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Abstract

Most work on value function approximation adheres to
Samuel’s original design: agents learn a task-specific
value function using parameter estimation, where the
approximation architecture (e.g, polynomials) is speci-
fied by a human designer. This paper proposes a novel
framework generalizing Samuel’s paradigm using a
coordinate-freeapproach to value function approxima-
tion. Agents learn both representations and value func-
tions by constructing geometrically customized task-
independent basis functions that form an orthonormal
set for the Hilbert space of smooth functions on the
underlying state space manifold. The approach rests
on a technical result showing that the space of smooth
functions on a (compact) Riemannian manifold has a
discrete spectrum associated with the Laplace-Beltrami
operator. In the discrete setting, spectral analysis of
the graph Laplacian yields a set of geometrically cus-
tomized basis functions for approximating and decom-
posing value functions. The proposed framework gener-
alizes Samuel’s value function approximation paradigm
by combining it with a formalization of Saul Amarel’s
paradigm of representation learning through global state
space analysis.

Introduction
Arthur Samuel (Samuel 1959) pioneered the study of value
function approximation: his checkers program adjusted the
coefficients of a fixed polynomial approximator so that val-
ues of states earlier in a game reflected outcomes experi-
enced later during actual play. Samuel’s pioneering ideas
were formalized using the framework of Markov decision
processes (MDP) (Puterman 1994), leading to the field of
reinforcement learning (RL) (Sutton & Barto 1998). Sub-
stantial expertise has been gained in value function approx-
imation for linear and nonlinear architectures (Bertsekas&
Tsitsiklis 1996). However, most systems remain constrained
by Samuel’s paradigm where agents do not learn the under-
lying representation. This paper proposes a novel general-
ization of Samuel’s paradigm, where the basis representa-
tions for value function approximation are learned by ana-
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lyzing the large-scale topological structure of the underly-
ing environment. This approach formalizes Saul Amarel’s
(Amarel 1968) paradigm where agents learn representations
throughglobal analysis of a state space. Amarel’s ideas
motivated much subsequent research on representation dis-
covery (Subramanian 1989; Utgoff & Stracuzzi 2002), and
many methods for discovering global state space properties
like “bottlenecks” and “symmetries” have been studied (Mc-
Govern 2002; Ravindran & Barto 2003; Mannoret al. 2004;
Simsek & Barto 2004). However, this past research lacked
a formal framework showing how state space geometry can
be transformed into representations for approximating value
functions: this paper provides such a unifying framework.

The proposed framework is based on a coordinate-free
operator model, where representations emerge from an ab-
stract harmonic analysis of thetopologyof the underlying
state space. Value functions are viewed as elements of the
Hilbert space of smooth functions on aRiemannian manifold
(Rosenberg 1997). Hodge theory (Rosenberg 1997) shows
that the Hilbert space of smooth functions on a Riemannian
manifold has a discrete spectrum captured by the eigenfunc-
tions of theLaplacian, a self-adjoint operator on differen-
tiable functions on the manifold. In the discrete setting, the
eigenspace of the self-adjoint graph Laplacian operator pro-
vides an orthonormal set of basis functions that can approx-
imate any function on the graph (Chung 1997).

Informally, agents learn representations that reflect the
agent’s experience and an environment’slarge-scalege-
ometry. An agent “living” in aone-dimensionalenviron-
ment (e.g., the “chain” MDP in (Lagoudakis & Parr 2003;
Koller & Parr 2000)) should “see” the world differently
from an agent “inhabiting” afigure-of-eightenvironment or
a closed chainor a two-dimensionalgrid world. The unex-
pected result from applying the coordinate-free approach is
that Laplacian eigenfunctions resemble actual value func-
tions, and appear remarkably adept at value function ap-
proximation. This similarity suggests a new framework for
RL where agents learn a suite of “proto-value” or task-
independent value functions, which can then subsequently
approximate task-specific value functions using rewards
(Mahadevan 2005a).

