤ 1 and ||Pπ||2 ≤ 1,
the only case for which this kernel is not trivial is when
γ = 1, and in this case the kernel is the unique (since
we assumed the state space is connected) asymptotic
distribution of Pπ. The sums and products in (2) are
of course finite once the precision is fixed.

A key component in the construction of diffusion
wavelets was the compression of the (quasi-)dyadic
powers of the operator Tπ. Since Ri represents the
operator (Tπ)2

i

on the basis Φi in the domain and
Φi+1 in the range, the product RjRj−1 · · · · · R0f is

T 1+2+22+···+2j−1

f = T 2j−1f , represented on Φj+1, i.e.
“in compressed form”. The matrices [Φj+1]

∗
Φj

“un-
pack” this representation back onto the basis Φ0. In
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other words

[(Tπ)2
j−1f ]Φ0

= [Φ1]
∗
Φ0

. . . [Φj−1]
∗
Φj−2

[T 2j

]
Φj−1

Φj−2
[T 2j

]
Φj−2

Φj−3
. . . [T ]Φ1

Φ0
[f ]Φ0

= [Φ1]
∗
Φ0

. . . [Φj−1]
∗
Φj−2

RjRj−1 . . . R0f

To obtain T 2j

f we only need to apply T once more.
In this way the computation of T 2j

f requires only
O(j|S|) operations, since Rj contains about O(|S|) en-
tries. This cost should be compared to that of comput-
ing directly the matrix T 2j

, which is O(2j |S|) since this
matrix contains about O(2j |S|) nonzero entries; this is
also the cost of applying about 2j times the matrix T
to f .

Observe that the same Diffusion Wavelet Tree can be
used for this multiscale inversion for different values of
the discount rate γ.

The method has high-precision, so that it can be the
solver for Bellman’s equation within a policy-iteration
scheme requiring any given precision.

4.1. Comparison with standard direct

inversion and iterative methods

The standard direct inversion technique involves the
explicit computation of (I − γPπ)−1. This typically
involves the computation of the singular vectors and
singular values of (I − γPπ): this enables represent-
ing I − γPπ = UΣV with U, V orthonormal and
Σ diagonal, with diagonal entries σ1 ≥ · · · ≥ σ|S|.
For a fixed precision ǫ, only a partial decomposition
UNΣNVN is computed, where N is the largest n for
which σn ≥ ||I − γPπ||2ǫ. We can then write

(I − γPπ)−1 = V ∗Σ−1U∗ .

Very stable algorithms are available for the computa-
tion of the singular value decomposition. Optimality
of the singular vectors with respect to approximation
properties of the matrix itself are also well-known and
are the main motivation for this technique. Unfortu-
nately these techniques are in general expensive, with
complexity O(|S|3).

In iterative methods such as value iteration, up to |S|
iterations are necessary, and the cost is thus O(|S|2).
In contrast, our technique has complexity only O(|S|).
However in practice less than |S| iterations may be
needed for iterative methods to converge, especially
when the problem is well-conditioned (e.g. γ far from
1), and/or low precision in the result is requested.
Even when this is the case our method offers several
advantages: it generates basis functions tuned to the

structure of the problem that efficiently represent the
value function, and once computed, this structure al-
lows the direct fast inversion of Bellman’s equation for
many different rewards R.

We note that the method we propose is different
from the wavelet element method for solving integral
equations of potential theory: Schultz’s formula cor-
responds to a factorization of the integral operator
(I − γPπ)−1 on a multiscale basis, rather than a stan-
dard linear representation of the operator on a basis,
which is what wavelet element methods use.
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Figure 3. Top: set of samples in a two-room environment.
Bottom: four diffusion scaling functions built on the set, at
increasing scale. Note the localization at the finer scales,
and the global support at coarser scales.

