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Abstract

Manifold alignment has been found to be useful in many
fields of machine learning and data mining. In this paper
we summarize our work in this area and introduce a general
framework for manifold alignment. This framework gener-
ates a family of approaches to align manifolds by simulta-
neously matching the corresponding instances and preserv-
ing the local geometry of each given manifold. Some ap-
proaches like semi-supervised alignment and manifold pro-
jections can be obtained as special cases. Our framework
can also solve multiple manifold alignment problems and be
adapted to handle the situation when no correspondence in-
formation is available. The approaches are described and
evaluated both theoretically and experimentally, providing re-
sults showing useful knowledge transfer from one domain to
another. Novel applications of our methods including iden-
tification of topics shared by multiple document collections,
and biological structure alignment are discussed in the paper.

Introduction
In many areas of machine learning and data mining, one
is often confronted with situations where the data is in a
high dimensional space. Directly dealing with such high
dimensional data is usually intractable, but in many cases,
the manifold structure underlying the data may have a low
intrinsic dimensionality. Manifold alignment builds connec-
tions between two or more disparate data sets by aligning
their underlying manifolds and provides knowledge trans-
fer across the data sets. More formally, given data sets
Xk = {x1

k, · · · , xmk

k } wherek ∈ {1, · · · , c} (assumingXk

is from manifoldXk)) together with a small fraction of sam-
ples labelled with known correspondences, we want to find
a correspondence between them. Directly working with the
original data instances can be quite difficult, since they are
in high dimensional spaces and might be defined by totally
different features. A solution is to mapXk for differentks
to a new space, where instancesxi

a andx
j
b can be directly

compared for any two data setsXa andXb. Manifold align-
ment can be used to transfer knowledge across domains.
Real-world applications include automatic machine transla-
tion (Diaz & Metzler 2007), cross-lingual information re-
trieval, representation and control transfer in Markov deci-
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sion processes, bioinformatics (Wang & Mahadevan 2008),
image interpretation and social network analysis.

Existing manifold alignment approaches can be catego-
rized into two types. The first type (illustrated in Fig-
ure 1(A)) includes diffusion map-based alignment (Lafon
et al. 2006) and Procrustes alignment (Wang & Mahadevan
2008). These approaches first map the data sets to low di-
mensional spaces reflecting their intrinsic geometries using
a standard (linear like LPP (He & Niyogi 2003) or nonlinear
like Laplacian eigenmaps (Belkin & Niyogi 2003)) dimen-
sionality reduction approach. Then some components (like
rotational and scaling components) are removed from one
set so that the alignment of two sets can be achieved. In this
type of alignment, the computation of lower dimensional
embedding is done in a unsupervised way (without consider-
ing the purpose of alignment), so the resulting embeddings
of the two data sets might be quite different. The second
type (illustrated in Figure 1(B)) includes semi-supervised
alignment (Ham et al. 2005), manifold projections (Wang &
Mahadevan 2009) and semi-definite alignment (Xiong et al.
2007). Semi-supervised alignment first creates a joint man-
ifold representing the union of the given manifolds. Then it
maps the joint manifold to a lower dimensionallatentspace
preserving local geometry of each manifold, and matching
instances in correspondence. Semi-supervised alignment is
based on eigenvalue decomposition. Semi-definite align-
ment solves a similar problem using a semi-definite pro-
gramming framework. Manifold projections is a linear ap-
proximation of semi-supervised alignment. It directly builds
connections between features rather than instances and can
naturally handle new test instances.

One situation that arises in many real world applications
is that the given manifolds (defined by totally different fea-
tures) need to be aligned with no available correspondence
information. Solving this problem is rather difficult, if not
impossible, since there are two unknown variables in this
problem: the correspondence and the transformation. One
such example is control transfer between different Markov
decision processes (MDPs), where we want to align state
spaces of different tasks. Here, states are usually defined
by different features for different tasks and it is hard to find
correspondences between them. Another example is knowl-
edge transfer between document collections in different lan-
guages. In this task, correspondence information is usually
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Figure 1:Two types of manifold alignment (this figure only shows
two manifolds, but the same idea also applies to multiple manifold
alignment). X is a data set sampled from manifoldXa, Y is a
data set sampled from manifoldXb. Z is the new space. The red
regions represent the subsets that are in correspondence.f andg
are functions to compute lower dimensional embedding ofX and
Y . (A) First type: including diffusion map-based alignment and
procrustes alignment; (B) Second type: including semi-supervised
alignment, manifold projections, semi-definite alignment.

