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Abstract

Automatically constructing novel representations of tasks
from analysis of state spaces is a longstanding fundamental
challenge in AI. I review recent progress on this problem for
sequential decision making tasks modeled as Markov deci-
sion processes. Specifically, I discuss three classes of repre-
sentation discovery problems: finding functional, state, and
temporal abstractions. I describe solution techniques varying
along several dimensions: diagonalization or dilation meth-
ods using approximate or exact transition models; reward-
specific vs reward-invariant methods; global vs. local repre-
sentation construction methods; multiscale vs. flat discovery
methods; and finally, orthogonal vs. redundant representa-
tion discovery methods. I conclude by describing a number
of open problems for future work.

Introduction
A common practice in designing AI systems in many ar-
eas is to assume that human designers provide the essen-
tial knowledge structures such as features or a task hier-
archy, constraining the search space where optimal or sat-
isficing solutions may be found; the machine implements
an efficient search strategy for finding solutions within the
given space. This division of labor between human and ma-
chine is sensible for single-task environments, where con-
siderable engineering and fine-tuning of the input represen-
tation is possible. It becomes increasingly difficult to main-
tain this paradigm for agents that are faced with solving
a novel collection of problems. Representation discovery
is an area of AI research that involves designing methods
for automatically constructing novel representations of tasks
that facilitate their solution. Early research on representa-
tion discovery in AI includes the pioneering work of Saul
Amarel (1968), who advocated designing agents that dis-
cover novel representations through global analysis of state
spaces. By finding bottlenecks and symmetries, Amarel out-
lined ways in which agents could collapse and shrink state
spaces. Amarel focused on deterministic state space prob-
lems, such as the missionaries and cannibal problem.

In this paper, I focus on representation discovery meth-
ods for stochasticproblems, which are more representa-
tive of real-world applications such as robotics and schedul-
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ing. In particular, I summarize recent work on autonomous
representation discovery in the area of sequential decision
making based on Markov decision processes (MDPs) and
their variants. MDPs are widely used inoperations research
(Bertsekas and Tsitsiklis 1996; Puterman 1994),probabilis-
tic planning(Boutilier, Dean, and Hanks 1999),reinforce-
ment learning(Sutton and Barto 1998), androbot learning
(Connell and Mahadevan 1993).

I describe three categories of representation discovery
problems in MDPs: finding functional abstractions, state
abstractions, and temporal abstractions. Functional abstrac-
tions correspond to finding a compressed representation of
the space of functions on a state (action) space, such as re-
ward functions, state transition functions, and value func-
tions. State abstractions partition the state space into disjoint
sets that preserve some property, such as respecting rewards
and transition dynamics, the optimal policy, or the optimal
value function. Temporal abstractions are based on discov-
ering task hierarchies, which enable multiscale approaches
to solving MDPs. I review solution methods to these prob-
lems along four dimensions: diagonalization vs. dilation
methods; reward-sensitive vs. reward-independent methods;
flat vs. multiscale methods; and finally, orthogonal vs. re-
dundant representation discovery methods. I conclude with
a list of challenges that constitute key directions for further
research.

Markov Decision Processes
Markov decision processes (MDPs) are a widely used model
of sequential decision making in AI (Puterman 1994). An
MDP M = 〈S, A, P a

ss′ , Ra
ss′〉 is defined by a set of statesS,

a set of actionsA, a transition modelP a
ss′ specifying the dis-

tribution over future statess′ when an actiona is performed
in states, and a corresponding reward modelRa

ss′ specify-
ing a scalar cost or reward. A state can be a discrete atomic
entity, such as a number; a factored object such as a vector
of real state variables; or a structured object defined by a set
of predicates or relations. Abstractly, a value function isa
mappingS → R, or equivalently a vector∈ R

|S| (when the
state space is discrete). A deterministic policyπ : S → A
is a functional mapping from states to actions, whereas a
stochastic policy induces a distribution over actions. Any
policy induces a value functionV π, specifying the expected
long-term discounted sum of rewards received by the agent



in any given states when actions are chosen using the pol-
icy. Any optimal policyπ∗ defines the same unique optimal
value functionV ∗, which satisfies the Bellman equation:

V
∗

(s) = max
a

∑

s′

P a
ss′ (Ra

ss′ + γV ∗(s′)) .

