
Multiscale Manifold Learning

Chang Wang
IBM T. J. Watson Research Lab

1101 Kitchawan Rd
Yorktown Heights, New York 10598

wangchan@us.ibm.com

Sridhar Mahadevan
Computer Science Department

University of Massachusetts
Amherst, Massachusetts 01003
mahadeva@cs.umass.edu

Abstract

Many high-dimensional data sets that lie on a low-
dimensional manifold exhibit nontrivial regularities at mul-
tiple scales. Most work in manifold learning ignores this
multiscale structure. In this paper, we propose approaches
to explore the deep structure of manifolds. The proposed ap-
proaches are based on the diffusion wavelets framework, data
driven, and able to directly process directional neighborhood
relationships without ad-hoc symmetrization. The proposed
multiscale algorithms are evaluated using both synthetic and
real-world data sets, and shown to outperform previous man-
ifold learning methods.

Introduction
In many application domains of interest, from information
retrieval and natural language processing to perception and
robotics, data appears high dimensional, but often lies near
or on low-dimensional structures, such as a manifold or a
graph. By explicitly modeling and recovering the underly-
ing structure, manifold learning methods (Belkin and Niyogi
2003; Roweis and Saul 2000; He and Niyogi 2003) have
been shown to be significantly more effective than previous
dimensionality reduction methods. Many existing manifold
learning approaches are largely based on extending classical
Fourier analysis to graphs and manifolds. In particular, spec-
tral graph theory (Chung 1997) combined with classical dif-
ferential geometry and global analysis on manifolds forms
the theoretical basis for “Laplacian” techniques for function
approximation and learning on graphs and manifolds, using
the eigenfunctions of a Laplace operator naturally defined on
the data manifold to reveal hidden structure. While Fourier
analysis is a powerful tool for global analysis of functions,
it is known to be poor at recovering multiscale regularities
across data and for modeling local or transient properties
(Mallat 1998). Consequently, one limitation of these tech-
niques is that they only yield a “flat” embedding but not a
multiscale embedding. However, when humans try to solve
a particular problem (such as natural language processing),
they often exploit their intuition about how to decompose
the problem into sub-problems and construct multiple levels
of representation. As a consequence, there has been rapidly
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growing interest in the problem of “deep learning”, wherein
learning methods are designed that construct multiple layers
of latent representations from data (Hinton and Salakhutdi-
nov 2006; Hinton, Osindero, and Teh 2006; Lee et al. 2007;
Bengio 2009).

Another problem with such Fourier analysis based meth-
ods is that they cannot handle the relationships character-
ized by directed graphs without some ad-hoc symmetriza-
tion. Some typical examples where non-symmetric matri-
ces arise are when k-nearest neighbor relationships are used,
in information retrieval/data mining applications based on
network topology (Shin, Hill, and Raetsch 2006), and state
space transitions in a Markov decision process. For a gen-
eral weight matrix W representing the edge weights on a di-
rected graph, its eigenvalues and eigenvectors are not guar-
anteed to be real. Many current approaches to this problem
convert the directed graphs to undirected graphs. A simple
solution is setting W to be W +WT or WWT . It is more
desirable to find an approach that handles directed graphs
without the need for symmetrization.

To address the need for multiscale analysis and directional
neighborhood relationships, we explore multiscale exten-
sions of Fourier analysis based approaches using wavelet
analysis (Mallat 1998). Classical wavelets in Euclidean
spaces allow a very efficient multiscale analysis much like
a highly flexible tunable microscope probing the proper-
ties of a function at different locations and scales. Dif-
fusion wavelets (DWT) (Coifman and Maggioni 2006) ex-
tends the strengths of classical wavelets to data that lie on
graphs and manifolds. The term diffusion wavelets is used
because it is associated with a diffusion process that defines
the different scales, allows a multiscale analysis of functions
on manifolds and graphs. We focus on multiscale exten-
sions of Laplacian eigenmaps (Belkin and Niyogi 2003) and
LPP (He and Niyogi 2003). Laplacian eigenmaps constructs
embeddings of data using the low-order eigenvectors of the
graph Laplacian as a new coordinate basis (Chung 1997),
which extends Fourier analysis to graphs and manifolds. Lo-
cality Preserving Projections (LPP) is a linear approximation
of Laplacian eigenmaps.