A Markov decision process (MDP) M =
〈S,A, P a

ss′ , Ra
ss′〉 is defined by a set of statesS, a set

of actionsA, a transition modelP a
ss′ specifying the distri-



bution over future statess′ when an actiona is performed in
states, and a corresponding reward modelRa

ss′ specifying
a scalar cost or reward. Abstractly, a value function is a
mappingS → R or equivalently a vector∈ R|S|. Given a
policy π : S → A mapping states to actions, its correspond-
ing value functionV π specifies the expected long-term
discounted sum of rewards received by the agent in any
given states when actions are chosen using the policy. Any
optimal policy π∗ defines the same unique optimal value
functionV ∗ which satisfies the nonlinear constraints

V
∗

(s) = max
a

∑

s′

P a
ss′ (Ra

ss′ + γV ∗(s′))

Classical techniques, includingvalue iterationandpolicy it-
eration (Puterman 1994), represent value functions exactly
using the orthonormal basis(φ1, . . . , φ|S|) of the Euclidean
spaceR|S|, whereφi = [0 . . . 1 . . . 0] has a1 only in theith

position. Linear approximation techniques, such as least-
squares policy iteration (Lagoudakis & Parr 2003) and lin-
ear programming methods for factored MDPs (Guestrinet
al. 2003), use a set ofhandcodedbasis functionsφi(s),
where the number of basis functionsk � |S|. The pro-
posed approach differs in that value functions are decom-
posed into a linear sum of learned global basis functions
using spectral analysis of the state space graph topology.
This approach differs from methods for tuning or adapt-
ing basis functions from a predefined set for a specific task
(Menache, Shimkin, & Mannor 2005; Poupartet al. 2002).
Second, since basis functions are learned and represented
using a coordinate-free model of the underlying manifold,
they reflect large-scalegeodesicconstraints: states close in
Euclidean (or some other normed) distance can be assigned
very different values if they are far apart in manifold space
(e.g., two states on opposite sides of a wall).

Laplace Operator on Riemannian Manifolds
This section introduces the Laplace-Beltrami operator in the
general setting of Riemannian manifolds (Rosenberg 1997),
as a prelude to describing the Laplace-Beltrami operator in
the more familiar setting of graphs, namely spectral graph
theory (Chung 1997). These topics are increasingly finding
applications in AI, from image segmentation (Shi & Malik
2000) and clustering (Ng, Jordan, & Weiss 2002) to semi-
supervised learning (Belkin & Niyogi 2004). However,
what is novel to this paper is the use of Laplacian methods
for function approximation, by modeling value functions as
real-valued functions on a manifold. Formally, amanifold
M is a locally Euclideanset, with ahomeomorphism(a bi-
jective or one-to-one and onto mapping) from any open set
containing an elementp ∈ M to the n-dimensional Eu-
clidean spaceRn. Manifolds with boundariesare defined
using a homeomorphism that maps elements to the upper
half planeHn. A manifold is a topological space, i.e. a
collection of open sets closed under finite intersection and
arbitrary union. In smooth manifolds, the homeomorphism
becomes adiffeomorphism, or a continuous bijective map-
ping with a continuous inverse mapping, to the Euclidean
spaceRn. In a smooth manifold, a diffeomorphism map-
ping any pointp ∈ M to its coordinates(ρ1(p), . . . , ρn(p))

should be a differentiable function with a differentiable in-
verse. Given two coordinate functionsρ(p) and ξ(p), or
charts, the induced mappingψ : ρ ◦ ξ−1 : Rn → Rn

must have continuous partial derivatives of all orders.Rie-
mannianmanifolds are smooth manifolds where the Rie-
mann metric defines the notion of length. Given any ele-
mentp ∈ M, thetangent spaceTp(M) is ann-dimensional
vector space that is isomorphic toRn. A Riemannian man-
ifold is a smooth manifoldM with a family of smoothly
varying positive definite inner productsgp, p ∈ M where
gp : Tp(M) × Tp(M) → R. For the Euclidean spaceRn,
the tangent spaceTp(M) is clearly isomorphic toRn itself.
One example of a Riemannian inner product onRn is sim-
ply g(x, y) = 〈x, y〉Rn =

∑

i xiyi, which remains the same
over the entire space. If the space is defined by probability
distributionsP (X |θ), then one example of a Riemann met-
ric is given by the Fisher informationI(θ).