Classical techniques for solving MDPs includevalue itera-
tion andpolicy iteration(Puterman 1994). In small MDPs, it
is possible to store value functions exactly as a table. Larger
problems require the use of a function approximator to gen-
eralize estimated values across the state space. Temporal-
difference learning (TD) (Sutton and Barto 1998) has been
shown to be an effective sampling-based method for solv-
ing large MDPs, when combined with a suitable function
approximator. Nonlinear approximation methods such as
neural nets have led to significant empirical successes with
TD (Tesauro 1992), but suffer from convergence problems
(Bertsekas and Tsitsiklis 1996). More recent methods, such
as least-squares policy iteration (Lagoudakis and Parr 2003)
and linear programming (Guestrin et al. 2003), are based
on a linear function approximation architecture using a set
of k ≪ |S| handcodedbasis functions{φ1, . . . , φk}, such
as orthogonal polynomials (Lagoudakis and Parr 2003) and
radial basis functions (RBFs). Hierarchical RL methods
are based onsemi-MDPs(SMDPs), which allow tempo-
rally extended actions like “exiting a room” or “driving
home”, which correspond to executing a hierarchical pol-
icy over a portion of the state space (Barto and Mahade-
van 2003). The MDP framework has also been extended
to richer state descriptions using first-order representations
(FOMDPs) (Boutilier, Reiter, and Price 2001).Partially ob-
servable MDPs(or POMDPs) address the problem of acting
when the underlying state is hidden (Kaelbling, Littman, and
Cassandra 1998).

Representation Discovery Problems
I discuss three representation discovery problems in MDPs:
finding functional abstractions, state space abstractions, and
discovering temporal abstractions.

Functional Abstraction
One general class of algorithms for constructing novel repre-
sentations is to find task-dependent basis functions defined
on the state (action) space that span linear subspaces con-
taining the optimal solution. This approach can be viewed
as compressing the space of all (value) functionsf ∈ R

|S|

into those that can be represented as a linear combination of
basis functions

f =
∑

i∈I

wiφi

whereI is a set of indices specifying the selected bases. The
set of basis functions can be grouped together to form a ma-
trix Φ of size|S| by k, where each column corresponds to a
basis functionφi, andk ≪ |S|. Each row of this matrix de-
fines a set of featuresφ(s) ∈ R

k, which can be viewed as a
real-valued vector embedding of the original state. The main
idea here is to exploit problem-specific information in con-
structing basis functions. Two general approaches to con-
structing basis functions include reward-sensitive basessuch

as Bellman error basis functions (BEBFs) (Keller, Mannor,
and Precup 2006; Parr et al. 2007) and Drazin bases (Ma-
hadevan 2009) vs. reward-invariant bases such as proto-
value functions (PVFs) (Mahadevan and Maggioni 2007)
and geodesic Gaussian kernels (Sugiyama et al. 2008).
Reward-invariant methods exploit the intuition that value
functions are generallysmoothfunctions on the state space,
and can be represented sparsely using a small set of care-
fully constructed bases. Reward-sensitive methods construct
bases that exploit specific knowledge of the task, and usually
the policy as well.

State Abstraction
State abstraction methods induce a discrete mapping by par-
titioning the state (action) space into equivalence classes on
which the value function assumes a constant value. State
partitioning methods can be viewed as a special case of
functional abstraction defined by a basis matrixΦ of size
|S| by k, where the embedding of a stateφ(s) ∈ R

k is
a binary row vector with exactly a single1 indicating the
unique partition containing the state. Two statess ands′ are
considered equivalent by a state abstraction method if and
only if φ(s) = φ(s′). The set of all state abstraction meth-
ods forms a partially ordered hierarchy, which can be orga-
nized into alattice structure (Li, Walsh, and Littman 2006),
based on the coarseness of the induced partition. Partition-
ing methods can be categorized into several classes: those
that are model-preserving in that they respect the reward
function and the transition dynamics (Givan and Dean 1997;
Ravindran and Barto 2003); those that preserve the (action)
value function for all (or only optimal) policies; and finally,
those that preserve the optimal action. Pattern databases
in deterministic search problems can be viewed as a spe-
cial type ofadditive state abstractionthat yield admissible
heuristics (Yang et al. 2008). A linear programming based
approach to learning admissible heuristics by feature discov-
ery is described in (Petrik and Zilberstein 2008).

Temporal Abstraction
Finally, a third class of representation discovery methodsfor
MDPs is based on learning temporal abstractions. One ap-
proach is to learn an abstraction hierarchy over the set of
state variables, based on frequency of change (Hengst 2002),
or causal dependencies among state variables (Jonsson and
Barto 2005). Another approach is to learn reusable policy
fragments orskills, based on finding bottlenecks (Şimşek
and Barto 2004). Recent work on discovery of temporal hi-
erarchies in POMDPs is based on nonlinear quadratic pro-
gramming (Charlin, Poupart, and Shioda 2007).

Representation Discovery Algorithms
In this section, I categorize algorithms for representation dis-
covery into four categories: whether representations are con-
structed by dilation or diagonalization; whether representa-
tions are reward-sensitive or reward-independent; whether
flat or multiscale representations are constructed; and finally,
whether a minimal or overcomplete set of representations is
constructed. These categories not intended to be exhaustive,
however, but rather reflect recent work in the field.