Our paper makes the following specific contributions: (1)
We investigate the relationships between DWT and (multi-
scale) Laplacian eigenmaps and LPP. To extend LPP to a
multiscale variant requires solving a generalized eigenvalue



problem using diffusion wavelets. This extension requires
processing two matrices, and was not addressed in previous
work on diffusion wavelets. (2) We also show how to ap-
ply the method to directed (non-symmetric) graphs. Previ-
ous applications of diffusion wavelets did not focus on non-
symmetric weight matrices.

Similar to Laplacian eigenmaps and LPP, our approach
represents the set of instances by vertices of a graph, where
an edge is used to connect instances x and y using a dis-
tance measure, such as if y is among the k-nearest neigh-
bors of x. The weight of the edge is specified typically us-
ing either a symmetric measure, such as the heat kernel or
a non-symmetric measure, such as a directional relationship
induced by non-symmetric actions in a Markov decision pro-
cess. Such pairwise similarities generate a transition prob-
ability matrix for a random walk P = D−1W , where W
is the weight matrix, and D is a diagonal “valency” matrix
of the row-sums of W . In contrast to almost all previous
graph-based eigenvector methods, we do not require W to
be symmetric. In Laplacian eigenmaps and LPP, dimension-
ality reduction is achieved using eigenvectors of the graph
Laplacian. In the new approach, we use diffusion scaling
functions, which are defined at multiple scales. In the spe-
cial case of symmetric matrices, these span the same space
as selected spectral bands of eigenvectors.

The remainder of this paper is organized as follows. The
next section discusses the diffusion wavelets model. Then,
we explain the main multiscale manifold learning algorithms
and the rationale underlying our approaches. We finish with
a presentation of the experimental results and conclusions.

Diffusion Wavelets Model
The procedure for performing multiscale decompositions
using diffusion wavelets and the relevant notation are ex-
plained in Figure 1. The main procedure can be explained
as follows: an input matrix T is orthogonalized using an
approximate QR decomposition in the first step. T ’s QR
decomposition is written as T = QR, where Q is an orthog-
onal matrix andR is an upper triangular matrix. The orthog-
onal columns of Q are the scaling functions. They span the
column space of matrix T . The upper triangular matrix R is
the representation of T on the basis Q. In the second step,
we compute T 2. Note this is not done simply by multiply-
ing T by itself. Rather, T 2 is represented on the new basis
Q: T 2 = (RQ)2. This result is based on matrix invariant
subspace theory (Stewart and Sun 1990). Since Q may have
fewer columns than T , T 2 may be a smaller square matrix.
The above process is repeated at the next level, generating
compressed dyadic powers T 2j , until the maximum level is
reached or its effective size is a 1 × 1 matrix. Small pow-
ers of T correspond to short-term behavior in the diffusion
process and large powers correspond to long-term behavior.
Scaling functions are naturally multiscale basis functions be-
cause they account for increasing powers of T (in particular,
the dyadic powers 2j). At scale j, the representation of T 2j

is compressed based on the amount of remaining informa-
tion and the precision we want to keep. Figure 2 illustrates
this procedure.

{φj , Tj} = DWT (T, φ0, QR, J, ε)
//INPUT:
//T : Diffusion operator. φ0: Initial (unit vector) basis matrix.
QR: A modified QR decomposition.
//J : Max step number. This is optional, since the algorithm auto-

matically terminates.
//ε: Desired precision, which can be set to a small number or

simply machine precision.
//OUTPUT : φj : Diffusion scaling functions at scale j. Tj =

[T 2j ]
φj

φj
.

