
Proto-value Functions: A Laplacian Framework for Learning

Representation and Control in Markov Decision Processes

Sridhar Mahadevan

Department of Computer Science

University of Massachusetts

Amherst, MA 01003

mahadeva@cs.umass.edu

Mauro Maggioni

Program in Applied Mathematics

Department of Mathematics

Yale University

New Haven, CT 06511

mauro.maggioni@yale.edu

July 17, 2006

Technical Report 2006-35
Department of Computer Science

140 Governors Drive
University of Massachusetts

Amherst, Massachusetts 01003-9624

Abstract

This paper introduces a novel paradigm for solving Markov decision processes (MDPs),
based on jointly learning representations and optimal policies. Proto-value functions are
geometrically customized task-independent basis functions forming the building blocks
of all value functions on a given state space graph or manifold. In this first of two
papers, proto-value functions are constructed using the eigenfunctions of the (graph
or manifold) Laplacian, which can be viewed as undertaking a Fourier analysis on the
state space graph. The companion paper (Maggioni and Mahadevan, 2006) investi-
gates building proto-value functions using a multiresolution manifold analysis frame-
work called diffusion wavelets, which is an extension of classical wavelet representations
to graphs and manifolds. Proto-value functions combine insights from spectral graph
theory, harmonic analysis, and Riemannian manifolds. A novel variant of approximate
policy iteration, called representation policy iteration, is described, which combines
learning representations and approximately optimal policies. Two strategies for scaling
proto-value functions to continuous or large discrete MDPs are described. For contin-
uous domains, the Nyström extension is used to interpolate Laplacian eigenfunctions
to novel states. To handle large structured domains, a hierarchical framework is pre-
sented that compactly represents proto-value functions as tensor products of simpler
proto-value functions on component subgraphs. A variety of experiments are reported,
including perturbation analysis to evaluate parameter sensitivity, and detailed compar-
isons of proto-value functions with traditional parametric function approximators.

Keywords: Markov Decision Processes, Reinforcement learning, Spectral Graph The-
ory, Harmonic Analysis, Riemannian Manifolds.

1

Proto-value functions

Proto-value Functions: A Laplacian Framework for Learning

Representation and Control in Markov Decision Processes

Sridhar Mahadevan mahadeva@cs.umass.edu

Department of Computer Science
University of Massachusetts
Amherst, MA 01003, USA

Mauro Maggioni mauro.maggioni@yale.edu

Program in Applied Mathematics

Department of Mathematics

Yale University

New Haven,CT,06510

Editor:

Abstract

This paper introduces a novel paradigm for solving Markov decision processes (MDPs),
based on jointly learning representations and optimal policies. Proto-value functions are
geometrically customized task-independent basis functions forming the building blocks of
all value functions on a given state space graph or manifold. In this first of two papers,
proto-value functions are constructed using the eigenfunctions of the (graph or manifold)
Laplacian, which can be viewed as undertaking a Fourier analysis on the state space graph.
The companion paper (Maggioni and Mahadevan, 2006) investigates building proto-value
functions using a multiresolution manifold analysis framework called diffusion wavelets,
which is an extension of classical wavelet representations to graphs and manifolds. Proto-
value functions combine insights from spectral graph theory, harmonic analysis, and Rie-
mannian manifolds. A novel variant of approximate policy iteration, called representation
policy iteration, is described, which combines learning representations and approximately
optimal policies. Two strategies for scaling proto-value functions to continuous or large
discrete MDPs are described. For continuous domains, the Nyström extension is used to
interpolate Laplacian eigenfunctions to novel states. To handle large structured domains,
a hierarchical framework is presented that compactly represents proto-value functions as
tensor products of simpler proto-value functions on component subgraphs. A variety of
experiments are reported, including perturbation analysis to evaluate parameter sensitiv-
ity, and detailed comparisons of proto-value functions with traditional parametric function
approximators.

Keywords: Markov decision processes, reinforcement learning, value function approxi-
mation, manifold learning, spectral graph theory.

1. Introduction

This paper introduces a novel framework for solving Markov decision processes (MDPs)
(Puterman, 1994), by simultaneously learning both the underlying representation or basis
functions and (approximate) optimal policies. The framework is based on a new type of
basis representation for approximating value functions called a proto-value function (Ma-

1

Mahadevan and Maggioni

hadevan, 2005a,b). These are task-independent global basis functions that collectively span
the space of all possible (square-integrable) value functions on a given state space. Proto-
value functions incorporate geometric constraints intrinsic to the environment: states close
in Euclidean distance may be far apart in data space when measured on the manifold (e.g.
two states on opposite sides of a wall in a spatial navigation task). While there have been
several attempts to fix the shortcomings of traditional function approximators to address
the inherent nonlinear nature of value functions, such as the idea of building successor
representations (Dayan, 1993) or applying methods from computer vision to detect non-
linearities (Drummond, 2002), these approaches have lacked a broad theoretical framework
and consequently been explored in the relatively narrow context of discrete MDPs. We
show that by rigorously formulating the problem of value function approximation as ap-
proximating real-valued functions on a graph or manifold, a more general solution emerges
that not only has broader applicability than these previous methods, but also enables a new
class of algorithms for solving MDPs by jointly learning representations and policies.

In this first of two papers, proto-value functions are viewed formally in the “Fourier”
tradition, by diagonalizing and using the eigenfunctions of a symmetric operator called the
Laplacian (associated with a heat diffusion equation) on a graph or Riemannian manifold
(Rosenberg, 1997). In the second paper (Maggioni and Mahadevan, 2006), this manifold
framework is extended to a multi-resolution approach, where basis functions are constructed
using the newly developed framework of diffusion wavelets (Coifman and Maggioni, 2004).
Mathematically, the proposed framework takes coordinate-free objects such as graphs and
constructs coordinate-based representations from a harmonic analysis of the state space
geometry. Value functions are viewed as elements of a Hilbert space of functions on a
graph or Riemannian manifold. Under rather general conditions, the eigenfunctions of the
Laplacian, a self-adjoint (symmetric) operator on differentiable functions on the manifold
(Rosenberg, 1997), form an orthonormal basis for this Hilbert space. In the discrete setting
of graphs, spectral analysis of the graph Laplacian operator provides an orthonormal set
of basis functions on the graph for approximating any (square-integrable) function on the
graph (Chung, 1997).

This research builds on recent work on manifold and spectral learning (Tenenbaum
et al., 2000; Roweis and Saul, 2000; Belkin and Niyogi, 2004). In particular, Belkin and
Niyogi (2004) pioneered the study of the Laplacian in the context of semi-supervised learn-
ing. A major difference that distinguishes our work from other work in manifold learning is
that our focus is solving Markov decision processes. While value function approximation in
MDPs is related to regression on graphs (Niyogi et al., 2003) in that both concern approxi-
mation of real-valued functions on the vertices of a graph, value function approximation is
fundamentally different since target values are not specified by a teacher, and are initially
unknown and must be iteratively determined by finding the (approximate) fixed point of
the Bellman backup operator.

The proposed framework exploits the property that while the value function for an MDP
may appear discontinuous when represented in Euclidean space (because of nonlinearities
like walls), in many cases of interest it is a smooth function on the graph or manifold asso-
ciated with the state (or state-action) space. The eigenfunctions of the (graph) Laplacian
form a natural basis for approximating such smooth functions. This can be quantified in
terms of approximation properties in various function spaces. From the geometric point of

2

Proto-value functions

view, it is well-known from the study of the Laplacian on a manifold that its eigenfunctions
capture intrinsic properties like “bottlenecks” (Cheeger, 1970). In the discrete setting, these
ideas find a natural counterpart: the Cheeger constant (Chung, 1997) quantifies the decom-
posability of graphs and can be shown to be intimately connected to the spectrum of the
graph Laplacian. These ideas formalize recent work in hierarchical reinforcement learning
on decomposing action spaces by finding bottlenecks in state spaces. The eigenfunctions of
the Laplacian also provide a way to construct geodesically smooth global approximations of
a value function. In other words, smoothness respects the edges of the graph: this property
is crucial in approximating value functions that appear discontinuous when represented in
the underlying (Euclidean) ambient space, but are nonetheless smooth on the manifold.
The spectrum of the Laplacian also provides information on random walks on a graph,
which again are closely connected to state space traversals by executing policies in MDPs
and reinforcement learning.

Informally, proto-value functions can be viewed as a new way to formulate the problem
of reinforcement learning in terms of “proto-reinforcement learning”. In proto-RL, an agent
learns representations that reflect its experience and an environment’s large-scale geometry.
Early stages of policy learning often result in exploratory random walk behavior which
generates a large sample of transitions. Proto-reinforcement learning agents convert these
samples into learned representations that reflect the agent’s experience and an environment’s
large-scale geometry. An agent in a one-dimensional environment (e.g. the “chain” MDP
in (Lagoudakis and Parr, 2003; Koller and Parr, 2000)) should “see” the world differently
from an agent in a hybercube or torus environment (e.g. the “blockers” domain studied
by (Sallans and Hinton, 2004)). The unexpected result from applying the coordinate-free
approach is that Laplacian eigenfunctions and diffusion wavelets appear remarkably adept
at value function approximation. Proto-value functions can be constructed using either
an off-policy method or an on-policy method. In the off-policy approach, representations
emerge from a harmonic analysis of a random walk diffusion process on the state space,
regardless of the exploration policy followed in learning the state space topology. In the
“on-policy” approach, they are formed by diagonalizing the transition matrix, or more
precisely the Green’ s function of a policy directly (Maggioni and Mahadevan, 2005). This
first paper focuses on the off-policy approach.