achieved via a manual translation, which is very expensive.
In this paper we summarize our existing work on manifold

alignment, and introduce a new general framework to this
problem. This framework generates a family of approaches
to align manifolds by simultaneously matching the corre-
sponding instances and preserving the local geometry of
each given manifold. Some existing approaches like semi-
supervised alignment and manifold projections can be ob-
tained as special cases. Our approach can solve multiple
manifold alignment problems (number of manifolds to be
aligned is≥ 3) and be adapted to handle the situation when
no correspondence information is available. The framework
is described and evaluated both theoretically and experimen-
tally, providing results showing useful knowledge transfer
from one domain to another. Novel applications of our algo-
rithms including identification of topics shared by multiple
document collections, and biological structure alignmentare
discussed in this paper.

The rest of this paper is organized as follows. In the first
section, we describe the problem and the main framework.
Subsequently, in the next section, we provide a theoretical
analysis of our approach. Then we show the connections of
our framework to some existing approaches and applications
in the third section titled “Algorithms”. We summarize our
experimental results in the following section. Finally, we
provide some concluding remarks in the final section.

The Algorithmic Framework
The Problem
The problem we want to solve is as follows: given multiple
data setsXk(k ∈ {1, · · · , c}) whereXk comes from man-
ifold Xk, along with partial correspondence information in
the form of paired instancesxi

a ∈ Xa ←→ x
j
b ∈ Xb, map

Xk to a new space preserving local geometry of each set and
matching instances in correspondence. Notation used in this
paper is summarized in Figure 2

High Level Explanation
Given the input manifoldsX1, · · · ,Xc, we first create a joint
manifold represented by matrixL modeling the union of

xi
k is defined in apk dimensional space (manifoldXk);

Xk = {x1

k, · · · , x
mk

k }, Xk is apk × mk matrix.
Wk is anmk × mk matrix, whereW i,j

k is the similarity ofxi
k and

x
j

k (could be defined by heat kernel).
Dk is anmk × mk diagonal matrix:Di,i

k =
P

j
W

i,j

k .
Lk = Dk − Wk.

Whena = b: Wa,a andΩa,a
a,a are bothma × ma zero matrices.

Whena 6= b:
Wa,b is anma × mb matrix, whereW i,j

a,b = 1, whenxi
a andx

j

b are
in correspondence;0, otherwise.
Ωa,a

a,b is anma×ma diagonal matrix, whereΩa,a

a,b (i, i) =
P

j
W

i,j

a,b.
Ωa,b

a,b is anma × mb matrix, whereΩa,b

a,b(i, j) = W
i,j

a,b.

c: number of manifolds that we want to align.
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0

@
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1
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@

D1 · · · 0
· · ·

0 · · · Dc

1

A.

L =

0

@

L1 + µ
Pc

k=1
Ω1,1

1,k · · · −µΩ1,c
1,c

· · ·
−µΩc,1

c,1 · · · Lc + µ
Pc

k=1
Ωc,c

c,k

1

A.

Fk is a mapping to mapxi
k to the common space (d dimensional):

FT
k xi (Fk is apk × d matrix).

(FT
1 ,FT

2 , · · · ,FT
c )T = γ1:d, whereγ1:d represent eigenvectors of

ZLZT γ = λZDZT γ corresponding to thed smallest non-zero
eigenvalues.

Figure 2: Notation used in this paper.

all manifolds. L has information coming fromLk(k ∈
{1, · · · , c}. Such information models the local geometry of
each given manifold.Ωa,b

a,b andΩa,a
a,b (a, b ∈ {1, · · · , c}) in

L play a key role in joining the these manifolds. They force
the instances in correspondence (from different manifolds)
to be neighbors in the joint manifold. The joint manifold
is then mapped to a lower dimensional space preserving its
local geometry. The idea is illustrated in Figure 3.

The Overall Algorithm
The main algorithmic framework is summarized in Fig-
ure 4. Depending on our targets – feature-level alignment
or instance-level alignment – the framework has two slightly
different versions.

Theoretical Results
Cost Functions
Manifold alignment can be done at two levels:instance-
level and feature-level. In text mining, examples of
instances can be documents in English, Arabic, etc; ex-
amples of features can be English words/topics, Arabic
words/topics, etc. Instance-level alignment builds con-
nections between instances. It can compute nonlinear
embeddings for alignment, but such an alignment result
is defined only on known instances, and hard to be gen-
eralized to new instances. Feature-level alignment builds
connections between features, and fits for knowledge
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Figure 3: Illustration of the main framework.