Hodge’s theorem states that any smooth function on a
compact manifold has a discrete spectrum mirrored by the
eigenfunctionsof ∆, the Laplace-Beltrami self-adjoint op-
erator. On the manifoldRn, the Laplace-Beltrami operator
is ∆ =

∑

i
∂2

∂x2

i

(often written with a− sign for conven-

tion). Functions that solve the equation∆f = 0 are called
harmonic functions(Axler, Bourdon, & Ramey 2001). For
example, on the planeR2, the “saddle” functionx2 − y2

is harmonic.Eigenfunctionsof ∆ are functionsf such that
∆f = λf , whereλ is an eigenvalue of∆. If the domain
is the unit circleS1, the trigonometric functionssin(θ) and
cos(θ) form eigenfunctions, which leads toFourier analysis.
Abstract harmonic analysis generalizes Fourier methods to
smooth functions on arbitrary Riemannian manifolds. The
smoothness functionalfor an arbitrary real-valued function
on the manifoldf : M → R is given by

S(f) ≡
∫

M
| ∇f |2 dµ =

∫

M
f∆fdµ =< ∆f, f >L2(M)

whereL2(M) is the space of smooth functions onM,
and∇f is the gradient vector field off . For a Riemannian
manifold(M, g), where the Riemannian metricg is used to
define distances on manifolds, the Laplace-Beltrami opera-
tor is given as

∆ =
1√

det g

∑

ij

∂i

(

√

det g gij∂j

)

whereg is the Riemannian metric,det g is the measure of
volume on the manifold, and∂i denotes differentiation with
respect to theith coordinate function.

Theorem 1 (Hodge (Rosenberg 1997)): Let(M, g) be a
compact connected oriented Riemannian manifold. There
exists an orthonormal basis for all smooth (square-
integrable) functionsL2(M, g) consisting of eigenfunctions
of the Laplacian. All the eigenvalues are positive, except
that zero is an eigenvalue with multiplicity 1.

In other words, Hodge’s theorem shows that a smooth
function f ∈ L2(M) can be expressed asf(x) =
∑∞

i=0 aiei(x), whereei are the eigenfunctions of∆, i.e.
∆ei = λiei. The smoothnessS(ei) =< ∆ei, ei >L2(M)=
λi.



Graph Laplacian and Spectral Graph Theory
The continuous manifold setting provides a motivation for
the discrete case studied in spectral graph theory. The
Laplace-Beltrami operator now becomes the graph Lapla-
cian (Chung 1997), from which an orthonormal set of basis
functionsφG

1 (s), . . . , φG
k (s) can be constructed that asymp-

totically capture any real-valued function onG. The graph
Laplacian can be defined in several ways, such as thecom-
binatorial Laplacian and thenormalizedLaplacian, in a
range of models from undirected graphs with(0, 1) edge
weights to directed arbitrary weighted graphs with loops
(Chung 1997). For simplicity, consider an undirected graph
G = (V,E) without self-loops, wheredv denote the de-
gree of vertexv. DefineT to be the diagonal matrix where
T (v, v) = dv. Note that for an unweighted graph, the op-
eratorT−1A, whereA is the adjacency matrix, induces a
random walk on the graph. Thecombinatorial Laplacian
operator is defined as the matrixL = T −A:

L(u, v) =

{

dv if u = v
−1 if u andv are adjacent

0 otherwise

whereas thenormalized LaplacianL of the graphG is
defined as

L(u, v) =







1 if u = v anddv 6= 0
− 1√

dudv

if u andv are adjacent
0 otherwise

These definitions can be extended to weighted (directed)
graphs, where weights can reflect any local distance mea-
sure (Chung 1997). Since almost any function approxima-
tor studied previously in MDPs and RL isisotropic, e.g,
polynomials or CMAC or RBF, modeling manifolds using
undirected graphs gives sufficient generality to handle most
cases. SinceL is symmetric, its eigenvalues are all real and
non-negative. It easily follows from the above definition that

L = T− 1

2LT− 1

2

If G is a constant degreek graph, then it follows that
L = I − 1

k
A, whereA is the adjacency matrix ofG. For

a general graphG, L = T−1

2LT−1

2 = I−T− 1

2AT− 1

2 . The
LaplacianL is anoperatoron the space of functions defined
on the graphg : V → R, where (u ∼ v meansu andv are
neighbors):