For j = 0 to J − 1{
([φj+1]φj , [T 2j ]

φj+1

φj
)← QR([T 2j ]

φj

φj
, ε);

[T 2j+1

]
φj+1

φj+1
= ([T 2j ]

φj+1

φj
[φj+1]φj )

2;
}

Figure 1: Diffusion Wavelets construct multiscale representations
at different scales. The notation [T ]

φb
φa

denotes matrix T whose col-
umn space is represented using basis φb at scale b, and row space is
represented using basis φa at scale a. The notation [φb]φa denotes
basis φb represented on the basis φa. At an arbitrary scale j, we
have pj basis functions, and length of each function is lj . [T ]

φb
φa

is
a pb × la matrix, [φb]φa is an la × pb matrix. Typically the initial
basis for the algorithm φ0 is assumed to be the delta functions (rep-
resented by an identity matrix), but this is not strictly necessary.
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Figure 2: Multiscale diffusion analysis.

We use the “Olivetti Faces” data to illustrate the differ-
ence between eigenvector basis and diffusion wavelets ba-
sis (scaling functions). The dataset contains 200 face im-
ages represented over pixels. The well-known eigenface ap-
proach (Turk and Pentland 1991) first computes the pixel-
pixel covariance matrix, and then computes the correspond-
ing eigenvectors. Each eigenvector is an “eigenface”. Using
this approach, each image can be written as a linear combi-
nation of eigenfaces. In our approach, we start with the same
covariance matrix, but we use diffusion wavelets instead of
eigenvectors. Each column of [φj ]φ0

is used as a “diffusion
face”. Diffusion wavelets model identifies a 4 level hierar-



Figure 3: All 9 Diffusion Wavelets Basis Functions at Level 3.

Figure 4: Selected Diffusion Wavelets Basis Functions at Level 1.

Figure 5: Eigenfaces.

199 Bases 52 Bases 9 Bases 2 Bases

Figure 6: Image Reconstruction at Different Scales

chy of diffusionfaces, and dimensionality of each level is:
199, 52, 9, 2. We plot all 9 diffusionfaces at level 3 in Fig-
ure 3, and the top 24 diffusionfaces at level 1 in Figure 4.
We also plot the top 24 eigenfaces in Figure 5. It is clear
that these two types of basis are quite different: eigenvec-
tors are global, and almost all such bases model the whole
face. Diffusion faces are defined at multiple scales, where
the finer scale (e.g. Figure 4) characterizes the details about
each image, while the coarser scales (e.g. Figure 3) skip
some of the details and only keep the lower frequency infor-
mation. Scaling functions (especially those at low levels) are
usually sparse, and most of them focus on just one particu-
lar feature on the face, like eyes and noses. Given an image
written as a summation of diffusionfaces, we can estimate
what the image looks like based on the coefficients (contri-
butions) of each type of eyes, noses, etc. Figure 6 shows the
face reconstruction results using diffusion faces at different
scales.

Multiscale Manifold Learning
In this section, we discuss how to extend Laplacian eigen-
maps and LPP to multiple scales using diffusion wavelets.
Notation: X = [x1, · · · , xn] be an p × n matrix repre-
senting n instances defined in a p dimensional space. W

1. Construct diffusion matrix T characterizing the given
data set:
• T = I − L is an n× n diffusion matrix.

2. Construct multiscale basis functions using diffusion
wavelets:
• {φj , Tj} = DWT (T, I,QR, J, ε).
• The resulting [φj ]φ0 is an n× pj matrix (Equation (1)).

3. Compute lower dimensional embedding (at level j):
• The embedding xi → yi = row i of [φj ]φ0 .

1. Construct relationship matrix T characterizing the given
data set:
• T = (F+XLXT (FT )+)+ is an r × r matrix..

2. Apply diffusion wavelets to explore the intrinsic structure
of the data:
• {φj , Tj} = DWT (T, I,QR, J, ε).
• The resulting [φj ]φ0 is an r × pj matrix (Equation (1)).

3. Compute lower dimensional embedding (at level j):
• The embedding xi → yi = ((FT )+[φj ]φ0)

T
xi.

Figure 7: Top: Multiscale Laplacian Eigenmaps; Bottom:
Multiscale LPP.

is an n × n weight matrix, where Wi,j represents the sim-
ilarity of xi and xj (Wi,j can be defined by e−‖xi−xj‖2 ).
D is a diagonal valency matrix, where Di,i =

∑
jWi,j .