One hallmark of Fourier analysis is that the basis functions are localized in frequency,
but not in time (or space). In n-dimensional Euclidean space, the trigonometric functions
{ei〈λ,x〉}λ∈Rn are eigenvectors that diagonalize any linear time-invariant system (Mallat,
1989). These are localized to a particular frequency λ, but have support over the entire
space. Similarly, the eigenfunctions of the graph Laplacian are localized in frequency by
being associated with a specific eigenvalue λ, but their support is in general the whole graph.
This global characteristic raises a natural computational concern: how can Laplacian bases
be represented compactly in large discrete and continuous spaces? We will address this
problem in several ways: large factored spaces, such as grids, hypercubes, and tori, lead
naturally to product spaces for which the Laplacian bases can be constructed efficiently using
tensor products. For continuous domains, by combining low-rank approximations and the
Nystrom interpolation method, Laplacian bases can be constructed quite efficiently (Drineas
and Mahoney, 2005). Finally, it is well-known from the work on hierarchical reinforcement
learning (Barto and Mahadevan, 2003) that value functions are inherently decomposable by

3

Mahadevan and Maggioni

exploiting the hierarchical structure of many real-world tasks. Consequently, basis functions
need only be defined for subgraphs over which subtasks are defined.

Wavelet analysis has emerged over the past decade as a powerful alternative framework
to Fourier analysis (Daubechies, 1992; Mallat, 1989). Wavelets are basis functions with
compact support and have been extensively explored for Euclidean domains, including the
Haar bases and the Daubechies bases. Diffusion wavelets proposed by Coifman and Mag-
gioni (2004) extend the framework of wavelet analysis to more general spaces, such as graphs
and manifolds. The second companion paper (Maggioni and Mahadevan, 2006) extends the
Laplacian approach using diffusion wavelet bases, which allow a compact multi-level rep-
resentation of diffusion processes on manifolds and graphs (Coifman and Maggioni, 2004;
Bremer et al., 2004). Diffusion wavelets provide an interesting alternative to global Fourier
eigenfunctions for value function approximation, since they encapsulate all the traditional
advantages of wavelets: basis functions have compact support, and the representation is
inherently hierarchical since it is based on multi-resolution modeling of processes at differ-
ent spatial and temporal scales. In terms of approximation theory, the class of functions
efficiently represented by diffusion wavelets is much larger than that corresponding to eigen-
functions of the Laplacian, for example it includes functions which are generally smooth
but less smooth on “thin regions”, as compared to the class of functions which are globally,
uniformly smooth.

The rest of the paper is organized as follows. Section 2 contains a brief description
of previous work. A detailed description of the Markov decision process (MDP) model
is given in Section 3, including methods for approximating the value function. Section 4
provides an overview of proto-value functions, using examples to convey the key ideas.
Section 5 introduces the mathematics underlying proto-value functions, in particular the
Laplacian on Riemannian manifolds and its discrete counterpart, spectral graph theory.
Section 6 describes the representation policy iteration (RPI) algorithm, a novel variant of
policy iteration that combines the learning of basis functions (representations) and poli-
cies to solve MDPs. Section 7 evaluates RPI on some simple discrete MDPs to provide
some insight. Section 8 and Section 9 describes two ideas for scaling proto-value functions
to large discrete factored and continuous domains, including tensor methods that exploit
the properties of graph Laplacians on product spaces, and the Nyström extension for inter-
polating eigefunctions from sampled states to novel states. These sections also contain a
detailed experimental analysis of RPI on large MDPs, including the blockers task (Sallans
and Hinton, 2004), the inverted pendulum and the mountain car (Sutton and Barto, 1998)
continuous control tasks. Finally, Section 10 discusses several extensions of the proposed
framework to new areas.

2. History and Related Work

2.1 Value Function Approximation

In the 1950s, Samuel (1959) pioneered the use of parametric function approximation in
machine learning: he implemented a program to play checkers that adjusted the coefficients
of a fixed polynomial approximator so that values of states earlier in a game reflected
outcomes experienced later during actual play (a heuristic form of what is now formally
called temporal difference learning (Sutton, 1984, 1988)). Board states s were translated

4

Proto-value functions

into k-dimensional feature vectors φ(s), where the features or basis functions φ : S → Rk

were hand engineered (for example, a feature could be the “number of pieces”). Although
Samuel’s ideas were foundational, research over the subsequent five decades has substantially
revised and formalized his early ideas, principally by combining the mathematical model
of Markov decision processes (MDPs) (Puterman, 1994) with theoretical and algorithmic
insights from statistics and machine learning (Hastie et al., 2001). This body of research
has culminated in the modern fields of approximate dynamic programming (ADP) and
reinforcement learning (RL) (Bertsekas and Tsitsiklis, 1996; Sutton and Barto, 1998).

Classical methods for solving Markov decision processes (MDPs) have been studied for
almost 50 years in operations research (OR) (Puterman, 1994). The principal methods
that have been investigated are value iteration, policy iteration, and linear programming,
where the value function is usually represented exactly using an orthonormal unit vector
basis. More recently, these methods have also been extended to use approximations, such
as least-squares policy iteration (LSPI) (Lagoudakis and Parr, 2003), approximate dynamic
programming using linear programming (Farias, 2003; Guestrin et al., 2003), and least-
squares temporal-difference learning (Bradtke and Barto, 1996; Boyan, 1999; Nedic and
Bertsekas, 2003). These approximate methods can be viewed as projecting the exact value
function onto a subspace spanned by a set of basis functions. The majority of this research
has assumed the basis functions are hand engineered: we propose to construct the basis
functions automatically.

Value function approximation has been studied by many researchers. Bertsekas and
Tsitsiklis (1996) provide an authoritative review. Parametric approaches using linear archi-
tectures, such as radial basis functions (Lagoudakis and Parr, 2003), and nonlinear architec-
tures, such as neural networks (Tesauro, 1992), have been extensively explored. However,
this research largely remains within the scope of Samuel’s paradigm: most approaches
(with notable exceptions discussed below) are based on a fixed parametric architecture, and
a parameter estimation method is used to approximate value functions, such as temporal-
difference learning (Sutton and Barto, 1998; Tsitsiklis and Van Roy, 1997) or least squares
projection (Bradtke and Barto, 1996; Boyan, 1999; Nedic and Bertsekas, 2003; Lagoudakis
and Parr, 2003). There has also been significant work on non-parametric methods for
approximating value functions, including nearest neighbor methods (Gordon, 1995) and
kernel density estimation (Ormoneit and Sen, 2002). Although our approach is also non-
parametric, it differs from kernel density estimation and nearest neighbor techniques by
extracting a distance measure through modeling the underlying graph or manifold. Non-
parametric kernel methods based on Hilbert spaces have also been applied to value func-
tion approximationm, including support vector machines (Dietterich and Wang, 2002) and
Gaussian processes (Rasmussen and Kuss, 2004). Note that in this approach, the kernel
is largely hand-engineered, such as the Gaussian kernel. Our approach can be viewed as
extending this work using an automatically generated data-dependent graph or diffusion
kernel (Kondor and Vert, 2004).

2.2 Representation Learning

The problem of learning representations has a long history in AI. Amarel (1968) was an
early pioneer, advocating the study of representation learning through global state space

5

Mahadevan and Maggioni

analysis. Amarel’s ideas motivated much subsequent research on representation discovery
(Subramanian, 1989; Utgoff and Stracuzzi, 2002), and many methods for discovering global
state space properties like “bottlenecks” and “symmetries” have been studied (McGovern,
2002; Ravindran and Barto, 2003; Mannor et al., 2004). However, this past research lacked
a formal framework showing how the geometrical analysis of a state space analysis can
be transformed into representations for approximating value functions, a hallmark of our
approach.

There have been several attempts at overcoming the limitations of traditional function
approximators, such as radial basis functions. In particular, it has been recognized that
Euclidean smoothing methods do not incorporate geometric constraints intrinsic to the
environment: states close in Euclidean distance may be far apart on the manifold. Dayan
(1993) proposed the idea of building successor representations. While this approach was
restricted to policy evaluation in simple discrete MDPs, and did not formally build on
manifold or graph-theoretic concepts, the key idea of constructing representations that are
faithful to the underlying dynamics of the MDP was a key motivation underlying this work.
Drummond (2002) also pointed out the nonlinearities that value functions typically exhibit,
and used techniques from computer vision to detect nonlinearities. Neither of these studies
formulated the problem of value function approximation as approximating functions on a
graph or manifold, and both were restricted to discrete MDPs. There have been several
attempts to dynamically allocate basis functions to regions of the state space based on
the nonuniform occupancy probability of visiting a region (e.g., (Kretchmar and Anderson,
1999)), but these methods do not construct the basis functions adaptively. Finally, there has
also been research on finding common structure among the set of value functions on a given
state space, where only the goal location is changed (Foster and Dayan, 2002), assuming a
probabilistic generative (mixture) model of a value function, and using maximum likelihood
estimation techniques. Proto-value functions can be viewed similarly as the building block
of the set of value functions on a given state space, except that they are constructed without
the need to make such parametric assumptions.

The proposed approach can be viewed as automatically generating subspaces, on which
to project the value function, using spectral analysis of operators on graphs (Chung, 1997).
This differs fundamentally from many past attempts at basis function generation, for ex-
ample tuning a pre-defined set of functions (Menache et al., 2005), dynamically allocating
new basis functions based on the non-uniform density of state space trajectories (Kretchmar
and Anderson, 1999), or generating task-specific tabular basis functions for factored MDPs
using the error in approximating a particular value function (Poupart et al., 2002). Our
work also provides a theoretical foundation for recent attempts to automate the learning of
task structure in hierarchical reinforcement learning, by discovering “symmetries” or “bot-
tlenecks” (McGovern, 2002; Ravindran and Barto, 2003; Mannor et al., 2004; Simsek and
Barto, 2004). Proto-value functions provide a unified framework for studying three prob-
lems that face RL systems: geometric structure discovery, representation learning (Dayan,
1993), and finally, actual value function approximation that takes into account smoothness
with respect to the intrinsic geometry of the space.

This research also builds on recent work on manifold and spectral learning, including
ISOMAP (Tenenbaum et al., 2000), LLE (Roweis and Saul, 2000), Laplacian eigenmaps
(Belkin and Niyogi, 2004), and diffusion geometries (Coifman et al., 2005a,b,c). One major

6

Proto-value functions

difference is that these methods have largely (but not exclusively) been applied to nonlinear
dimensionality reduction and semi-supervised learning on graphs (Belkin and Niyogi, 2004;
Zhou, 2005; Coifman et al., 2005a), whereas our work focuses on approximating (real-valued)
value functions on graphs. Although related to regression on graphs (Niyogi et al., 2003),
the problem of value function approximation is fundamentally different: the set of target
values is not known a priori, but must be inferred through an iterative process of computing
an approximate fixed point of the Bellman backup operator, and projecting these iterates
onto subspaces spanned by the basis functions. Furthermore, value function approximation
introduces new challenges not present in supervised learning or dimensionality reduction:
the set of samples is not specified a priori, but must be collected through active exploration
of the state space. The techniques we present, such as representation policy iteration
(Mahadevan, 2005c), address the unique challenges posed by the problem of value function
approximation.