Lg(u) =
1√
du

∑

v:u∼v

(

g(u)√
du

− g(v)√
dv

)

(1)

The Rayleigh quotientprovides a variational characteri-
zation of eigenvalues ofL. Eigenvalues can be found by
projections of an arbitrary functiong : V → R onto the
subspaceLg. The quotient gives the eigenvalues and the
functions satisfying orthonormality are the eigenfunctions
(here〈f, g〉G =

∑

u f(u)g(u) denotes the inner product on
graphG):

〈g,Lg〉
〈g, g〉 =

〈g, T−1

2LT−1

2 g〉
〈g, g〉 =

∑

u∼v(f(u) − f(v))2
∑

u f
2(u)du

wheref ≡ T− 1

2 g. The first eigenvalue isλ0 = 0, and
is associated with the constant functionf(u) = 1, which
means the first basis functiongo(u) =

√
T 1. Note that

the first eigenfunction (associated with eigenvalue0) of the
combinatorial LaplacianL is just the constant function1.
The second eigenfunction is the infimum over all functions
g : V → R that are perpendicular togo(u), which gives us a
formula to compute the first non-zero eigenvalueλ1, namely

λ1 = inf
f⊥

√
T1

∑

u∼v(f(u) − f(v))2
∑

u f
2(u)du

≈ inf

∫

M
‖∆f‖2

∫

m
| f |2

The last term characterizes the eigenvalues of the
Laplace-Beltrami operator. The Rayleigh quotient for
higher-order eigenfunctions is similar: each function is per-
pendicular to the subspace spanned by previous functions.
TheCheegerconstanthG of a graphG is defined as

hG(S) = min
S

|E(S, S̃)|
min(vol S, vol S̃)

Here,S is a subset of vertices,̃S is the complement of
S, andE(S, S̃) denotes the set of all edges(u, v) such that
u ∈ S andv ∈ S̃. The volume of a subsetS is defined
as volS =

∑

x∈S dX . The sign of the basis functions can
be used to decompose state spaces (see the Missionaries and
Cannibals problem in Figure 1 and the MDP in Figure 4).
Consider the problem of finding a subsetS of states such
that the edge boundary∂S contains as few edges as possi-
ble, where∂S = {(u, v) ∈ E(G) : u ∈ S andv /∈ S}.
The relation between∂S and the Cheeger constant is given
by |∂S| ≥ hG vol S. In the Missionaries and Canni-
bals task, the Cheeger constant is minimized by settingS
to be the states from1 through 8, since this will mini-
mize the numeratorE(S, S̃) and maximize the denomina-
tor min(vol S, vol S̃). A remarkable identity connects the
Cheeger constant with the spectrum of the Laplace-Beltrami
operator. This theorem underlies the reason why basis func-
tions associated with eigenvalues of the Laplace-Beltrami
operator reflect the intrinsic geometry of environments (see
also Figure 5).
Theorem 2 (Chung 1997): Defineλ1 to be the first (non-
zero) eigenvalue of the Laplace-Beltrami operatorL on a
graphG. LethG denote the Cheeger constant ofG. Then,
we have2hG ≥ λ1.

Algorithms
The proposed approach suggests a range of algorithms, vary-
ing in their complexity. This section presents the simplest
methods used in the experiments described below, and more
elaborate extensions are discussed in the concluding sec-
tion. Algorithms derived from this framework result from
implementation choices for the four main steps: exploration,
graph construction and analysis, basis function construction,
and value function approximation. In the first step, agents
explore the environment and record an experience sample
of tuples(s, a, s′, r). The exploration policy can be a ran-
dom walk, or it can be guided by actual or intrinsically mo-
tivated rewards (Singh, Barto, & Chentanez 2005). Meth-
ods like least-squares policy iteration (LSPI) (Lagoudakis &