5. Experiments

We constructed the multiscale analysis on several
MDPs, on discrete and continuous spaces of different
topologies. In fact the technique used is extremely
flexible, since it essentially only needs Pπ as an input.
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Figure 4. Compression of the powers of the symmetrized
random walk T in a continuous two-room environment.
From top left to bottom right by rows: T0, T1, T4 and
T6. All the matrices are represented in log10 scale. T0

is sorted to show the two-room and corridor structures
(the algorithm is of course independent of the order of the
points): the two large blocks represent transitions within
each room, and the bottom-right block are transitions in
the corridor, with bands at the bottom and at the right
indicating the transitions from the corridor to the rooms.
Notice the decreasing size of the matrices. T6 is very small,
and essentially represents only the transition between two
states (the two rooms): for time scales of order 26 the al-
gorithm has automatically decided this representation is
faithful enough for the precision requested.

We describe here one example in some detail. It simu-
lates a continuous two-rooms environment, where the
two rooms have an elongated shape and are connected
by a corridor. The shape of the rooms and of the
corridor is quite arbitrary, the bases are built auto-
matically: we do not require any special topology or
shape property for them (except connectedness, with-
out loss of generality): we could have chosen rooms of
arbitrary shapes, in arbitrary dimension, as the only
input to the algorithm is the set of sampled points (ver-
tices) and the local distances between close-by points
(edge weights).

The agent has randomly explored the space, so S con-
sists of |S| randomly scattered points in the rooms
(see Figure 3). We construct a natural diffusion as-
sociated with the random walk in the two rooms, re-
stricted to the states S actually explored, by letting
W (i, j) = e−2||xi−xj ||

2

. This diffusion approximates
the natural random walk (Brownian motion) in the
continuous domain (Belkin & Niyogi, 2003; Lafon,
2004), corresponding to a policy of random moves. We
then construct the corresponding multiscale analysis,
with precision set to 10−10. In Figure 3 we represent
some of the scaling functions we obtain. In Figure 4
we represent compressed dyadic powers of this random
walk. In Figure 5, left, we compare the direct compu-

tation time of (I − γPπ)−1 and the computation time
for the multiscale structure, i.e. the pre-processing
time for the two direct methods under consideration.
We then pick a random reward R on S (a vector of
white Gaussian noise), and compute the correspond-
ing value function in three different ways:

(i) direct computation of the matrix I − γPπ,

(ii) Schultz’s method and diffusion wavelet transform
as in (2),

(iii) conjugate gradient descent for symmetric matri-
ces.
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Figure 5. Left: mean and standard deviation of running
time for solving a Bellman equation on a random walk
in the two-room environment, as a function of the num-
ber of states explored (x-axis). We compared direct DWT
inversion, iterative Conjugate Gradient Squared method
(Matlab implementation) and direct inversion. Left: pre-
processing time, comparing computation of the full inverse
and construction diffusion wavelet tree. Right: computa-
tion time of applying the inversion scheme, comparing di-
rect inverse, Schultz’s method with diffusion wavelet trans-
form, and symmetric conjugate gradient.
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Figure 6. Precision, defined as log10 of the Bellman resid-
ual error ||(I − γP π)Ṽ π −R||p, where Ṽ π is the computed
solution, achieved by the different methods. The precision
requested was 1e− 10. We show the results for p = 2 (left)
and p = ∞ (right).

In this example we set γ = 1. We repeat the above
for |S| = 320, 400, 480, 560, 640, 720, 800, 880, 960, 1040
and, for each S, for 10 randomly generated rewards R.
The first two methods are direct: we look at both
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the pre-processing time for computing, respectively,
the inverse matrix and the diffusion wavelet tree (see
Figure 5 left). Then we compare, over several random
choices of the reward vector, the mean and standard
deviation of the time for computing the corresponding
value function, with all three methods: see Figure 5,
right. Finally, in Figure 6 we show the L2- and L∞-
norms of the Bellman residual ((I−Pπ)Ṽ π −R, where
Ṽ π is the estimated value function), achieved by the
three methods.