3. Approximation Methods for Solving Markov Decision Processes

We begin by introducing the Markov decision process (MDP) model, and describe methods
for approximately solving MDPs. This paper is principally about choosing a basis for
approximation of real-valued functions called value functions, which are central to solving
Markov decision processes (Puterman, 1994). For much of the past 50 years, previous work
has modeled value functions as vectors in a Euclidean space Rd. The fundamental novel idea
underlying our approach is that we treat value functions as elements of a vector space on a
graph or manifold. This difference is fundamental: it enables constructing basis functions
that capture the large-scale (irregular) topology of the graph, and approximating (value)
functions on these graphs by projecting them onto the space spanned by these bases.

3.1 Markov Decision Processes

A discrete Markov decision process (MDP) M = (S, A, P a
ss′ , R

a
ss′) is defined by a finite set of

discrete states S, a finite set of actions A, a transition model P a
ss′ specifying the distribution

over future states s′ when an action a is performed in state s, and a corresponding reward
model Ra

ss′ specifying a scalar cost or reward (Puterman, 1994). In Section 9, we will also
investigate continuous Markov decision processes, where the set of states ⊆ Rd. Abstractly,
a value function is a mapping S → R or equivalently (in discrete MDPs) a vector ∈ R|S|.
Given a policy π : S → A mapping states to actions, its corresponding value function V π

specifies the expected long-term discounted sum of rewards received by the agent in any
given state s when actions are chosen using the policy. Any optimal policy π∗ defines the
same unique optimal value function V ∗ which satisfies the nonlinear constraints

V
∗
(s) = max

a

(

Rsa + γ
∑

s′∈S

P a
ss′V

∗(s′)

)

where Rsa =
∑

s′∈s P a
ss′R

a
ss′ is the expected immediate reward. The expected long-term

discounted sum of rewards at each state is called a value function, defined by a fixed

7

Mahadevan and Maggioni

(deterministic) policy π as

V
π

(s) = Rsπ(s) + γ
∑

s′∈S

P
π(s)
ss′ V π(s′) (1)

We can compactly represent the above equation as

V π = T π(V π)

where the Bellman operator T π on the space of value function can be written as

T π(V) = Rsπ(s) + γ
∑

s′

P
π(s)
ss′ V (s′)

This formulation shows that the value function associated with a policy is the fixed point of
the (linear) operator T π. The optimal value function can be similarly written as the fixed
point of the (nonlinear) operator T ∗, where

T
∗
(V) = max

a

(

Rsa + γ
∑

s′

P a
ss′V (s′)

)

The action value Q∗(s, a) represents a convenient reformulation of the value function, where
the long-term value of performing a first, and then acting optimally according to V ∗, is
defined as

Q∗(s, a) = E

(

rt+1 + γ max
a′

Q∗(st+1, a
′)|st = s, at = a

)

(2)

where rt+1 is the actual reward received at the next time step, and st+1 is the state resulting
from executing action a in state st. The (optimal) action value formulation provides an
alternative way to write the Bellman equation:

Q
∗
(s, a) = Rsa + γ

∑

s′

P a
ss′ max

a′
Q∗(s′, a′)

3.2 Dynamic Programming

The optimal value function V ∗ can be computed using value iteration and policy iteration
(Puterman, 1994), which can be viewed as finding the fixed point of the Bellman operator
T ∗ using the Euclidean unit vector orthonormal basis (φ1, . . . , φ|S|) for the space R|S|, where

the unit vector φi = [0 . . . 1 . . . 0] has a 1 only in the ith position. Value iteration can be
briefly summarized as

Vn+1 = T ∗Vn

where Vn is the approximated value function at stage n. This algorithm is provably conver-
gent since the operator T ∗ is a contraction (in some weighted L∞ norm (Puterman, 1994)),
hence successive iterates converge to the optimal value function V ∗. Policy iteration con-
sists of interleaving two phases: policy evaluation and (greedy) policy improvement. Policy
evaluation can be viewed as finding the fixed point

V πk = T kV πk

8

Proto-value functions

by solving the resulting system of |S| linear equations, where πk is the policy chosen at the
kth stage. Given the resulting value function V πk , the policy improvement phase finds a
one-step “greedy” improvement of this policy πk+1, where

πk+1 ∈ max
a

(

Rsa + γ
∑

s′

P a
ss′V

πk

)

Policy iteration is guaranteed to converge in a finite number of steps because every policy
improvement step results in a different (“better”) policy, unless the policy being evaluated
is already optimal, and the space of policies is finite, albeit in general very large. Both these
methods assume that the transition model P a

ss′ and reward model Ra
ss′ are known.

3.3 Approximate Dynamic Programming

Approximate dynamic programming methods combine machine learning (or statistical)
methods with these exact methods. For example, approximate value iteration can be de-
scribed as selecting at each stage k a sample of states Sk = (sk

1, . . . , s
k
m), computing an

approximate backed up value T̂ on the sample Sk, and then using some parametric or
non-parametric regression method to approximately represent V k+1. Methods for approx-
imating value functions can be abstractly viewed as projecting a value function onto a
subspace of the vector space R|S|. The subspace can be defined in many ways, for example,
using CMAC, polynomial or radial basis functions.

We mentioned above that the Bellman backup operators T π and T ∗ are contractions in
R|S|, with respect to a weighted L∞-norm (Puterman, 1994). Bounds for the error in the
greedy policy based on the error in approximating a given value function exist (Bertsekas
and Tsitsiklis, 1996). Unfortunately, these bounds are not as helpful in designing function
approximators, which are usually designed to minimize a quadratic L2 norm. Recent work
(Munos, 2005, 2003) has addressed this discrepancy by deriving bounds on the error of
approximation with respect to the L2 norm. Also, there has been been research on designing
approximation methods that are projections in L∞ norm (Guestrin et al., 2001).

Let us define a set of basis functions Φ = {φ1, . . . , φk}, where each basis function φi :
S → R. The basis function matrix Φ is an |S|×k matrix, where each column is a particular
basis function evaluated over the state space, and each row is the set of all possible basis
functions evaluated on a particular state. Approximating a value function using the matrix
Φ can be viewed as projecting the value function onto the column space spanned by the
basis functions φi,

V π ≈ Φwπ =
∑

i

wπ
i φi

where the weight vector w needs to be determined. The basis function matrix can easily be
extended to action value functions, where φi(s, a) : S ×A→ R, giving

Qπ(s, a) ≈
∑

i

wπ
i φi(s, a)

Combining this linear representation of a value function with Equation 1 above gives us
∑

i

wπ
i φi(s) = Rsπ(s) + γ

∑

s′

P
π(s)
ss′

∑

i

wπ
i φi(s) (3)

9

Mahadevan and Maggioni

However, in general it is no longer guaranteed that this equation has a fixed point solution,
since the “projected” Bellman operator on the right-hand side of (3) may no longer be a
contraction. There are two approaches to approximately solving this modified equation:
the Bellman residual and the least-squares fixpoint methods (Munos, 2003; Lagoudakis and
Parr, 2003).

Both of these arise from a natural desire to explore a minimum-norm least-squares
solution to the overdetermined system of equations in Equation 3. Let us first rewrite
Equation 3 in matrix form, making it explicit that we are seeking an approximate solution:

Φwπ ≈ R + γP πΦwπ

where P π is the transition matrix defined by the policy π. The Bellman residual method
minimizes the length of the difference between the original value function V π and the backed
up function T π(V π).

V π = Rπ + γP πV π

Φwπ ≈ Rπ + γP πΦwπ

(Φ− γP πΦ)wπ ≈ Rπ

Now, a straightforward least-squares approach leads us to the following equation for the
weight vector:

wπ =
(

(Φ− γP πΦ)T (Φ− γP πΦ)
)−1

(Φ− γP πΦ)T Rπ

In contrast, the Bellman least-squares fixpoint approach minimizes the length of the pro-
jected residual in the columnspace of the basis Φ. To ensure that the vector T π(V π) defined
on the right-hand side is in the column space of Φ, we can project it onto the subspace de-
fined by the basis functions Φ. Since the orthogonal projection onto this subspace is given
by (ΦT Φ)−1ΦT (whose rows one may interpret as the basis dual to Φ):

wπ = (ΦT Φ)−1ΦT [R + γP πΦwπ]

(ΦT Φ)wπ = ΦT [R + γP πΦwπ]

(ΦT Φ)wπ − γΦT P πΦwπ = ΦT R

ΦT (Φ− γP πΦ)wπ = ΦT R

wπ =
(

ΦT (Φ− γP πΦ)
)−1

ΦT R

The last equation is solvable except possibly for a finite number of values of γ (Koller and
Parr, 2000). It is also straightforward to modify the above derivation to take into account
the non-uniform probability of visiting each state ρπ(s), giving a weighted least-squares
solution.

wπ =
(

ΦT Dπ
ρ (Φ− γP πΦ)

)−1
ΦT Dπ

ρ R (4)

where Dπ
ρ is a diagonal matrix with entries ρπ(s) reflecting the possible nonuniform dis-

tribution of frequencies of state visitations, which can be used to selectively control the
approximation error.

10

Proto-value functions

So far, we have assumed that the model of the system P π to be controlled using the
policy π is known, as is the payoff or reward function R. When this knowledge is unavailable,
a variety of sampling methods can be devised, such as computing low-rank approximations
of the matrix to be inverted based on an initial random walk. In Section 6, we will describe
the least-squares policy iteration (LSPI) method developed by Lagoudakis and Parr (2003).