1. Construct the relationship matrices Wk(k = 1 · · · c)
to model the local geometry of each manifold, and
Wa,b(a, b ∈ {1, · · · , c}) to model the correspondence re-
lationship across manifolds.

2. Create the joint manifold:
• Compute the matricesL, Z and D. They are used to

model the joint structure.
3. Compute the optimal embedding results (or mapping

functions) to reduce the dimensionality of the joint struc-
ture:
• instance-level alignment: Thed dimensional embedding

result is computed byd minimum eigenvectorsγ1 · · · γd

of eigenvalue decompositionLγ = λDγ.
• feature-level alignment: The d dimensional map-

ping function is computed byd minimum eigenvectors
γ1 · · · γd of the generalized eigenvalue decomposition
ZLZT γ = λZDZT γ.

4. Find the correspondence between Xa and Xb:
• instance-level alignment: Let Yk be part of[γ1 · · · γd]

(from row1+
Pk−1

a=1
ma to row

Pk

a=1
ma). NowYi

a and
Yj

b are in the same space and can be directly compared.
• feature-level alignment: Let Fk be part of [γ1 · · · γd]

(from row 1 +
Pk−1

a=1
pa to row

Pk

a=1
pa). Now FT

a xi
a

andFT
b x

j

b are in the same space and can be directly com-
pared.

Figure 4:The Main Framework.

transfer applications better than instance-level alignment.
Feature-level alignment can only compute linear mappings
for alignment, but it can be easily generalized to new
instances and provides a “dictionary” representing direct
connections between features in different spaces

Cost functions for instance-level alignment: First,
we consider the problem of computing instance-level
alignment. The cost function is as follows:

C(Y1, · · · ,Yc) = 0.5µ

c∑

a=1

c∑

b=1

ma∑

i=1

mb∑

j=1

(Yi
a − Y

j
b )2W i,j

a,b

+0.5
c

X

k=1

mk
X

i=1

mk
X

j=1

(Yi
k − Yj

k)2W i,j

k , (1)

where Yi
k represents the embedding result ofxi

k (for
alignment). The first term ofC(Y1, · · · ,Yc) penalizes the
differences between the given manifolds on the mapping
results of the corresponding instances. The second term
guarantees that the local geometry of each given manifold
will be preserved. WhenC(Y1, · · · ,Yc) is used, alignment
algorithms build connections between instances.

Cost functions for feature-level alignment: Next,
we consider the problem of computing feature-level
alignment. Here, we compute mapping functions for the
computation of embeddings (rather than directly computing
an embedding). The cost function for this case is as follows:

C(F1, · · · ,Fc) = 0.5µ

c∑

a=1

c∑

b=1

ma∑

i=1

mb∑

j=1

(FT
a xi

a−F
T
b x

j
b)

2W
i,j
a,b

+0.5
c

X

k=1

mk
X

i=1

mk
X

j=1

(FT
k x

i
k −FT

k x
j

k)2W i,j

k , (2)

whereFk is the mapping function to map instances from
Xk to the new space: usingFT

k xi
k to approximateYi

k.
In some applications, we also want to consider a possi-
ble translation following the linear transform, i.e. using
FT

k xi
k + tk to approximateYi

k. In fact, such a translation
can be naturally combined withC(F1, · · · ,Fc). Note that

FT
k xi

k + tk = [FT
k , tk][xi

k

T
, 1]T . To consider the trans-

lations, what we need to do is to add a new feature (with
value 1) to eachxi

k ∈ Xk. The form ofC(F1, · · · ,Fc) still
holds.

Theorem 1: Eigenvectors corresponding to the minimum
eigenvalues of ZLZT γ = λZDZT γ provide optimal
linear mappings to align X1, · · · , Xc regarding the cost
function C(F1, · · · ,Fc).
Proof:
The key part of the proof involves showing the identity
C(F1, · · · ,Fc) = γT ZLZT γ.
The procedure to get this result is lengthy and non-trivial.
However, we can verify the result by expanding the right
hand side of the equation. The matrixL is used to join
the given manifolds such that the underlying structure in



common can be explored.

To remove an arbitrary scaling factor in the embedding,
we impose an extra constraint

∑c

k=1 γT XkDkXT
k γ =

γT ZDZT γ = 1. The matricesDk (k = 1, · · · , c) provide
a natural measure on the vertices (instances) of the graph.
If the valueD

i,i
k is large, it meansxi

k is more important.
Without this constraint, all instances could be mapped to
the same location in the new space. A similar constraint is
also used in Laplacian eigenmaps (Belkin & Niyogi 2003).