Dilation vs. Diagonalization Methods
A general strategy for constructing representations is based
on diagonalization or dilation of an exact or approximate
transition model.Krylov methods (Petrik 2007; Poupart and
Boutilier 2003) are based on dilating the reward function
using powers of the transition matrixP π. The Krylov space
is the smallest subspace invariant under the reward function
Rπ and transition matrixP π, which can be constructed by
orthogonalizing the vectors

{Rπ, P πRπ, (P π)2Rπ, . . . , (P π)n−1Rπ}.

BEBF representations are an incremental variant of Krylov
bases, which use the (sampled) Bellman error as basis vec-
tors. The concept of dilation can be generalized to first-order
MDPs, where it is referred to as theregressionof a reward
function over a specific action (Boutilier, Reiter, and Price
2001).

Diagonalizationmethods are based on finding the eigen-
vectorsφi of a transition matrixP π, whereP πφi = λiφi.
Since the diagonalization of arbitrary transition matrices
may not yield real-valued or orthogonal eigenvectors, it is
often expedient to use a reversible approximationP̂ π, such
as the natural random walk on a state space graph induced
by the policyπ, where two statesi andj are connected by
an undirected edge if there exists some actiona such that
P a

i,j > 0 or P a
j,i > 0 (Mahadevan and Maggioni 2007). In

this case, the reversible random walk stochastic matrix is
defined byP̂ π = D−1W , whereW is the induced connec-
tivity matrix andD is a diagonal matrix of its row sums. It is
more tractable to use the spectrally similar symmetric “nor-
malized” Laplacian matrixL = I −D− 1

2 WD− 1

2 , an object
of much recent study in machine learning.

Reward-Specific vs. Reward-Invariant Approaches
Reward-respecting state abstraction methods consider two
statess ands′ equivalent (orφ(s) = φ(s′)) if and only if
R(s, a) = R(s′, a) under each actiona. Similarly, reward-
sensitive basis construction methods, like Krylov bases,
use knowledge of the reward function to find representa-
tions of subspaces that contain the (approximately) optimal
value function. Reward-invariant approaches, such as PVFs
or geodesic Gaussian kernels, construct basis functions
reusable across multiple reward functions on the same state
(action) space. Petrik (Petrik 2007) proposed combining
reward-specific Krylov bases with reward-invariant proto-
value functions as a way of integrating localized reward-
specific and more global eigenvector representations.

Flat vs. Multiscale Methods
Multiscale methods construct a variable resolution spatial
or temporal abstraction hierarchy. One approach uses a
hierarchical matrix approximation method called diffusion
wavelets (Coifman and Maggioni 2006), which constructs a
sparse representation of dyadic powers of a transition ma-
trix. Similarly, Hengst (Hengst 2002) constructs a multi-
scale state hierarchy by partitioning the state variables based
on their frequency of change. In contrast, flat methods con-
struct a single-level abstraction, such as eigenvector methods
like proto-value functions, or Krylov bases.

Orthogonal vs. Redundant Representations

Representation discovery methods that construct orthogo-
nal representations can be contrasted with those that con-
struct redundant representations. Orthonormal bases, such
as proto-value functions, represent value functions (or re-
ward functions) uniquely as a weighted linear combination
of basis elements, where the weighting is given by〈V π, φi〉,
the projection ofV π onto theith basis element:

V π =
∑

i∈I

〈V π, φi〉φi.

Overcomplete basis representations, such as diffusion
wavelets, can represent a given value function in many dif-
ferent ways, in which case an additionalregularizationstep
can be used to find asparserepresentation (Johns and Ma-
hadevan 2009; Kolter and Ng 2009).

Learning Representation and Control

One framework for combining the learning of representation
and control is called Representation Policy Iteration (RPI)
(Mahadevan and Maggioni 2007), where the outer loop finds
a functional abstraction based on a specific policy (or re-
ward function), and the inner policy evaluation loop finds
the closest (least-squares regularized) approximation within
the span of the constructed bases. An alternative approach
is to construct representations during the control learning
phase itself (Parr et al. 2007). The space of such hy-
brid representation-and-control learning architecturesneeds
to be explored further.

Challenges

One significant challenge is how to scale representation dis-
covery algorithms to high-dimensional problems. Some di-
rections include low-rank matrix approximation (Johns, Ma-
hadevan, and Wang 2007), exploiting pre-defined task hi-
erarchies (Osentoski and Mahadevan 2010), and using re-
lational representations (Wu and Givan 2007). The scal-
ability of these methods to much larger discrete MDPs,
such as Tetris (Bertsekas and Tsitsiklis 1996) or backgam-
mon (Tesauro 1992), and continuous state and action MDPs,
such as helicopter control (Ng et al. 2004), needs to
be explored further. Much of the work on representa-
tion discovery has been in fully observable MDPs. Re-
search on constructing novel representations in POMDPs
is ongoing (Poupart and Boutilier 2003; Li et al. 2007;
Charlin, Poupart, and Shioda 2007). Finally, constructing
representations that transfer across tasks remains an impor-
tant challenge (Taylor, Kuhlmann, and Stone 2008).
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