The question of whether the Bellman residual method or the least-squares fixpoint
method is superior has been discussed, but not resolved in previous work (Munos, 2003;
Lagoudakis and Parr, 2003). In particular, when a model of the system is unknown, the
least-squares fixpoint method has the advantage of being able to use a single sample of
experience (s, a, s′, r), instead of requiring two independent samples. For the most part,
this paper will focus on the least-squares fixpoint. However, in Section 7.2, we will discover
an interesting case where the Bellman residual method works significantly better.

We have also assumed thus far that the set of basis functions φi is designed by hand for
each specific MDP. We now turn to describing a general framework that enables automati-
cally computing a set of basis functions called proto-value functions, and then demonstrate
how these can be combined with least-squares methods such as LSPI.

4. Proto-Value Functions: A Brief Overview

In many applications the state space S is naturally embedded in Rd as a sub-manifold, or
some other type of geometrically structured subset. Often one constructs basis functions on
S by considering basis functions defined on Rd (e.g. Gaussian bells) and restricting them
to S. This approach has the advantage that the basis functions are easily designed and
are defined on all of Rd. However they are not adapted to the geometry of S, and often
the difficulty of picking good basis functions is a consequence of their non-adaptiveness
to S. Also, if the goal is to approximate value functions, it seems natural to assume that
these functions are smooth with respect to the natural geometry of the state space. In general,
functions that are smooth when viewed intrinsically as functions on the state space may not
be smooth when viewed in the ambient space, and conversely. Our goal is to automatically
construct basis functions which are intrinsic to the state space, adapted to its geometry,
and guaranteed to provide good approximation of functions that are intrinsically smooth.

We now introduce the concept of proto-value functions, generated by spectral analysis
of a graph using the graph Laplacian (Chung, 1997). We show some simple MDPs where
proto-value functions are effective for low-dimensional approximation of value functions.
For simplicity, we assume here that both the graph and the value function to be approxi-
mated are known. In subsequent sections, we relax these assumptions and address the more
challenging problem of learning the graph and computing the fixed point of the Bellman
operator to approximate value functions.

4.1 Basis Functions from the Graph Laplacian

Proto-value functions are a set of geometrically customized basis functions for approximat-
ing value functions, which result from conceptualizing value functions not as vectors in a
general Euclidean space Rd, but on a manifold (or more general classes of sets) whose ge-
ometry can be modeled using a (undirected or directed) graph G. The advantage of this
approach is that the set of basis functions can be automatically determined by spectral

11

Mahadevan and Maggioni

analysis of random walks on the graph. The inherent smoothness of value functions arises
from the Bellman equations: qualitatively, the (action) value at a given state (or state ac-
tion pair) is a linear function of the corresponding (action) values at neighboring states 1.
Examples of value functions with these properties are shown in Figure 7.

Proto-value functions approximate value functions based on construction of basis func-
tions that are derived from the topology of the state space. The set of all functions on a
graph forms a Hilbert space, that is a complete vector space endowed with an inner product.
Spectral analysis of operators on the graph yields an orthonormal set of basis functions for
approximating any function on a graph. The notion of producing bases by diagonalizing
self-adjoint (or symmetric) operators is standard practice in approximation theory (Deutsch,
2001). While many operators can be defined on a graph, in this paper proto-value functions
will be defined using the graph Laplacian (Chung, 1997). Basis functions are constructed
by spectral analysis of the graph Laplacian, a self-adjoint (or symmetric) operator on the
space of functions on the graph, related closely to the random walk operator.

For simplicity, assume the underlying state space is represented as an undirected un-
weighted graph G = (V, E) (the more general case of weighted graphs is analyzed in Sec-
tion 5, and directed graphs are discussed in Section 10.3). The combinatorial Laplacian L
is defined as the operator

L = D −A ,

where D is a diagonal matrix called the valency matrix whose entries are row sums of the
adjacency matrix A. The combinatorial Laplacian L acts on any given function f : S → R,
mapping vertices of the graph (or states) to real numbers.

Lf(x) =
∑

y∼x

(f(x)− f(y))

for all y adjacent to x. Consider the chain graph G shown in Figure 2 consisting of a
set of vertices linked in a path of length N . Given any function f on the chain graph,
the combinatorial Laplacian can be viewed as a discrete analog of the well-known Laplace
partial differential equation

Lf(vi) = (f(vi)− f(vi−1)) + (f(vi)− f(vi+1))

= (f(vi)− f(vi−1))− (f(vi+1)− vi)

= ∇f(vi, vi−1)−∇f(vi+1, f(vi))

= ∆f(vi)

Functions that solve the equation ∆f = 0 are called harmonic functions (Axler et al.,
2001) For example the “saddle” function x2 − y2 is harmonic on R2. Eigenfunctions of ∆
are functions f 6= 0 such that ∆f = λf , where λ is an eigenvalue of ∆. If the domain
is the unit circle S1, the trigonometric functions sin(kθ) and cos(kθ), for any k ∈ Z are
eigenfunctions, associated with Fourier analysis.

The spectral analysis of the Laplace operator on a graph consists in finding the solutions
(eigenvalues and eigenfunctions) of the equation

Lφλ = λφλ ,

1. More quantitatively, for classes of continuous MDPs associated with “diffusion-like” processes, the Bell-
man operator is a smoothing operator because of elliptic estimates.

12

Proto-value functions

where L is the combinatorial Laplacian, φλ is an eigenfunction associated with eigenvalue
λ. The term “eigenfunction” is used to denote what is traditionally referred to as an
“eigenvector” in linear algebra, because it is natural to view the Laplacian eigenvectors as
functions that map each vertex of the graph to a real number.

A fundamental property of the graph Laplacian is that projections of functions on the
eigenspace of the Laplacian produce globally the smoothest approximation, which respects
the underlying manifold. More precisely, it is easy to show that

〈f, Lf〉 =
∑

u∼v

wuv(f(u)− f(v))2

where this so-called Dirichlet sum is over the edges u ∼ v of the graph G 2, and wuv denotes
the weight on the edge. From the standpoint of regularization, this property is crucial since
it implies that rather than smoothing using properties of the ambient Euclidean space,
smoothing takes the underlying manifold (graph) into account.

Graphs are fundamentally coordinate-free objects. The eigenfunctions of the graph
Laplacian provide a coordinate system, that is they embed the vertices of a graph onto Rk.
Typically, the embedding is done using the smoothest k eigenfunctions correspond to the
smallest eigenvalues of the Laplacian. The Laplacian has unique spectral properties that
makes these embeddings reflect spatial regularities, unlike other embeddings derived from
a spectral analysis of the adjacency matrix (see Figure 1). We can define an optimization
problem of finding a basis function φ which embeds vertices of a discrete state space S onto
the real line R, i.e. φ : S → R, such that neighboring vertices on the graph are generally
mapped to neighboring points on the real line:

min
φ

∑

u∼v

(φ(u)− φ(v))2 wuv

In order for this minimization problem to be well-defined, and to eliminate trivial solutions
like mapping all graph vertices to a single point, e.g. φ(u) = 0, we can impose an additional
“length” normalization constraint of the form:

〈φ, φ〉G = φT Dφ = 1

where the valency matrix D measures the importance of each vertex. The solution to this
minimization problem can be shown to involve finding the smallest (non-zero) eigenvalue of
the generalized eigenvalue problem (Belkin and Niyogi, 2004; Ng et al., 2001a; Lafon, 2004).

Lφ = λDφ

where φ is the eigenvector providing the desired embedding. More generally, the smoothest
eigenvectors associated with the k smallest eigenvalues form the desired proto-value function
basis. If the graph is connected, then D is invertible, and the above generalized eigenvalue
problem can be converted into a regular eigenvalue problem

D−1Lφ = λφ

2. Here, u ∼ v and v ∼ u denote the same edge, and are summed over only once.

13

Mahadevan and Maggioni

where D−1L is the discrete Laplacian operator. Note that this operator is closely related
to the natural random walk defined on an undirected graph, since D−1L = I − P , where

P = D−1A .

While the random walk operator P is not symmetric unless D is a multiple of the identity
(i.e. the graph is regular), its eigenvalues are related to those of symmetric operator, namely
the normalized Laplacian

L = I −D
1
2 PD− 1

2 = D− 1
2 LD− 1

2

whose spectral analysis is highly revealing of the large-scale structure of a graph (Chung,
1997). We will describe detailed experiments below showing the effectiveness of proto-value
functions constructed from spectral analysis of the normalized Laplacian.

In Section 8.1 we will see that Laplacian eigenfunctions can be compactly represented
on interesting structured graphs obtained by natural graph operations combining smaller
graphs.

−0.2 −0.15 −0.1 −0.05 0 0.05 0.1 0.15 0.2
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

−0.2 −0.15 −0.1 −0.05 0 0.05 0.1 0.15 0.2
−0.18

−0.16

−0.14

−0.12

−0.1

−0.08

−0.06

−0.04

−0.02

0

Figure 1: The eigenfunctions of the Laplacian provide a coordinate-system to an initially
coordinate-free graph. This figure shows an embedding in R2 of a 10 × 10 grid
world environment using “low-frequency” (smoothest) eigenvectors of a graph op-
erator. The plot on the left shows an embedding using the eigenvectors associated
with the second and third lowest eigenvalues of the graph Laplacian. The plot
on the right shows the embedding using the smoothest eigenvectors associated
with the first and second highest eigenvalues of the adjacency matrix as coordi-
nates. The spatial structure of the grid is preserved nicely under the Laplacian
embedding, but appears distorted under the adjacency spectrum. Section 8 ex-
plains the regularity of Laplacian embeddings of structured spaces such as grids,
hypercubes, and tori.

To summarize, proto-value functions are abstract Fourier basis functions that represent
an orthonormal basis set for approximating any value function. Unlike trigonometric Fourier
basis functions, proto-value functions or Laplacian eigenfunctions are learned from the graph
topology. Consequently, they capture large-scale geometric constraints, and examples of
proto-value functions showing this property are shown below.

14

Proto-value functions

4.2 Examples of Proto-Value Functions

This section illustrates proto-value functions, showing their effectiveness in approximating
a given value function. For simplicity, we confine our attention to discrete deterministic
environments which an agent is assumed to have completely explored, constructing an
undirected graph representing the accessibility relation between adjacent states through
single-step (reversible) actions. Later, we will extend these ideas to larger non-symmetric
discrete and continuous domains, and where the full control learning problem of finding an
optimal policy will be addressed. Note that topological learning does not require estimating
probabilistic transition dynamics of actions, since representations are learned in an off-
policy manner by spectral analysis of a random walk diffusion operator (the combinatorial
or normalized Laplacian).