Finally, the optimization problem can be written as:
arg minγ:γT ZDZT γ=1 C(F1, · · · ,Fc) =

arg minγ:γT ZDZT γ=1 γT ZLZT γ

By using the Lagrange trick, it is easy to see that so-
lution to this equation is the same as the minimum
eigenvector solution toZLZT γ = λZDZT γ.

The above proof only shows the 1D alignment achieved
by our algorithm framework is optimal. Standard methods
show that the solution to find ad dimensional alignment
is provided by the eigenvectors corresponding to thed
lowest eigenvalues of the same generalized eigenvalue
decomposition equation.

Theorem 2: Eigenvectors corresponding to the min-
imum eigenvalues of Lγ = λDγ provide optimal
embeddings to align X1, · · · , Xc regarding the cost
function C(Y1, · · · ,Yc).
Proof: This instance-level alignment problem is simpler
than the feature-level alignment. The proof (skipped) is
similar to the proof of Theorem 1.

Algorithms
In this section, we discuss connections between our main
framework and previously studied approaches: Laplacian
eigenmaps, LPP, semi-supervised manifold alignment and
manifold projections. We also discuss how the main al-
gorithm framework can be adapted to handle the situation
when no correspondence is available.

1. c = 1.
Equation (1) and (2) reduce to

C(Y1) = 0.5

m1
X

i=1

m1
X

j=1

(Yi
1 − Yj

1
)2W i,j

1
(3)

and

C(F1) = 0.5

m1
X

i=1

m1
X

j=1

(FT
1 x

i
1 − FT

1 x
j
1
)2W i,j

1
, (4)

which are exactly the loss functions of Laplacian eigen-
maps (Belkin & Niyogi 2003) and LPP (He & Niyogi 2003).
Whenc = 1, there is only one given manifold, so the target
is simplified to mapping the given data set to a lower di-
mensional space preserving its local geometry. This is what
regular dimensionality approaches are solving. So Lapla-
cian eigenmaps and LPP are obtained as special cases of our
framework.

2. c = 2.
Equation (1) and (2) reduce to

C(Y1,Y2) = µ

m1∑

i=1

m2∑

j=1

(Yi
1 − Y

j
2)2W i,j

1,2

+0.5

m1
X

i=1

m1
X

j=1

(Yi
1−Yj

1
)2W i,j

1
+0.5

m2
X

i=1

m2
X

j=1

(Yi
2−Yj

2
)2W i,j

2
. (5)

and

C(F1,F2) = µ

m1∑

i=1

m2∑

j=1

(FT
1 xi

1 −F
T
2 x

j
2)

2W
i,j
1,2

+0.5

m1
X

i=1

m1
X

j=1

(FT
1 x

i
1−FT

1 x
j
1
)2W i,j

1
+0.5

m2
X

i=1

m2
X

j=1

(FT
2 x

i
2−FT

2 x
j
2
)2W i,j

2
,

(6)
which are loss functions of semi-supervised manifold align-
ment (Ham et al. 2005) and manifold projections (Wang &
Mahadevan 2009), when correspondence is available. If no
correspondence is given, the loss function of manifold pro-
jections can be specified in a different manner.

3. Multiple Manifold Alignment (c ≥ 3)
Whenc ≥ 3, the framework can automatically handle multi-
ple manifold alignment problems, which are not well studied
yet. Multiple manifold alignment problem arises in many
applications, e.g. when we want to find common topics
shared by many document collections and when we do data
mining in multiple language data sets.

4. Manifold Alignment without Correspondence
A more general manifold alignment problem arises in many
real world applications, where manifolds (defined by totally
different features) need to be aligned with no available cor-
respondence information. Solving this problem is rather dif-
ficult, if not impossible, since there are two unknown vari-
ables in this problem: the correspondence and the transfor-
mation. The feature-level version of this problem can be
more precisely defined as follows: suppose we havec data
setsXk = {x1

k, · · · , xmk

k }(k ∈ {1, · · · , c}) for which we
want to find correspondence, our aim is to compute func-
tionsFk to mapXk to a new space such thatFT

a xi
a and

FT
b x

j
b can be directly compared. Its instance-level version

can be defined similarly.
Our main framework can be adapted to solve this prob-

lem. In our framework,Wa,b(a, b ∈ {1, · · · , c}, a 6= b)