We stress that the code that implements the construc-
tion of Diffusion Wavelet Tree and Schultz’s formula
is written mainly in Matlab and large parts of it are
not optimized in any way; on the contrary the codes
distributed with Matlab for conjugate gradient and di-
rect inversion have been highly optimized. The results
here are thus qualitative and not absolute, but point
out that at the very least the direct solution using dif-
fusion wavelets seems competitive with state-of-the-art
methods, even before having optimized the code imple-
menting it. Much future work will be devoted for these
optimizations, which will result in speed-ups and the
ability to tackle larger and larger problems. In partic-
ular factored spaces can be tackled by using factored
diffusion wavelets.

6. Conclusions and Future Work

We applied a novel framework (Coifman & Maggioni,
2004) based on multiscale analysis of graphs and
Markov diffusion processes to designing a new fast pol-
icy evaluation algorithm. The approach constructs a
hierarchical set of diffusion wavelet basis functions for
efficiently representing powers of the transition ma-
trix. Many directions for extending this approach are
being studied, including applications to policy itera-
tion and hierarchical reinforcement learning. For large
or continuous state spaces, where graphs represent a
sample of the underlying state space, Nyström approx-
imations (Fowlkes et al., 2001) or more refined inter-
polation techniques, such as the multiscale extension
of (Coifman & Maggioni, 2004) can be exploited to in-
terpolate basis functions to novel points. Extensions
to factored state spaces are also being investigated.

6.1. Continuous Domains

In continuous domains, a critical ingredient for suc-
cess of a method based on the representation of the
value function on some basis of the state-action space
is the capability of approximating the value function
efficiently in this basis, and in extending these basis
functions to novel states. Diffusion wavelets approxi-
mate efficiently various important classes of functions,

such as piecewise smooth functions, and can be ex-
tended in a multiscale fashion (Coifman & Maggioni,
2004).

Acknowledgements: This research is supported in
part by grants from the NSF DMS-0512050 and IIS-
0534999.

References

Barto, A., & Mahadevan, S. (2003). Recent ad-
vances in hierarchical reinforcement learning. Dis-
crete Event Systems Journal, 13, 41–77.

Belkin, M., & Niyogi, P. (2003). Laplacian eigenmaps
for dimensionality reduction and data representa-
tion. Neural Computation, 15, 1373–1396.

Chung, F. (1997). Spectral Graph Theory. American
Mathematical Society.

Coifman, R. R., & Maggioni, M. (2004). Diffusion
wavelets. Tech. Rep. YALE/DCS/TR-1303, Yale
Univ., Appl. Comp. Harm. Anal. To appear.

Fowlkes, C., Belongie, S., & Malik, J. (2001). Efficient
spatiotemporal grouping using the nyström method.
CVPR.

Greengard, L., & Rokhlin, V. (1987). A fast algorithm
for particle simulations. J Comput Phys, 73, 325–
348.

Kemeny, J., Snell, J., & Knapp, A. (1976). Denumer-
able markov chains. Springer-Verlag.

Lafon, S. (2004). Diffusion maps and geometric har-
monics. Doctoral dissertation, Yale University, Dept
of Mathematics & Applied Mathematics.

Lagoudakis, M., & Parr, R. (2003). Least-squares
policy iteration. Journal of Machine Learning Re-
search, 4, 1107–1149.

Mahadevan, S. (2005). Representation policy itera-
tion. Proceedings of the 21st International Confer-
ence on Uncertainty in Artificial Intelligence.

Mahadevan, S., & Maggioni, M. (2005). Value function
approximation with diffusion wavelets and lapla-
cian eigenfunctions. University of Massachusetts,
Department of Computer Science Technical Report
TR-2005-38; Proc. NIPS 2005.

Puterman, M. L. (1994). Markov decision processes.
New York, USA: Wiley Interscience.

Singer, A. (2006). From graph to manifold Laplacian:
the convergence rate. Appl. Comp. Harm. Anal., to
appear.