50

1 2 3

4

5

67

closed
chain

open
chain

1 2 3

4

5

67

50

0 10 20 30 40 50
0

0.5

1

1.5

2

2.5

3

3.5

4
Spectrum of the Combinatorial Laplacian of a Chain Graph

0 10 20 30 40 50
−1

−0.5

0

0.5

1

1.5

2

2.5

3

3.5

4
Spectrum of the Combinatorial Laplacian for a Closed Chain Graph

0 50
−0.2

0

0.2

0 50
−0.2

0

0.2

0 50
−0.2

0

0.2

0 50
−0.2

0

0.2

0 50
−0.2

0

0.2

0 50
−0.2

0

0.2

0 50
−0.2

0

0.2

0 50
−0.2

0

0.2

0 50
−0.2

0

0.2

0 50
−0.2

0

0.2

0 50
−0.2

0

0.2

0 50
−0.2

0

0.2

0 50
−0.2

0

0.2

0 50
−0.2

0

0.2

0 50
−0.2

0

0.2

0 50
−0.2

0

0.2

0 50
−0.2

0

0.2

0 50
−0.2

0

0.2

0 50
−0.2

0

0.2

0 50

0.1414

Figure 2: Proto-value functions for a 50 state open and closed chain graph, computed as
the eigenfunctions of the combinatorial graph Laplacian. Low-order eigenfunc-
tions are smoother than higher-order eigenfunctions. Note the differences in the
spectrum: the closed chain appears more jagged since many eigenvalues have mul-
tiplicity two. Each proto-value function is actually a vector ∈ R50, but depicted
as a continuous function for clarity.

The chain MDP, originally studied in (Koller and Parr, 2000), is a sequential open
chain of varying number of states, where there are two actions for moving left or right
along the chain. The reward structure can vary, such as rewarding the agent for visiting
the middle states, or the end states. Instead of using a fixed state action encoding, our

15

Mahadevan and Maggioni

approach automatically derives a customized encoding that reflects the topology of the
chain. Figure 2 shows the proto-value functions that are created for an open and closed
chain using the combinatorial Laplacian.

21

G

20

Total = 1260 states

0
50

100

0

20

40
−0.05

0

0.05

PROTO−VALUE FUNCTION NUMBER: 2

0

50

0

20

40
−0.05

0

0.05

PROTO−VALUE FUNCTION NUMBER: 3

0
50

100

0

20

40
−0.1

0

0.1

PROTO−VALUE FUNCTION NUMBER: 4

0

50

0

20

40
−0.1

0

0.1

PROTO−VALUE FUNCTION NUMBER: 5

Figure 3: The low-order eigenfunctions of the combinatorial Laplace operator for a three
room deterministic grid world environment. The numbers indicate the size of
each room. The horizontal axes in the plots represent the length and width of
the multiroom environment.

Figure 3 shows proto-value functions automatically constructed from an undirected
graph of a three room deterministic grid world. These basis functions capture the in-
trinsic smoothness constraints that value functions on this environment must also abide by.
Proto-value functions are effective bases because of these constraints.

Proto-value functions extend naturally to continuous Markov decision processes as well.
Figure 4 illustrates a graph connecting nearby states in a 2-dimensional continuous state
space for the inverted pendulum task, representing the angle of the pole and the angular
velocity. The resulting graph on 500 states with around 15, 000 edges is then analyzed
using spectral graph theoretic methods, and a proto-value function representing the second
eigenfunction of the graph Laplacian is shown. One challenge in continuous state spaces is
how to interpolate the eigenfunctions defined on sample states to novel states. We describe
the Nyström method in Section 9 that enables out-of-sample extensions and interpolates the
values of proto-value functions from sampled points to novel points. More refined techniques
based on comparing harmonic analysis on the set with harmonic analysis in the ambient
space are described in (Coifman et al., 2005b; Coifman and Maggioni, 2004). Figure 5
shows a graph of ≈ 7, 000 edges on 670 states generated in the mountain car domain. The
construction of these graphs depends on many issues, such as a sampling method that
selects a subset of the overall states visited to construct the graph, the local metric used to

16

Proto-value functions

connect states by edges, and so on. The details of graph construction will be discussed in
Section 9.4.

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−8

−6

−4

−2

0

2

4

6

8
Graph with 500 vertices and 14692 edges in Inverted Pendulum Domain

Pole Angle

P
ol

e
A

ng
ul

ar
 V

el
oc

ity

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−8

−6

−4

−2

0

2

4

6

8

Angle

A
ng

ul
ar

 V
el

oc
ity

PENDULUM LAPLACIAN EIGENFUNCTION 1 of 40

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Figure 4: Proto-value functions can also be learned for continuous MDPs by constructing
a graph on a set of sampled states. Shown here from left to right are a graph of
500 vertices and ≈ 15, 000 edges, along with a proto-value function (the second
eigenfunction of the graph Laplacian) for the inverted pendulum task generated
from a random walk. See also Figure 23 and Figure 25.

−1.5 −1 −0.5 0 0.5
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2
Trajectory−based subsampling: 670 states

−1.5 −1 −0.5 0 0.5
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2
Graph with 670 vertices and 7404 edges in Mountain Car Domain

Figure 5: A graph of 670 vertices and 7, 404 edges generated from a random walk in the
mountain car domain.

17

Mahadevan and Maggioni

Laplacian Algorithm (G, k,O, V π):

// G: Weighted undirected graph of |V | = n nodes
// k: Number of basis functions to be used
// V π: Target value function, specified on the vertices of graph G

1. Compute the operator O, which can be any among the combinatorial graph Laplacian, the
normalized graph Laplacian, the random walk operator etc. (these and other choices of graph
operators are discussed in detail in Section 5).

2. Compute the proto-value basis functions as the k smoothest eigenvectors of O on the graph
G, and collect them as columns of the basis function matrix Φ, a |S| × k matrix.a The basis
function embedding of a state v is the encoding of the corresponding vertex φ(v) given by the
vth row of the basis function matrix. Let φ̃i be the i-th column of Φ̃ = ((Φ∗Φ)−1Φ∗)∗, the
dual basis of Φ (Φ̃∗Φ = I).

3. Linear Least-Squares Projection: In the linear least-squares approach, the approximated
function V̂ π is specified as

V̂ π =

k
∑

i=1

〈V π, φ̃i〉φi (5)

4. Nonlinear Least-Squares Projection: In the nonlinear least-squares approach (Mallat, 1998),
the approximated function V̂ π is specified as

V̂ π =
∑

i∈Ik(V π)

〈V π, φ̃i〉φi (6)

where Ik(V π) is the set of indices of the k basis functions with the largest inner product
(in absolute value) with V π. Hence in nonlinear approximation, the selected basis functions
depend on the function V π to be approximated.

a. Note that depending on the graph operator being used, the smoothest eigenvectors may either be the
ones associated with the smallest or largest eigenvalues.

Figure 6: Pseudo-code of linear and nonlinear least-squares algorithms for approximating
a known function on a graph G by projecting the function onto the eigenspace of
the graph Laplacian.

4.3 Least-Squares Approximation using Proto-Value Functions

Figure 6 describes linear and nonlinear least-squares algorithms that approximate a given
target (value) function on a graph by projecting it onto the eigenspace of the graph Lapla-
cian. In Section 6, we present a more general algorithm that constructs the graph from a
set of samples, and also approximates the (unknown) optimal value function. For now, this
simplified situation is sufficient to illustrate the unique properties of proto-value functions.

Figure 7 shows the results of linear least-squares for the three-room environment. The
agent is only given a goal reward of R = 10 for reaching the absorbing goal state marked

18

Proto-value functions

0 10 20 30 40 50
0

0.5

1

1.5

2

2.5
x 10

4Least Squares Approximation using proto−value functions

Proto−Value Functions

0 2 4 6 8 10 12 14 16 18 20
0

50

100

150

200

250

300

350
MEAN−SQUARED ERROR OF LAPLACIAN vs. POLYNOMIAL STATE ENCODING

NUMBER OF BASIS FUNCTIONS

M
E

A
N

−
S

Q
U

A
R

E
D

 E
R

R
O

R

LAPLACIAN
POLYNOMIAL

Figure 7: Top Left: the optimal value function for a three-room grid world MDP (top plot)
is a vector ∈ R1260, but is nicely approximated by a linear least-squares approxi-
mation (bottom plot) onto the subspace spanned by the smoothest 20 proto-value
functions. Top Right: mean-squared error in approximating the optimal three-
room MDP value function. Bottom left: proto-value function approximation
(bottom plot) using 5 basis functions from a noisy partial (18%) set of samples
(middle plot) from the optimal value function for a 80 state two-room grid world
(top plot), simulating an early stage in the process of policy learning. Bottom
right: mean squared error in value function approximation for a square 20 × 20
grid world using proto-value functions (bottom curve) versus handcoded polyno-
mial basis functions (top curve).

19

Mahadevan and Maggioni

G in Figure 3. The discount factor γ is set to 0.99. Although value functions for the
three-room environment are high dimensional objects in R1260, a reasonable likeness of the
optimal value function is achieved using only 20 proto-value functions.

Figure 7 also plots the error in approximating the value function as the number of proto-
value functions is increased. With 20 basis functions, the high-dimensional value function
vector is fairly accurately reconstructed. To simulate value function approximation under
more realistic conditions based on partial noisy samples, we generated a set of noisy samples,
and compared the approximated function with the optimal value function. Figure 7 also
shows the results for a two-room grid world of 80 states, where noisy samples were filled in
for about 18% of the states. Each noisy sample was produced by scaling the exact value by
Gaussian noise with mean µ = 1 and variance σ2 = 0.1. As the figure shows, the distinct
character of the optimal value function is captured even with very few noisy samples.