Parr 2003) assume an initial data set of sample transitions to
learn policies; this same sample can also be used to build the
graph. The second step involves constructing and analyzing
the graph. A simple approach is to build an undirected graph
with edges(s, s′) based on observed state transitions. A
more sophisticated approach is to use some positive-definite
or even indefinite weight matrix, where weights are esti-
mated transition probabilities or can even include rewards.
Graphs analysis comprises of computing the combinatorial
or normalized graph Laplacian, and solving the eigenvec-
tor problemLv = λv. In the experiments reported be-
low, the combinatorial Laplacian was used, although both
approaches have been implemented and tested. Step 3 con-
structs the basis functions, which in the simplest case are the
low-order eigenfunctions of the graph Laplacian. A more
sophisticated choice is discussed later. Finally, in Step 4,
rewards are combined with the learned basis functions to
approximate task-specific value functions. Denote the ba-
sis function set byΦG = {v1, . . . , vk}. Assume noisy
samples of the target value functionV π or V ∗ are known
on a subset of states, so thatV̂ = (V̂ (s1), . . . , V̂ (sm))T ,
whereSG = {s1, . . . , sm}. The low-dimensional recon-
struction of a value functionV of dimensionR|S| into Rk

for k � |S| is computed as follows. Define the Gram
matrix KG = (ΦG

m)T ΦG
m, whereΦG

m is the component
wise projection of the basis functions onto the states inSG,
andKG(i, j) =

∑

k v
k
i v

k
j . The coefficients are found us-

ing a least-squares approach, by solving the equationα =

K−1
G (ΦG

M )T V̂ whereα = (α1, . . . , α|SG|) are the coeffi-
cients. Control learning methods such as Q-learning or least-
squares policy iteration (LSPI) (Lagoudakis & Parr 2003)
are easily combined with the proposed framework. In par-
ticular, a new algorithm calledRepresentation Policy Itera-
tion (RPI) has been developed, which iterates between using
the current policy to learn a new representation, and using
the learned representation to find a new policy (Mahadevan
2005b). In initial experiments, RPI outperformed LSPI on
the classic chain problem (Koller & Parr 2000) using two
handcoded state embeddings (polynomials and radial basis
functions).

Illustrative Experiments
This section illustrates the framework using experiments on
simple deterministic MDPs, as these suffice to highlight the
main ideas. The experiments also assume step 1 has been
completed yielding a complete graph of the environment
for analysis (the problem of analyzing partial graphs is dis-
cussed below). It is instructive to begin with Amarel’s clas-
sic Missionaries and Cannibals problem shown in Figure 1.
This environment is modeled as an undirected graph. The
initial state is3300L (top left node numbered 1) indicating
that all the three missionaries and cannibals are on the left
bank, and the boat is on the left bank as well. The goal state
is 0033R (top right node numbered 16), where the mission-
aries and cannibals are safely on the other side.

The proposed approach of learning representations for
function approximation can be contrasted with handcoded
approaches such as thepolynomial encodingstudied in
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Figure 1: Shown here on top is the graph representing the
missionaries and cannibals problem. The plots below show
the optimal value function (top plot), and a basis eigenfunc-
tion from the orthonormal set spanning the Hilbert space of
smooth functions on this graph. These basis functions can
look surprisingly similar to value functions; their sign mir-
rors the two-sided symmetry of this state space. The bottom
figure shows the optimal value function is almost exactly ap-
proximated with just two learned basis functions, achieving
a dimensionality reduction fromR16 → R2.

(Koller & Parr 2000; Lagoudakis & Parr 2003). Here, a state
s is mapped to the monomialsφ(s) = [1 s . . . si]T . This en-
coding easily extends to a state action encodingφ(s, a) by
addinglog2 |A| bits for encoding actions. Interestingly, this
basis set is a special case of the proposed framework which
builds customized orthonormal basis sets for an arbitrary
graph (manifold). For example, choosingi = 3 would map
state1 above toφ(1) = [1 1 1]T , state2 to φ(2) = [1 2 4]T ,
state3 to φ(s) = [1 3 9]T and so on, reducing the value
function dimensionality fromR16 → R3. As it happens,
this polynomial embedding works well on the Missionaries
and Cannibals problem, but not for the MDPs shown in Fig-
ure 2 and Figure 3. In contrast, the proposed approach auto-
matically builds the basis functionsφ(s) using global state
space analysis, achieving a dimensionality reduction as good
as the polynomial encoding for the Missionaries and Canni-
bals problem, and far superior to it for the MDPs shown in
Figure 2 and Figure 3. Figure 1 shows that the shape of the
second basis function of the combinatorial Laplacian (shown
for convenience with the sign inverted) resembles the value
function. This is no coincidence: the Laplacian is an op-
erator on the Hilbert space of functions on the graph that
enforcesgeodesicsmoothness in a manner analogous to the
Bellman backup operator on the space of value functions in
an MDP. Both map neighboring vertices on the graph to ad-
jacent real values.