are given by the correspondence information, i.e.W
i,j
a,b = 1

whenxi
a matchesxj

b, and 0 otherwise. Now we need to con-
structWa,b without using correspondence. Our approach to
constructWa,b is discussed in (Wang & Mahadevan 2009)
in detail. It constructsWa,b by comparing local structures of
two manifolds leveraging their local geometries. We use the
relation betweenxi

a and its neighbors to characterizexi
a’s

local geometry. Using relations rather than features to rep-
resent local geometry makes the direct comparison ofxi

a

andx
j
b be possible. When we use local geometry to specify



Wa,b, xi
a might be similar to more than one instance inXb

and it is hard to identify which one is the true match. How-
ever, an interesting fact is that solving the original coupled
problem could be easier than only finding the true match.
The reason is the structures of all input manifolds need to
be preserved in the alignment. This helps eliminate many
false positive matches. In our main framework, the local
pattern generation and comparison can also be application
oriented. For example, many existing kernels based on the
idea of convolution kernels (Haussler 1999) can be applied
here. Choosing other ways to defineW

i,j
a,b does not affect the

other parts of the framework.

Experimental Results
In this section, we first use a bioinformatics example to illus-
trate how our manifold alignment algorithms work, then we
apply our approaches to a real world problem in information
retrieval: document corpora alignment.

1. Protein Manifold Alignment
In this example, we directly align the given manifolds and
use some pictures to illustrate how the manifold alignment
algorithms work. The given manifolds come from real pro-
tein tertiary structure data.

Protein 3D structure reconstruction is an important step
in Nuclear Magnetic Resonance (NMR) protein structure
determination. Basically, it finds a map from distances to
coordinates. A protein 3D structure is a chain of amino
acids. Letn be the number of amino acids in a given pro-
tein andC1, · · · , Cn be the coordinate vectors for the amino
acids, whereCi = (Ci,1, Ci,2, Ci,3)

T and Ci,1, Ci,2, and
Ci,3 are thex, y, z coordinates of amino acidi (in biol-
ogy, one usually uses atom but not amino acid as the basic
element in determining protein structure. Since the num-
ber of atoms is huge, for simplicity, we use amino acid as
the basic element). Then the distancedi,j between amino
acidsi andj can be defined asdi,j = ‖Ci − Cj‖. Define
A = {di,j , i, j = 1, · · · , n}, andC = {Ci, i = 1, · · · , n}.
It is easy to see that ifC is given, then we can immedi-
ately computeA. However, ifA is given, it is non-trivial to
computeC. The latter problem is called Protein 3D struc-
ture reconstruction. In fact, the problem is even more tricky,
since only the distances between neighbors are reliable, and
this makesA an incomplete distance matrix. The problem
has been proved to be NP-complete for general sparse dis-
tance matrices (Hogben 2006). In real world, other tech-
niques such as angle constraints and human experience are
used together with the partial distance matrix to determine
protein structures.

With the information available to us, NMR techniques
might find multiple estimations (models), since more than
one configuration can be consistent with the distance ma-
trix and the constraints. Thus, the result is an ensemble of
models, rather than a single structure. Most usually, the en-
semble of structures, with perhaps 10 - 50 members, all of
which fit the NMR data and retain good stereochemistry is
deposited with the Protein Data Bank (PDB) (Berman et al.
2000). Models related to the same protein should be sim-

ilar and comparisons between the models in this ensemble
provides some information on how well the protein confor-
mation was determined by NMR.

In this test, we study a Glutaredoxin protein PDB-1G7O
(this protein has 215 amino acids in total), whose 3D
structure has 21 models. We pick up Model 1, Model 21
and Model 10 for test. These models are related to the same
protein, so it makes sense to treat them as manifolds to
test our techniques. We denote theith model by Manifold
Xi, which is represented by matrixXi. Obviously, X1,
X2 and X3 are all 215 × 3 matrices. To evaluate how
manifold alignment can re-scale manifolds, we manually
stretch manifoldX1 by letting X1 = 4X1, manifoldX3

by letting X3 = 2X3. The comparison of ManifoldX1

andX2 (row vectors ofX1 andX2 represent points in the
3D space) are shown in Figure 5(A). The comparison of
all three manifolds are shown in Figure 6(A). In biology,
such chains are called protein backbones. It is clear that
manifold X1 is larger thanX3, which is larger thanX2.
The orientations of these manifolds are also quite different.
To simulate pairwise correspondence information, we
uniformly selected 1/4 amino acids as correspondence
resulting in three54× 3 matrices.