Finally, Figure 7 shows that proto-value functions improve on a polynomial basis studied
in (Koller and Parr, 2000; Lagoudakis and Parr, 2003). In this scheme, a state s is mapped
to φ(s) = [1, s, s2, . . . , si]T where i � |S|. Notice that this mapping does not preserve
neighbors; each coordinate is not a smooth function on the state space, and will not represent
efficiently smooth functions on the state space. The figure compares the least mean square
error with respect to the optimal (correct) value function for both the handcoded polynomial
encoding and the automatically generated proto-value functions for a square grid world of
size 20 × 20. There is a dramatic reduction in error using the learned Laplacian proto-
value functions compared to the handcoded polynomial approximator. Notice how the
error using polynomial approximation gets worse at higher degrees. Mathematically this is
impossible, however computationally instability can occur because the least-squares problem
with polynomials of high degree becomes extremely ill-conditioned. The same behavior
manifests itself below in the control learning experiments (see Table 2).

To conclude this section, Figure 8 compares the linear and nonlinear least-squares tech-
niques in approximating a value function on a two-room discrete MDP, with a reward of
50 in state 420 and a reward of 25 in state 1. The policy used here is a random walk on
an undirected state space graph, where the edges represent states that are adjacent to each
other under a single (reversible) action (north, south, east, or west). Note that both ap-
proaches take significantly longer to produce a good approximation since the value function
is quite non-smooth, in the sense it has a large gradient. In the second paper (Maggioni
and Mahadevan, 2006), we show that a diffusion wavelet basis performs significantly better
at approximating functions that are non-smooth in local regions, but smooth elsewhere.
Since Laplacian eigenfunctions use Fourier-style global basis functions, they produce global
“ripples” as shown when reconstructing such piecewise smooth functions. Notice also that
linear methods are significantly worse than nonlinear methods, which choose basis functions
adaptively based on the function being approximated. However, given that the value func-
tion being approximated is not initially known, we will largely focus on linear least-squares
methods in the first paper. Other approximation methods could be used, such as projection
pursuit methods (Mallat, 1998), or best basis methods (Coifman et al., 1993; Bremer et al.,
2004).

20

Proto-value functions

0
5

10
15

20

0

10

20

30
0

10

20

30

40

50

 Target Value Function

0 50 100 150 200
0

5

10

15

20

25

30

35

40

45

50
Linear
Nonlinear

0
5

10
15

20

0

10

20

30
−5

0

5

10

15

Linear Least Squares Approximation with 34 eigenfunctions

0
5

10
15

20

0

10

20

30
−10

0

10

20

30

Nonlinear Least Squares Approximation with 34 eigenfunctions

Figure 8: This figure compares linear vs. nonlinear least squares approximation of the tar-
get value function shown in the first plot on the left on a two room grid world
MDP, where each room is of size 21 × 10. The environment has two rewards,
one of 50 in state |S| = 21 × 10 × 2 = 420 and the other of size 20 in state 1.
The target value function represents the value function associated with a random
walk on an unweighted undirected graph connecting states that are adjacent to
each other under a single (reversible) action. The two plots on the bottom show
the reconstruction of the value function with 34 proto-value functions using linear
and nonlinear least-squares methods. The graph on the top right plots the recon-
struction error, showing that the nonlinear least-squares approach is significantly
quicker in this problem.

5. Technical Background

In this section, we provide a brief overview of the mathematics underlying proto-value
functions, in particular, spectral graph theory (Chung, 1997) and its continuous counterpart,
analysis on Riemannian manifolds (Lee, 2003).

5.1 Riemannian Manifolds

This section introduces the Laplace-Beltrami operator in the general setting of Riemannian
manifolds (Rosenberg, 1997), as a prelude to describing the Laplace-Beltrami operator in
the more familiar setting of graphs (Chung, 1997). Riemannian manifolds have been actively
studied recently in machine learning in several contexts. It has been known for over 50 years

21

Mahadevan and Maggioni

that the space of probability distributions forms a Riemannian manifold, with the Fisher
information metric representing the Riemann metric on the tangent space. This observation
has been applied to design new types of kernels for supervised machine learning (Lafferty
and Lebanon, 2005) and faster policy gradient methods using the natural Riemannian gra-
dient on a space of parametric policies (Kakade, 2002; Bagnell and Schneider, 2003; Peters
et al., 2003). In recent work on manifold learning, Belkin and Niyogi (2004) have studied
semi-supervised learning in Riemannian manifolds, where a large set of unlabeled points are
used to extract a representation of the underlying manifold and improve classification ac-
curacy. The Laplacian on Riemannian manifolds and its eigenfunctions (Rosenberg, 1997),
which form an orthonormal basis for square-integrable functions on the manifold (Hodge’s
theorem), generalize Fourier analysis to manifolds. Historically, manifolds have been applied
to many problems in AI, for example configuration space planning in robotics, but these
problems assume a model of the manifold is known (Latombe, 1991; Lavalle, 2005), unlike
here where only samples of a manifold are given. Recently, there has been rapidly grow-
ing interest in manifold learning methods, including ISOMAP (Tenenbaum et al., 2000),
LLE (Roweis and Saul, 2000), and Laplacian eigenmaps (Belkin and Niyogi, 2004). These
methods have been applied to nonlinear dimensionality reduction as well as semi-supervised
learning on graphs (Belkin and Niyogi, 2004; Zhou, 2005; Coifman et al., 2005a).

We refer the reader to Rosenberg (1997) for an introduction to Riemannian geometry
and properties of the Laplacian on Riemannian manifolds. Let (M, g) be a smooth compact
connected Riemannian manifold. The Laplacian is defined as

∆ = div grad =
1√

det g

∑

ij

∂i

(

√

det g gij∂j

)

where div and grad are the Riemannian divergence and gradient operators. We say that
φ :M→ R is an eigenfunction of ∆ if φ 6= 0 and there exists λ ∈ R such that

∆φ = λφ .

IfM has a boundary, special conditions need to be imposed. Typical boundary conditions
include Dirichlet conditions, enforcing φ = 0 on ∂M and Neumann conditions, enforcing
∂νφ = 0, where ν is the normal to ∂M. The set of λ’s for which there exists an eigenfunction
is called the spectrum of ∆, and is denoted by σ(∆). We always consider eigenfunctions
which have been L2-normalized, i.e. ||φ||L2(M) = 1.

The quadratic form associated to the Laplacian is the Dirichlet integral

S(f) :=

∫

M
||gradf ||2d vol =

∫

M
f∆fd vol =< ∆f, f >L2(M)= ||gradf ||L2(M)

where L2(M) is the space of square integrable functions onM, with respect to the natural
Riemannian volume measure. It is natural to consider the space of functions H1(M) defined
as follows:

H1(M) =
{

f ∈ L2(M) : ||f ||H1(M) := ||f ||L2(M) + S(f)
}

. (7)

So clearly H1(M) (L2(M) since functions in H1(M) have a square-integrable gradient.
The smaller the H1-norm of a function, the “smoother” the function is, since it needs to

22

Proto-value functions

have small gradient. Observe that if φλ is an eigenfunction of ∆ with eigenvalue λ, then
S(φλ) = λ: the larger is λ, the larger the square-norm of the gradient of the corresponding
eigenfunction, i.e. the more oscillating the eigenfunction is.

Theorem 1 (Hodge (Rosenberg, 1997)): Let (M, g) be a smooth compact connected ori-
ented Riemannian manifold. The spectrum 0 ≤ λ0 ≤ λ1 ≤ . . . ≤ λk ≤ . . ., λk → +∞, of
∆ is discrete, and the corresponding eigenfunctions {φk}k≥0 form an orthonormal basis for
L2(M).

In particular any function f ∈ L2(M) can be expressed as f(x) =
∑∞

k=0〈f, φk〉φk(x),
with convergence in L2(M).

5.2 Spectral Graph Theory

Operator Definition Spectrum

Adjacency A λ ∈ R, |λ| ≤ maxv dv

Combinatorial Laplacian L = D −A Positive semi-definite, λ ∈ [0, 2maxv dv]

Normalized Laplacian L = I −D−1/2AD−1/2 Positive semi-definite, λ ∈ [0, 2]
Random Walk T = D−1A λ ∈ [−1, 1]

Table 1: Some operators on undirected graphs.

Many of the key ideas from the continuous manifold setting translate into the (simpler)
discrete setting studied in spectral graph theory, which is increasingly finding more applica-
tions in AI, from image segmentation (Shi and Malik, 2000) to clustering (Ng et al., 2002).
The Laplace-Beltrami operator now becomes the graph Laplacian (Chung, 1997; Cvetkovic
et al., 1980), from which an orthonormal set of basis functions φG

1 (s), . . . , φG
k (s) can be

extracted. The graph Laplacian can be defined in several ways, such as the combinatorial
Laplacian and the normalized Laplacian, in a range of models from undirected graphs with
(0, 1) edge weights to directed arbitrary weighted graphs with loops (Chung, 1997).

Generally speaking, let G = (V, E, W) denote a weighted undirected graph with vertices
V , edges E and weights wij on edge (i, j) ∈ E. The degree of a vertex v is denoted as dv.
The adjacency matrix A can be viewed as a binary weight matrix W (we use A and W
interchangeably below). A few operators of interest on graphs are listed in Table 1. D in
the table denotes the valency matrix, or a diagonal matrix whose entries correspond to the
degree of each vertex (i.e, the row sums of A). If the graph is undirected, all eigenvalues
are real, and the spectral theorem implies that the adjacency (or weight) matrix can be
diagonalized to yield a complete set of orthonormal basis functions:

A = V ΛV T

where V is an orthonormal set of eigenvectors that span the Hilbert space of functions on
the graph HG : V → R, and Λ is a diagonal matrix whose entries are the eigenvalues of A.
It is helpful to make explicit the effect of applying each operator to any function f on the
graph, so for the adjacency matrix A, we have:

Af(u) =
∑

v∼u

f(v)wuv

23

Mahadevan and Maggioni

Here, f is a function mapping each vertex of the graph to a real number, and f(v) is the
value of the function on vertex v. The adjacency operator sums the values of the function
at neighboring vertices, where u ∼ v denotes an edge between u and v.