W = D−0.5WD−0.5. L = I − W , where L is the
normalized Laplacian matrix and I is an identity matrix.
XXT = FFT , where F is a p × r matrix of rank r. One
way to compute F from X is singular value decomposition.
(·)+ represents the Moore-Penrose pseudo inverse.
(1) Laplacian eigenmaps minimizes the cost function∑
i,j(yi − yj)

2Wi,j , which encourages the neighbors in
the original space to be neighbors in the new space. The
c dimensional embedding is provided by eigenvectors of
Lx = λx corresponding to the c smallest non-zero eigenval-
ues. The cost function for multiscale Laplacian eigenmaps
is defined as follows: given X , compute Yk = [y1k, · · · , ynk ]
at level k (Yk is a pk × n matrix) to minimize

∑
i,j(y

i
k −

yjk)
2Wi,j . Here k = 1, · · · , J represents each level of the

underlying manifold hierarchy.
(2) LPP is a linear approximation of Laplacian eigen-
maps. LPP minimizes the cost function

∑
i,j(f

Txi −
fTxj)

2Wi,j , where the mapping function f constructs a
c dimensional embedding, and is defined by the eigenvec-
tors of XLXTx = λXXTx corresponding to the c small-
est non-zero eigenvalues. Similar to multiscale Laplacian
eigenmaps, multiscale LPP learns linear mapping functions
defined at multiple scales to achieve multilevel decomposi-
tions.



The Multiscale Algorithms
Multiscale Laplacian eigenmaps and multiscale LPP algo-
rithms are shown in Figure 7, where [φj ]φ0

is used to com-
pute a lower dimensional embedding. As shown in Figure 1,
the scaling functions [φj+1]φj are the orthonormal bases to
span the column space of T at different levels. They de-
fine a set of new coordinate systems revealing the informa-
tion in the original system at different scales. The scaling
functions also provide a mapping between the data at longer
spatial/temporal scales and smaller scales. Using the scaling
functions, the basis functions at level j can be represented
in terms of the basis functions at the next lower level. In
this manner, the extended basis functions can be expressed
in terms of the basis functions at the finest scale using:

[φj ]φ0 = [φj ]φj−1 [φj−1]φ0 = [φj ]φj−1 · · · [φ1]φ0 [φ0]φ0 , (1)

where each element on the right hand side of the equation
is created by the procedure shown in Figure 1. In our ap-
proach, [φj ]φ0

is used to compute lower dimensional embed-
dings at multiple scales. Given [φj ]φ0

, any vector/function
on the compressed large scale space can be extended nat-
urally to the finest scale space or vice versa. The connec-
tion between vector v at the finest scale space and its com-
pressed representation at scale j is computed using the equa-
tion [v]φ0

= ([φj ]φ0
)[v]φj

. The elements in [φj ]φ0
are usu-

ally much coarser and smoother than the initial elements
in [φ0]φ0

, which is why they can be represented in a com-
pressed form.

Theoretical Analysis
It is well-known that regular Laplacian eigenmaps and
LPP both return the optimal dimensionality reduction
results with respect to the cost functions described at
the beginning of this section (Belkin and Niyogi 2003;
He and Niyogi 2003). If the input matrix is symmetric,
there is an interesting connection between our algorithms
and regular approaches. Theorem 1 and 3 below prove that
the dimensionality reduction results produced by the pro-
posed approaches at level k and the results from Laplacian
eigenmaps and LPP (with top pk eigenvectors) are the same
up to a rotation and a precision. So the proposed approaches
are also optimal with respect to the same cost functions
up to a precision. Theorems 2 proves some intermediate
results, which are subsequently used in Theorem 3. One
significant advantage of our approach is that it also directly
generalizes to non-symmetric input matrices.

Theorem 1: Laplacian eigenmaps (with eigenvectors
corresponding to pj smallest non-zero eigenvalues) and
Multiscale Laplacian eigenmaps (at level j) return the
same pj dimensional embedding up to a rotation Q and a
precision.
Proof: In Laplacian eigenmaps, we use row i of V1:pj to
represent pj dimensional embedding of xi, where V1:pj is
an n × pj matrix representing the pj smallest eigenvectors
of L. When T = I − L, the largest eigenvectors of T are
the smallest eigenvectors of L. Let [φj ]φ0

represent the
scaling functions of T at level j, then V1:pj and [φj ]φ0 span
the same space up to a precision (Coifman and Maggioni
2006), i.e.