Procrustes Manifold Alignment:
Since such models are already low dimensional (3D)
embeddings of the distance matrices, we skip Step 1 and
2 in Procrustes alignment algorithm (Wang & Mahadevan
2008). We run the algorithm from Step 3 to alignX1 and
X2. Procrustes alignment removes the translational, rota-
tional and scaling components so that the optimal alignment
between the instances in correspondence is achieved. The
algorithm identifies the re-scale factork as 4.2971, and the
rotation matrixQ as

Q =

0

@

0.56151 −0.53218 0.63363
0.65793 0.75154 0.048172
−0.50183 0.38983 0.77214

1

A .

X∗

2 , the new representation ofX2, is computed as
X∗

2 = kX2Q. We plot X∗

2 and X1 in the same graph
(Figure 5(B)). The result shows that ManifoldX2 is rotated
and enlarged to the similar size asX1, and now the two
manifolds are aligned very well.

Semi-supervised Manifold Alignment:
We tried semi-supervised alignment using the same data
and correspondence. The alignment result is shown in Fig-
ure 5(C). From the figure, we can see that semi-supervised
alignment can map data instances in correspondence to the
similar location in the new space, but the instances outside
of the correspondence are not aligned well.

Manifold Projections:
We plot 3D (Figure 5(C)), 2D (Figure 5(D)) and 1D (Fig-
ure 5(E)) alignment results in Figure 5.nD alignment result
is achieved by applying topn minimum eigenvectors. These
figures clearly show that the alignment of two different
manifolds is achieved by projecting the data (represented by
the original features) onto a new space using our carefully
generated mapping functions. Compared to 3D alignment
result of Procrustes alignment, 3D alignment from manifold
projection changes the topologies of both manifolds to
make them match. Recall that Procrustes alignment does
not change the shapes of the given manifolds. The real
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Figure 5: (A): Comparison of ManifoldX1(red) and
X2(blue) before alignment; (B): Procrustes manifold align-
ment; (C): Semi-supervised manifold alignment; (D): 3D
alignment using manifold projections; (E): 2D alignment us-
ing manifold projections; (F): 1D alignment using manifold
projections; (G): 3D alignment using manifold projections
without correspondence; (H): 2D alignment using manifold
projections without correspondence; (I): 1D alignment using
manifold projections without correspondence.

mapping functionsF1 andF2 to compute alignment are as
follows:

F1 =

0

@

−0.1589 −0.0181 −0.2178
0.1471 0.0398 −0.1073
0.0398 −0.2368 −0.0126

1

A ,

F2 =

0

@

−0.6555 −0.7379 −0.3007
0.0329 0.0011 −0.8933
0.7216 −0.6305 0.2289

1

A .

Manifold Projections without Correspondence:
We tested our manifold alignment approach assuming no
pairwise correspondence information is given. We plot 3D
(Figure 5(G)), 2D (Figure 5H) and 1D (Figure 5(I)) align-
ment results in Figure 5.nD alignment result is achieved
by applying topn minimum eigenvectors. A more detailed
description of the setting of this experiment is in (Wang &
Mahadevan 2009). These figures show that alignment can
still be achieved using local geometry matching algorithm
when no pairwise correspondence information is given.

Multiple Manifold Alignment: Our algorithm frame-
work for multiple manifold alignment (using feature-level
alignment,c = 3) is also tested using all three manifolds.
The alignment results are shown in Figure 6. From these
figures, we can see that all three manifolds are projected
to one space, where alignment is achieved. The mapping
functionsF1, F2 and F3 to compute alignment are as
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Figure 6: (A): Comparison of ManifoldX1(red),X2(blue)
andX3(green) before alignment; (B): 3D alignment using
multiple manifold alignment; (C): 2D alignment using mul-
tiple manifold alignment; (D): 1D alignment using multiple
manifold alignment.

follows:

F1 =

0

@

−0.0518 0.2133 0.0810
−0.2098 0.0816 0.0046
−0.0073 −0.0175 0.2093

1

A ,

F2 =

0

@

0.3808 0.2649 0.6860
−0.7349 0.7547 0.2871
−0.2862 −0.3352 0.4509

1

A ,

F3 =

0

@

0.1733 0.2354 −0.0043
−0.3785 0.3301 −0.0787
−0.1136 0.1763 0.4325

1

A .