The graph Laplacians are a discrete version of the Laplacian on a Riemannian manifold
(Rosenberg, 1997). The convergence of the discrete Laplacian to the continuous Laplacian
on the underlying manifold under uniform sampling conditions has been shown recently in
(Belkin and Niyogi, 2005). The combinatorial Laplacian L = D−A acts on a function f as

Lf(u) =
∑

v∼u

(f(u)− f(v)) wuv

Unlike the adjacency matrix operator, the combinatorial Laplacian acts as a difference
operator. More importantly, the Laplacians yield a positive-semidefinite matrix. It is easy
to show that for any function f , the quadratic form fT Lf ≥ 0. More precisely:

〈f, Lf〉 = fT Lf =
∑

u∼v∈E

(f(u)− f(v))2wuv

where the sum is over all edges in E. In the context of regression, this property shows that
the Laplacian produces an approximation that takes the edges of the graph into account, and
smoothing respects the manifold. This property is crucial for value function approximation.
Another striking property of both graph Laplacians is that the constant function f =1 is
an eigenvector associated with the eigenvalue λ0 = 0, which is crucial for proper embedding
of structured graphs like grids (as was shown earlier in Figure 1).

The random walk operator on a graph, given by D−1W , is not symmetric, but it is
spectrally similar to the symmetric normalized graph Laplacian operator. The normalized
Laplacian L of the graph G is defined as D− 1

2 (D −W)D− 1
2 or in more detail

L(u, v) =

1− wvv

dv
if u = v and dv 6= 0

− wuv√
dudv

if u and v are adjacent

0 otherwise

L is a symmetric self-adjoint operator, and its spectrum (eigenvalues) lie in the interval λ ∈
[0, 2] (this is a direct application of Cauchy-Schwartz inequality of 〈Lf, f〉). Furthermore,
the eigenvector associated with λ0 = 0 is the constant eigenvector. For a general graph
G, L = D− 1

2 LD− 1
2 = I − D− 1

2 AD− 1
2 . Thus, D−1A = D− 1

2 (I − L)D
1
2 . That is, the

random walk operator D−1A is similar to I−L, so both have the same eigenvalues, and the
eigenvectors of the random walk operator are the eigenvectors of I−L pointwise multiplied
by D− 1

2 . The normalized Laplacian L acts on functions by

Lf(u) =
1√
du

∑

v∼u

(

f(u)√
du

− f(v)√
dv

)

wuv . (8)

The spectrum of the graph Laplacian has an intimate relationship to global properties of the
graph, such as volume, “dimension”, bottlenecks and mixing times of random walks. The
latter are connected with the first non-zero eigenvalue λ1, often called the Fiedler value
(Fiedler, 1973). The lower the Fiedler value, the easier it is to partition the graph into
components without breaking too many edges.

24

Proto-value functions

5.3 Function Approximation on Graphs and Manifolds

We now discuss the approximation of functions using inner product spaces generated by a
graph. The L2 norm of a function on graph G is

||f ||22 =
∑

x∈G

|f(x)|2d(x) .

The gradient of a function on graph G is

∇f(i, j) = w(i, j)(f(i)− f(j)) ,

if there is an edge e connecting i to j, 0 otherwise. The smoothness of a function on a
graph, can be measured by the Sobolev norm

||f ||2H1 = ||f ||22 + ||∇f ||22 =
∑

x

|f(x)|2d(x) +
∑

x∼y

|f(x)− f(y)|2w(x, y) . (9)

The first term in this norm controls the size (in terms of L2-norm) for the function f , and
the second term controls the size of the gradient. The smaller ||f ||H1 , the smoother is f .
We will assume that the value functions we consider have small H1 norms, except at a
few points, where the gradient may be large. Important variations exist, corresponding to
different measures on the vertices and edges of G.

Given a set of basis functions φi that span a subspace of an inner product space, for a
fixed precision ε, a value function V π can be approximated as

∥

∥

∥

∥

∥

∥

V π −
∑

i∈S(ε)

απ
i φi

∥

∥

∥

∥

∥

∥

≤ ε

with αi = 〈V π, φi〉 since the φi’s are orthonormal, and the approximation is measured in
some norm, such as L2 or H2. The goal is to obtain representations in which the index set
S(ε) in the summation is as small as possible, for a given approximation error ε. This hope
is well founded at least when V π is smooth or piecewise smooth, since in this case it should
be compressible in some well chosen basis {ei}.

The normalized Laplacian L = D− 1
2 (D − W)D− 1

2 is related to the above notion of
smoothness since

〈f,Lf〉 =
∑

x

f(x)Lf(x) =
∑

x,y

w(x, y)(f(x)− f(y))2 = ||∇f ||22 ,

which should be compared with (9).
The eigenfunctions of the Laplacian can be viewed as an orthonormal basis of global

Fourier smooth functions that can be used for approximating any value function on a graph.
The projection of a function f on S onto the top k eigenvectors of the Laplacian is the
smoothest approximation to f with k vectors, in the sense of the norm in H1. A potential
drawback of Laplacian approximation is that it detects only global smoothness, and may
poorly approximate a function which is not globally smooth but only piecewise smooth, or
with different smoothness in different regions. These drawbacks are addressed by diffusion
wavelets (Coifman and Maggioni, 2004), and in fact partly motivated their construction.

25

Mahadevan and Maggioni

6. Algorithmic Details

In this section, we begin the detailed algorithmic analysis of the application of proto-value
functions to solve Markov decision processes. We introduce a novel variant of a least-
square policy iteration method called representation policy iteration (RPI) (Mahadevan,
2005c). We will analyze three variants of RPI, beginning with the most basic version in this
section, and then describing two extensions of RPI to continuous and factored state spaces
in Section 8 and Section 9.

6.1 Least-Squares Approximation from Samples

The basics of least-squares approximation of value functions were reviewed in Section 3.3.
As discussed below, the weighted least-squares approximation given by Equation 4 can be
estimated from samples. This sampling approach eliminates the necessity of knowing the
state transition matrix P π and reward function R, but it does introduce another potential
source of error. We modify the earlier description to approximating action-value or Qπ(s, a)
functions, which are more convenient to work with for the purposes of learning. LSPI
(Lagoudakis and Parr, 2003) and other similar approximation methods (Bradtke and Barto,
1996) approximate the true action-value function Qπ(s, a) for a policy π using a set of
(handcoded) basis functions φ(s, a) that can be viewed as doing dimensionality reduction:
the true action value function Qπ(s, a) is a vector in a high dimensional space R|S|×|A|, and
using the basis functions amounts to reducing the dimension to Rk where k � |S| × |A|.
The approximated action value is thus

Q̂π(s, a; w) =
k
∑

j=1

φj(s, a)wj

where the wj are weights or parameters that can be determined using a least-squares
method. Let Qπ be a real (column) vector ∈ R|S|×|A|. The column vector φ(s, a) is a
real vector of size k where each entry corresponds to the basis function φj(s, a) evaluated
at the state action pair (s, a). The approximate action-value function can be written as
Q̂π = Φwπ, where wπ is a real column vector of length k and Φ is a real matrix with
|S|× |A| rows and k columns. Each row of Φ specifies all the basis functions for a particular
state action pair (s, a), and each column represents the value of a particular basis function
over all state action pairs. The least-squares fixed-point approximation TπQπ ≈ Qπ, where
Tπ is the Bellman backup operator, yields the following solution for the coefficients:

Awπ = b
(

ΦT Dπ
ρ (Φ− γP πΦ)

)

wπ = ΦT Dπ
ρ R

A and b can be estimated from a database of transitions collected from some source, e.g.
a random walk, by noticing that both Aπ and bπ can be written as the sum of many rank

26

Proto-value functions

one outer product multiplications:

A =
∑

s∈A

∑

a∈A

φ(s, a)ρπ(s, a)

(

φ(s, a)− γ
∑

s∈S

P a
ss′φ(s′, π(s′))

)T

=
∑

s∈A

∑

a∈A

ρπ(s, a)
∑

s′∈S

P a
ss′

[

φ(s, a)
(

φ(s, a)− γφ(s′, π(s′))
)T
]

where ρπ(s, a) is the probability of executing action pair (s, a) under policy π. Similarly, b
can be written as

b = ΦT Dπ
ρ R

=
∑

s∈S

∑

a∈A

ρπ(s, a)
∑

s′∈S

P a
ss′ [φ(s, a)Ra

ss′]

The A matrix and b vector can be estimated as the sum of many rank-one matrix summa-
tions from a database of stored samples.

Ãt+1 = Ãt + φ(st, at)
(

φ(st, at)− γφ(s′t, π(s′t))
)T

b̃t+1 = b̃t + φ(st, at)rt

where (st, at, rt, s
′
t) is the tth sample of experience from a trajectory generated by the agent

(using some random or guided policy), and Ã0 and b̃0 are set to 0.
In contrast, the Bellman residual approach requires two independent samples of each

transition from st to s′t and s′′t , resulting in the modified update equation:

Ãt+1 = Ãt +
(

φ(st, at)− γφ(s′t, π(s′t))
) (

φ(st, at)− γφ(s′′t , π(s′′t))
)T

(10)

b̃t+1 = b̃t +
(

φ(st, at)− γφ(s′t, π(s′t)
)

rt (11)

A “naive” implementation of the residual approach is to reuse the same next state sample
twice, by setting s′t = s′′t .

3 In either case, a modified policy iteration procedure can now
be defined, which starts with a policy π defined by an initial weight vector w, and then
repeatedly invoking LSTDQ to find the updated weights w′, and terminating when the
difference ‖w − w′‖ ≤ ε.

6.2 Representation Policy Iteration

With this brief overview of least-squares policy iteration, we can now introduce the Rep-
resentation Policy Iteration (RPI) method, which adds a representation learning step that
automatically computes the basis functions Φ which are assumed to be hand engineered in
LSPI and previous linear approximation methods. We present the complete algorithm in
Figure 9 in the context of LSPI, although clearly other parameter estimation methods such
as TD(λ) (Sutton and Barto, 1998) can easily be modified to use proto-value functions as
well.