V1:pjV
T
1:pj = [φj ]φ0 [φj ]

T
φ0
.

Since the columns of both V1:pj and [φj ]φ0
are orthonormal,

it is easy to verify that

V T1:pjV1:pj = [φj ]
T
φ0
[φj ]φ0 = I,

where I is a pj × pj identity matrix. So

V1:pj = V1:pjV
T
1:pjV1:pj = [φj ]φ0 [φj ]

T
φ0
V1:pj = [φj ]φ0([φj ]

T
φ0
V1:pj ).

Next, we show Q = [φj ]
T
φ0
V1:pj is a rotation matrix.

QTQ = V T1:pj [φj ]φ0 [φj ]
T
φ0
V1:pj = V T1:pjV1:pjV

T
1:pjV1:pj = I.

QQT = [φj ]
T
φ0
V1:pjV

T
1:pj [φj ]φ0 = [φj ]

T
φ0
[φj ]φ0 [φj ]

T
φ0
[φj ]φ0 = I.

det(QTQ) = (det(Q))2 = 1 =⇒ det(Q) = 1

So Q is a rotation matrix.

The embeddings constructed by LPP reduces to
solving the generalized eigenvalue decomposition
XLXTx = λXXTx, where we have two input ma-
trices XLXT and XXT to process. However, using the
DWT procedure requires converting the generalized eigen-
value decomposition to a regular eigenvalue decomposition
problem (with one input matrix).

Theorem 2: Solution to generalized eigenvalue decompo-
sition XLXT v = λXXT v is given by ((FT )+x, λ),
where x and λ are eigenvector and eigenvalue of
F+XLXT (FT )+x = λx.
Proof: We know XXT = FFT , where F is a p× r matrix
of rank r.
Case 1: When XXT is positive definite: It follows imme-
diately that r = p. This implies that F is an p × p full rank
matrix: F−1 = F+.

XLXT v = λXXT v =⇒ XLXT v = λFFT v

=⇒ XLXT v = λFFT (FT )−1FT v

=⇒ XLXT v = λF (FT v) =⇒ XLXT (FT )−1(FT v) = λF (FT v)

=⇒ F−1XLXT (FT )−1(FT v) = λ(FT v)

So solution to XLXT v = λXXT v is given by
((FT )+x, λ), where x and λ are eigenvector and eigenvalue
of

F+XLXT (FT )+x = λx.

Case 2: When XXT is positive semi-definite, but not pos-
itive definite: In this case, r < p and F is a p × r matrix
of rank r. Since X is a p × n matrix, F is a p × r matrix,
there exits a matrix G such that X = FG. This implies
G = F+X .

XLXT v = λXXT v =⇒ FGLGTFT v = λFFT v

=⇒ FGLGT (FT v) = λF (FT v)

=⇒ (F+F )GLGT (FT v) = λ(FT v) =⇒ GLGT (FT v) = λ(FT v)

=⇒ F+XLXT (FT )+(FT v) = λ(FT v)

So one solution to XLXT v = λXXT v is ((FT )+x, λ),
where x and λ are eigenvector and eigenvalue of

F+XLXT (FT )+x = λx.

Note that the eigenvector solution to Case 2 is not unique.



Theorem 3: For any instance u, its embedding under
LPP (using the top pj eigenvectors) is the same as its
embedding under multiscale LPP (at level j) up to a rotation
and a precision.
Proof: It is well known that the normalized graph Laplacian
L is positive semi-definite (PSD), so F+XLXT (FT )+ is
also PSD, and all its eigenvalues are ≥ 0. This implies that
eigenvectors corresponding to F+XLXT (FT )+’s smallest
non-zero eigenvalues are the same as eigenvectors corre-
sponding to (F+XLXT (FT )+)+’s largest eigenvalues.
Let T = (F+XLXT (FT )+)+, [φj ]φ0

(a p × pj matrix)
represent the diffusion scaling functions of T at level j.
From Theorem 1, it follows that V1:pj = [φj ]φ0

Q where
V1:pj is a p × pj matrix, represents the pj smallest eigen-
vectors of F+XLXT (FT )+ and Q is a rotation. Given an
instance u (p× 1 vector): its embedding result with LPP is

((FT )+V1:pj )
Tu = V T1:pjF

+u;

its embedding result with multiscale LPP is

((FT )+[φj ]φ0)
Tu = [φj ]

T
φ0
F+u = QV T1:pjF

+u.