2. Alignment of Document Corpora
One application of manifold alignment in information re-
trieval is corpora alignment, where corpora can be aligned
so that knowledge transfer between different collections is
possible. In this section, we apply our manifold alignment
framework (feature-level alignment,c = 2) to this problem.

The data set we use in this test is NIPS (1-12) full paper
data set: http://www.cs.toronto.edu/∼roweis/data.html.
This data set includes 1,740 papers and 2,301,375 tokens.
We first represent this data set using two different topic
spaces: LSI topic space (Deerwester et al. 1990) and LDA
topic space (Blei, Ng, & Jordan 2003). Then the different
representations of the original data set are aligned using
our manifold alignment algorithm. The reasons why we
align such two “simulated” data sets rather than two real
data sets are as follows: (1) The two sets are defined by
different features: LSI topics and LDA topics, so they are
sufficient to test our approaches transferring knowledge



across domains. (2) Even though the representations of
the two sets are different, they are constructed from the
same data. So the resulting data sets are related and should
be aligned well. (3) Both LSI and LDA topics can be
mapped back to English words, so the mapping functions
are semantically interpretable. This helps us understand
how alignment of two collections is achieved (by aligning
their underlying topics). (4) The problem (to align two topic
spaces) itself is useful, since it computes the topics shared
by two collections.

Topic Modeling:
Topic modeling is designed to extract succinct descriptions
of the members of a collection that enable efficient gen-
eralization and further processing. Topic models are an
important tool to find concepts from document corpora.
They have been successfully used to analyze large amounts
of textual information for many tasks. A topic could be
thought as a multinomial word distribution learned from a
collection of textual documents using either linear algebraic
or statistical techniques. The words that contribute more
to each topic provide keywords that briefly summarize
the themes in the collection. Popularly used topic models
include Latent Semantic Indexing (LSI) (Deerwester et al.
1990) and Latent Dirichlet Allocation (LDA) (Blei, Ng, &
Jordan 2003).
LSI: Latent semantic indexing (LSI) is a well-known
linear algebraic method to find topics in a text corpus. The
key idea is to map high-dimensional document vectors to
a lower dimensional representation in a latent semantic
space. Let the singular values of ann ×m term-document
matrix A be δ1 ≥ · · · ≥ δr, wherer is the rank ofA.
The singular value decomposition ofA is A = UΣV T ,
whereΣ = diag(δ1, · · · δr), U is ann × r matrix whose
columns are orthonormal, andV is anm × r matrix whose
columns are also orthonormal. LSI constructs a rank-k
approximation of the matrix by keeping thek largest
singular values in the above decomposition, wherek is
usually much smaller thanr. More precisely, the best
rank-k approximation is given byAk = UkΣkV T

k , and it
can be shown that this approximation has the smallest error
(w.r.t. Frobenius norm). In LSI, each of the column vectors
of Uk is related to a concept, and represents a topic in the
given collection of documents.
LDA: Latent Dirichlet Allocation (LDA) is a widely used
probabilistic topic model and the basis for many variants.
LDA treats each document as a mixture of topics, where
each topic is a distribution over words in a vocabulary. To
generate a document, LDA first samples a per-document
distribution over topics from a Dirichlet distribution, and
then it samples a topic from the distribution and a word from
the topic. LDA and LSI topics are quite different in many
other aspects. For example, LSI topics are orthonormal to
each other, while the LDA topics are not; LSI topics are
supposed to provide the best low rank approximation to the
original set, while LDA is not designed for this.

Represent Corpora in Topic Spaces:
If a topic spaceS is spanned by a set ofr topic vectors,

Table 1: Topic 1-5 (LDA)
Top 9 Terms

generalization function generalize shown performance theory size shepard general

hebbian hebb plasticity activity neuronal synaptic anti hippocampal modification

grid moore methods atkeson steps weighted start interpolation space

measure standard data dataset datasets results experiments measures ranking

energy minimum yuille minima shown local university physics valid

Table 2: Topic 1-5 (LSI)
Top 9 Terms

fish terminals gaps arbor magnetic die insect cone crossing

learning algorithm data model state function models distribution policy

model cells neurons cell visual figure time neuron response

data training set model recognition image models gaussian test

state neural network model time networks control system models

we write the set asS = (t(1), · · · , t(r)), where topict(i)
is a column vector(t(i)1, t(i)2 · · · , t(i)n)T . Heren is the
size of the vocabulary set,‖t(i)‖ = 1 and the value oft(i)j

represents the contribution of termj to t(i). Obviously,S is
ann× r matrix. We know the term-document matrixA (an
n × m matrix) models the corpus, wherem is the number
of the documents and columns ofA represent documents
in the “term” space. The low dimensional embedding ofA
in the “topic” spaceS is thenATopic = ST A. ATopic is a
r × m matrix, whose columns are the new representations
of documents inS.