Figure 3 demonstrates that Laplacian eigenfunctions ex-
cel on standard RL benchmark problems: the mean-squared



error using the Laplacian basis functions on a30 × 30
grid world environment is substantially less than the hand-
coded polynomial state encoding. Figure 4 shows Laplacian
eigenfunctions can recursively decompose larger MDPs into
smaller ones. This figure also shows that eigenfunctions de-
rived from the right topology are much more effective than
those produced from a dramatically incorrect topology (a
complete graph). Figure 5 shows geometric structure dis-
covery and value function approximation for a larger five
room grid world MDP.
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Figure 2: For the environment shown in (a), an eigenfunc-
tion of the (graph) Laplacian shown in (d), from the or-
thonormal basis set of smooth functions on the manifold,
closely resembles the value function shown in (c). (b) and
(e) show the optimal value function can be approximated
with just two learned basis functions. The plot in (b) com-
pares the mean-squared error using the learned representa-
tion (bottom curve) with a fixed polynomial encoding (top
curve) for varying numbers of basis functions.
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Figure 4: Laplacian eigenfunctions decompose the state
space of a MDP into smaller units. Here, the second eigen-
function splits the environment into three “arms”. The fourth
eigenfunction splits each arm into two symmetric pieces.
The bottom plot shows mean-squared error using Lapla-
cian eigenfunctions from the right topology (top curve) is
much lower than from an incorrect (complete graph) topol-
ogy (bottom curve).

Analysis and Future Work

The proposed approach can be extended to weighted graphs,
where the weights reflect estimated transition probabilities
or rewards. Learning such graphs will require more sam-
ples. Once a graph is learned, the complexity of spectral
analysis isO(N3), whereN is the number of nodes in the
graph. However, sample-based approximations can signif-
icantly reduce this complexity. The approach can be ex-
tended to the more realistic case where agents can only build
partial graphs as discussed below. In large state spaces, ex-
ploration, graph construction, and spectral analysis can be
interleaved.

A number of specific directions are being investigated to
scale the approach. The state space can be modeled at mul-
tiple levels of abstraction, where higher level graphs can be
viewed as a SMDP-homomorphism of lower-level graphs
(Ravindran & Barto 2003). Laplacian eigenfunctions cap-
ture symmetries and other geometric regularities for auto-
matically learning homomorphisms.Nystromapproxima-
tions for solving integral equations reduce the complexityof
spectral analysis fromO(N3) to O(m2N) wherem � N
is the number of samples for which complete local distance
information is available (Fowlkeset al. 2004). A number
of other randomized low-rank approximations show that in-
teresting linear algebra can be performed in time indepen-
dent of the size of the matrix (Achlioptas, McSherry, &
Scholkopff 2002; Frieze, Kannan, & Vempala 1998). An-



Figure 5: Top: eigenfunctions learned for a five-rooom en-
vironment with5×21×20 = 2100 states. Middle: the opti-
mal value function; Bottom: approximation using31 learned
eigenfunctions.

other direction being investigated is to build a sparse hierar-
chical representation of the Laplace-Beltrami operator using
diffusion wavelets(Coifman & Maggioni ). This approach
yields a multi-scale hierarchical tree of learned basis func-
tions, which can be efficiently computed inO(N log2N).
Unlike Fourier methods, which are based on differential
equations, wavelets are based on dilation equations and use
basis functions with compact support. A detailed compar-
ison of diffusion wavelets and Laplacian eigenfunctions is
underway (Mahadevan & Maggioni 2005).
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