So, the two embeddings are the same up to a rotation Q and
a precision.

Experimental Results
To test the effectiveness of our multiscale manifold learning
approaches, we compared “flat” and “deep” multiscale ap-
proaches using dimensionality reduction tasks on both syn-
thetic and real-wold data sets. It is useful to emphasize that
the intrinsic structure of the data set does not depend on the
parameters. The structure only depends on the given data.
The input parameters decide the way to explore the struc-
ture. The time complexity of the proposed approaches are
similar to the corresponding eigenvector based approaches.

Punctured Sphere Example
Consider the punctured sphere in Figure 8(A) based on 800
samples. We use the heat kernel to generate its weight ma-
trix, and for each point, we compute the weights for 20 near-
est neighbors (in each row). This results in a non-symmetric
matrixW . To apply Laplacian eigenmaps and LPP, we sym-
metrize W : W = (W + WT )/2. Figure 8(B) shows the
spectrums of W and its higher powers. The high powers
have a spectrum that decays much more rapidly than the
low powers. This spectral decay property is characteristic
of “diffusion-like” matrices, particularly those generated by
the k nearest neighbor similarity metric. The embedding re-
sults are in Figure 8(C)-(I). The results verify Theorem 1
and 3, showing multiscale approaches (using diffusion scal-
ing functions at level j) and eigenmap approaches (using top
pj eigenvectors) result in the same embeddings up to a ro-
tation and a precision. Furthermore, multiscale Laplacian
eigenmaps can successfully identify the intrinsic structures
of the data set. Dimensionality of the finest scales of mul-
tiscale Laplacian eigenmaps is 3, which is the intrinsic di-
mensionality of the given data. Also, among all four non-
linear dimensionality reduction approaches (Direct Lapla-
cian (Chung 2005), Laplacian eigenmaps, Multiscale Lapla-
cian eigenmaps with W and W ), only Multiscale Laplacian

eigenmaps with the original weight matrix W reconstructs
the original structure, while both approaches based on sym-
metrized W fail. The reason that symmetrization does not
work is that for the points (red) on the rim of the sphere,
their 20 neighbors are mostly red points. For the points (yel-
low) in the middle, some of their 20 neighbors are red, since
the yellow points are sparse. Symmetrizing the relationship
matrix will add links from the red to the yellow. This is
equal to reinforcing the relationship between the red and
yellow, which further forces the red to be close to the yel-
low in the low dimensional space. The above process weak-
ens the relationship between the red points. So in the 3D
embedding, we see some red points are far away from each
other, while the red-yellow relationship is well preserved.
Directed Laplacian also fails to generate good embeddings
in this task. Finally, all three linear dimensionality reduc-
tion approaches (LPP, multiscale LPP with W and W ) can
reconstruct the original structure. A possible reason for this
is that the strong linear mapping constraint prevents overfit-
ting from happening for this task.
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Figure 8: Punctured Sphere Example: (A) Puncture Sphere; (B)
Spectrum of W ; (C) Directed Laplacian with W ; (D) Laplacian
eigenmaps with W ; (E) Multiscale Laplacian eigenmaps with W
(finest scale); (F) Multiscale Laplacian eigenmaps with W (finest
scale); (G) LPP with W ; (H) Multiscale LPP with W ; (I) Multi-
scale LPP with W .