We extract 400 topics from the data set with both LDA
and LSI models (in LSI, we simply pick up the top 400
topics; in LDA, we set number of topics = 400). The top 10
words of topic 1-5 from each model are shown in Table 1
and Table 2. It is clear that none of the corresponding topics
are similar across the two sets. We represent the original
data set in both topic spaces. This step eliminates a lot
of information from the original set and can only provide
us with an approximation of the original set. We denote
the data set represented in LDA topic space manifoldX1

(represented by a400 × 1, 740 matrix X1), in LSI topic
space manifoldX2 (represented by a400 × 1, 740 matrix
X2).

Manifold Alignment:
Following our main framework (feature-level alignment,
c = 2) using 25% uniformly selected documents as
correspondences, we align these two collections in a 300
dimensional space. The mapping functionsA andB are
both 400 × 300 matrices. They change the original LDA,
LSI topic vectors (defining the original spaces) to vectors
spanning the new joint space (latent space). Such vectors
can be treated as latent topics (spanning the latent space),
which are represented over LDA/LSI topics. We know
LDA/LSI topics are represented over English words, so
latent topics can also be directly represented with English
words. In Table 3 and 4, we show the top 5 latent topics
constructed from manifoldX1 (LDA space) andX2 (LSI
space). From these tables, we can see that the corresponding
latent topics are very similar to each other. This implies



Table 3: Top 5 latent topics constructed from LDA space
Top 9 Terms

network learning networks training error input neural recurrent output

network neural input networks figure output hierarchical xor neurons

data set training model test models error hmm missing

function figure tangent basis vector measure university theorem average

learning input training figure units visual pattern output unit

Table 4: Top 5 latent topics constructed from LSI space
Top 9 Terms

network learning networks training input error hidden units neural

network neural input output figure networks neurons processing units

data training set model mixture error test models recognition

function theorem approximation figure theory functions process dynamics basis

learning input training figure visual units pattern unit output

that the spaces spanned by two different latent topic sets are
almost the same (they approximate the latent space). An
interesting thing is that the latent topics constructed from
LSI (or LDA) space are linear combinations of the existing
LSI (or LDA) topics. So the new space is a subspace of
the original LSI (or LDA) space. The alignment of two
document collections is in fact done by finding a common
topic subspace shared by both LSI and LDA spaces.

Knowledge Transfer Across Data Sets:
We also ran a test to directly translate test documents from
LDA space to LSI space usingF1F

+
2 . For each test docu-

mentx, we compare its mapping result to all documents in
LSI space and see ifx’s true match is among itsj nearest
neighbors. The results are summarized in Table 5. The
results show that for any given a document in LDA space,
we can translate it to LSI space. Its translation has a roughly
88% probability of being the nearest neighbor of its true
match. This test explains how knowledge is transferred
between different topic spaces. The same technique can also
be applied to build connection between data sets defined
by different languages. The latter is useful in machine
translation and cross-lingual information retrieval.

Conclusions
In this paper, we introduce a general framework for manifold
alignment. Our framework aligns manifolds by simultane-
ously matching the corresponding instances and preserving
the local geometry of each given manifold. It can also be
adapted to solve manifold alignment problems without using
correspondence information. Some existing approaches like
semi-supervised alignment and manifold projections can be

Table 5: The probability thatx’s true match is among
(AB+)T x’s j nearest neighbors.

j 1 2 3 4 5

% 87.6628% 89.8084% 90.8046% 91.3410% 91.8774%

j 6 7 8 9 10

% 91.9540% 92.1839% 92.4138% 92.4904% 92.5670%

obtained as special cases. Our approaches are described and
evaluated both theoretically and experimentally, providing
results showing useful knowledge transfer from one domain
to another. Sample applications on information retrieval and
computational biology are discussed in the paper.

Many real-world data sets exhibit non-trivial regularities
at multiple levels. To design algorithms capturing such
multi-level structure, we are currently exploring the use of
diffusion wavelets (Coifman & Maggioni 2006) to explore
the intrinsic structure of the joint manifold resulting in man-
ifold alignment at different scales.
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