Citation Graph Mining
The citation data set in KDD Cup 2003 consists of scientific
papers (about 29, 000 documents) from arXiv.org. These
papers are from high-energy physics. They cover the pe-
riod from 1992 through 2003. We sampled 3,369 docu-
ments from the data set and created a citation graph, i.e.
a set of pairs of documents, showing that one paper refer-
ences another. To evaluate the methods, we need to assign
each document a class type. To compute this, we first rep-
resent each paper using a TF-IDF vector based on the text
of its abstract and the title, then we use the dot product to
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Figure 9: Comparison of citation graph embeddings.
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Figure 10: Comparison of NSF abstracts embeddings (using
‘division’ as label).

compute the similarity between any two papers. Hierarchi-
cal clustering is used to assign each document with a class.
As a result, we get 7 classes. We apply both Multiscale
Laplacian eigenmaps and regular Laplacian eigenmaps to
the citation graph (without using document contents). Since
the input is a graph, LPP and multiscale LPP can not be
used. Multiscale approach results in a 8 level hierarchy. Di-
mensionality of each level is: 3369, 1442, 586, 251, 125,
105, 94, 7. From the result, we can see that multiscale ap-
proach successfully identifies the real intrinsic dimension-
ality at the highest level: 7 classes. Obviously, the cita-
tion graph is non-symmetric, and to apply Laplacian eigen-
maps, we symmetrize the graph as before. A leave-one-out
test is used to compare the low dimensional embeddings.
We first map the data to a d dimensional space (we run
10 tests: d = 10, 20, 30 · · · 100) using both multiscale ap-
proach (using basis functions at level 6) and regular Lapla-
cian eigenmaps. For each document in the new space, we
check whether at least one document from the same class
is among its K nearest neighbors. The multiscale approach
using a non-symmetric graph performs much better than reg-
ular Laplacian eigenmaps with a symmetric graph in all 10
tests. We plot the average performance of these tests in Fig-
ure 9. Laplacian eigenmaps is less effective because the ci-
tation relationship is directed, and a paper that is cited by
many other papers should be treated as completely different
from a paper that cites many others but is not cited by others.

NSF Research Awards Abstracts Data
We also ran a test on a selected set of the NSF research
awards abstracts (Frank and Asuncion 2010), which in-
cludes 5,000 abstracts describing NSF awards for basic re-
search. The data set is represented by bag-of-words and
has already been cleaned. Each abstract has a correspond-
ing label: “division” (37 different values). Using Multiscale
Laplacian eigenmaps, a 9 level manifold hierarchy was au-
tomatically constructed. Dimensionality discovered at each
level was: 5000, 3069, 3052, 2524, 570, 54, 20, 13, 9. We
applied the same quantitative comparison approach as that
used in the previous section to compare Multiscale Lapla-
cian eigenmaps (level 5) and regular Laplacian eigenmaps
(with varying numbers of eigenvectors: 100, 1200, 1600,
2000). The results are summarized in Figure 10. The 570
dimensional embedding returned the best results.

From the figures, we can see that choosing an appropriate
scale for embedding can help improve learning performance.
Using too many or too few bases may result in a redundant
feature space or loss of valuable information. Finding an
appropriate value for dimensionality is quite difficult. In
previous approaches, the users need to specify this value.
Generally speaking, even though a given problem may have
tens of thousands of instances, the number of levels identi-
fied by the new approach is a much smaller number (often
< 10). Also, some levels are defined by either too many or
too few features. This eliminates from consideration addi-
tional levels, usually leaving a handful of levels as possible
candidates. In this example, we chose the space defined by
570 features, since the levels below and above this have too
few or too many features, respectively. Manifold hierarchy
is task independent. For different tasks, users can select the
most appropriate level by testing his/her data at different lev-
els. For simplicity, the paper focuses on selecting scaling
functions at a single level, but the methods can be extended
to use multiple levels together.

Conclusions
This paper presents manifold learning techniques that yield
a multiscale decomposition of high-dimensional data. The
proposed approaches are based on the diffusion wavelets
framework, and are data driven. In contrast to “flat”
eigenvector based approaches, which can only deal with
symmetric relationships, our approach is able to analyze
non-symmetric relationship matrices without ad-hoc sym-
metrization. The superior performance of the multiscale
techniques and some of their advantages are illustrated using
both synthetic and real-world data sets.
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