3. The LSPI MATLAB code, a modified version of which was used in our experiments, implements this
naive version.

27

Mahadevan and Maggioni

As Figure 9 shows, RPI can be broadly construed as consisting of two phases, which can
be interleaved (although that is not explicitly shown). In the representation learning phase,
an initial random walk (perhaps guided by an informed policy) is carried out to obtain
samples of the underlying manifold on the state space. The number of samples needed is an
empirical question which will be investigated in further detail in Section 8 and Section 9.
Given this set of samples, an undirected graph is constructed in one of several ways: two
states can be connected by a unit cost edge if they represent temporally successive states;
alternatively, a local distance measure such as k-nearest neighbor can be used to connect
states, which is particularly useful in the experiments on continuous domain reported in
Section 9.5. From the graph, proto-value functions are computed using one of the spectral
operators, for example the combinatorial or normalized Laplacian. There are several ways of
normalizing the graph Laplacians, which will be described later. The smoothest eigenvectors
of the graph Laplacian (that is, associated with the smallest eigenvalues) are used to form
the suite of proto-value functions. The number of proto-value functions needed is again an
empirical question that will be explored in the experiments. The encoding φ(s) : S → Rk of
a state is computed as the value of the k proto-value functions on that state. To compute a
state action encoding, a number of alternative strategies can be followed: the figure shows
the most straightforward method of simply replicating the length of the state encoding by
the number of actions and setting all the vector components to 0 except those associated with
the current action. More sophisticated schemes are possible (and necessary for continuous
actions), and are being investigated currently.

The control learning phase consists of simply using LSPI (or some similar least-squares
or TD method) with the proto-value functions. The least-squares approach was described
in detail in the previous section. An optional basis adaptation step can be used to eliminate
proto-value functions whose coefficients fall below a desired threshold. More sophisticated
basis adaptation methods are possible as well.

7. Experimental Results: Small Discrete MDPs

We illustrate the RPI algorithm in this section using simple discrete MDPs, and also com-
pare the performance of proto-value functions against traditional function approximators,
such as polynomials and radial basis functions. Results on larger domains, including con-
tinuous and factored MDPs, are described in the following sections.

7.1 Chain Domain

Figure 10 and Figure 11 show the results of running the Representation Policy Iteration
(RPI) algorithm on a 50 node chain graph, following the display format used by Lagoudakis
and Parr (2003). The agent is rewarded in states 10 and 41 by +1, and the reward is 0
otherwise. The optimal policy is to go right in states 1 through 9 and 26 through 41 and left
in states 11 through 25 and 42 through 50. The number of samples initially collected was
set at 10, 000. The discount factor was set at γ = 0.8. By increasing the number of desired
basis functions, it is possible to get very accurate approximation, although as Figure 11
shows, even a crude approximation using 5 basis functions is sufficient to learn a close to
optimal policy. Using 20 basis functions, the learned policy is exact. The basis adaption
parameter was set to δ = 0, so all proto-value functions were retained on each step.

28

Proto-value functions

RPI Algorithm (T,N, ε, P,O, δ):

// T : Number of initial random walk trials
// N : Maximum length of each trial
// ε : Convergence condition for policy iteration
// P : Number of proto-value basis functions to use
// O: Type of graph operator used
// δ: Parameter for basis adaptation

Representation Learning Phase

1. Perform a random walk of T trials, each of maximum N steps, and store the states visited in
S.

2. Build an undirected weighted graph G from S, in one of the ways described in the text. For
example, connect state i to state j if it is one of its k “nearest” neighbors (using some norm
on the state space, such as Manhattan or Euclidean distance), assiging a weight w(i, j) =

e−(
‖si−sj‖

δ
)2 Alternatively, connect state i to state j with a weight of 1 if the pair (i, j) form

temporally successive states ∈ S.

3. Construct one of the operators O on graph G as discussed in the text. Compute the k
smoothest eigenvectors of O on the graph G, and collect them as columns of the basis function
matrix Φ, a |S| × k matrix. The encoding of a state action pair (s, a) is given as ea ⊗ φ(s),
where ea is the unit vector corresponding to action a, φ(s) is the sth row of Φ, and ⊗ is the
tensor product.

Control Learning Phase

1. Initialize w0 ∈ Rk to a random vector.

2. Repeat the following steps:

(a) Set i← i+1. For each transition (st, at, s
′
t, a

′
t, rt) ∈ D, compute low rank approximations

of matrix A and b as follows:

Ãt+1 = Ãt + φ(st, at) (φ(st, at)− γφ(s′t, a
′
t))

T

b̃t+1 = b̃t + φ(st, at)rt

(b) Solve the system Ãwi = b̃

(c) Optional basis adaptation step: Modify the suite of proto-value functions Φ by
discarding those whose coefficients are smaller than δ.

3. until ‖wi − wi+1‖2 ≤ ε.

4. Return Q̂∗ ≈∑i wiΦ as the approximation to the optimal value function.

Figure 9: Pseudo-code of the representation policy iteration (RPI) algorithm for discrete
Markov decision processes. For simplicity, the control learning component uses
the least-squares policy iteration (LSPI) fixpoint method. Other choices for con-
trol learning can be easily incorporated, including the Bellman residual method
and TD(λ).

29

Mahadevan and Maggioni

Figure 10: Representation Policy Iteration on a 50 node chain graph, for k = 5 basis func-
tions (top four panels) and k = 20 (bottom nine panels). Each group of plots
shows the state value function for each iteration (in row major order) over the
50 states, where the solid curve is the approximation and the dotted lines spec-
ify the exact function. Notice how the value function approximation gets much
better at k = 20. Although the approximation is relatively poor at k = 5, the
policy learned turns out to be close to optimal.

Next, we provide a detailed control learning experiment comparing RPI with proto-
value functions against two handcoded basis functions, polynomial encoding and radial-
basis functions (RBF) (see Table 2). Each row reflects the performance of either RPI using
learned basis functions or LSPI with a parametric handcoded basis function (values in
parentheses indicate the number of basis functions used for each architecture). Each result is
the average of five experiments on a sample of 10, 000 transitions. The two numbers reported
are average steps to convergence and the average error in the learned policy (number of
incorrect actions). The results show the automatically learned Laplacian basis functions in
RPI provide a more stable performance at both the low end (5 basis functions) and at the
higher end with k = 25 basis functions. As the number of basis functions are increased, RPI
takes longer to converge, but learns a more accurate policy. LSPI with RBF is unstable at
the low end, converging to a very poor policy for 6 basis functions. LSPI with a degree 5
polynomial approximator works reasonably well, but its performance noticeably degrades
at higher degrees, converging to a very poor policy in one step for k = 15 and k = 25.

30

Proto-value functions

Figure 11: The policies learned at each iteration using Representation Policy Iteration on
a 50 node chain graph, for 5 basis functions (top four panels), and 20 basis
functions (bottom nine panels) in row major order. Even using 5 basis functions
results in a close to optimal policy. The light (blue) color denotes the left action
and the dark (red) denotes going right. The top half of each plot is exact, and
the bottom is approximate. The display format follows that used by Lagoudakis
and Parr (2003).

7.2 Two-Dimensional Grid with Obstacles

One striking property of proto-value functions is their ability to reflect nonlinearities arising
from “bottlenecks” in the state space. It has long been recognized that such nonlinearities
are the bane of traditional function approximators, and various attempts have been made
to try to “fix” their shortcomings (Dayan, 1993; Drummond, 2002). Since proto-value func-
tions reflect large-scale nonlinearities, they automatically reflect bottlenecks like “walls” or
“obstacles”. Figure 12 contrasts the value function approximation produced by RPI using
Laplacian eigenfunctions with that produced by polynomial and RBF function approxima-
tors, which yields an approximation that is “blind” to the nonlinearities produced by the
walls in the two room grid world MDP.

Interestingly, this domain highlighted significant differences between the Bellman resid-
ual approach (which is the one illustrated in Figure 12) versus the least-squares fixpoint
method. The fixpoint approach consistently seemed more unstable in this environment,
while the residual approach (even when implemented “naively” by reusing the same next
state sample s′t twice) yielded superior results. This finding is somewhat in contrast to
that observed by Lagoudakis and Parr (2003), where the least-squares fixpoint method was
found to be consistently superior in the chain domain. One possible explanation may be

31

Mahadevan and Maggioni

Method #Trials Error

RPI (5) 4.2 -3.8

RPI (15) 7.2 -3

RPI (25) 9.4 -2

LSPI RBF (6) 3.8 -20.8

LSPI RBF (14) 4.4 -2.8

LSPI RBF (26) 6.4 -2.8

LSPI Poly (5) 4.2 -4

LSPI Poly (15) 1 -34.4

LSPI Poly (25) 1 -36

Table 2: This table compares the performance of RPI using automatically learned basis
functions with LSPI combined with two handcoded basis functions on a 50 state
chain graph problem. See text for explanation.

the global nature of the Laplacian bases. Further work is necessary to explore the impact
of basis functions on Bellman residual vs. least-squares fixpoint methods.

Note also that while the approximated value function produced by the Laplacian bases
seems much closer to the exact value function than either of the parametric approaches,
there are still significant errors introduced in the approximation (e.g., near the walls). These
error in value function approximation of course leads to errors in the policy. We explore
these tradeoffs in the experiments on larger domains in Section 8 and Section 9, where we
directly compare the quality of the learned policy produced by Laplacian bases with that
produced by other parametric architectures.

8. Scaling Proto-Value Functions to Large Discrete Markov Decision

Processes

Thus far, we have restricted our discussion of proto-value functions to discrete MDPs, show-
ing that they can efficiently represent nonlinear value functions in simple discrete domains
more reliably than traditional parametric approximators. In this and the next section,
we explore the issue of scaling the Laplacian framework to large discrete and continuous
domains. Computing and storing proto-value functions in large discrete domains can be
intractable: spectral analysis of the state space graph or diagonalization of the policy tran-
sition matrix can be an infeasible eigenvector computation in large domains, even if the
matrices are inherently sparse matrices. We describe a general framework for scaling proto-
value functions to large factored discrete spaces using properties of product spaces, such as
grids, cylinders, and tori.

8.1 Product Spaces: Complex Graphs from Simple Ones

Figure 13 illustrates one general way of scaling proto-value functions to complex structured
domains. Building on the theory of graph spectra (Cvetkovic et al., 1980), a hierarchical

32

Proto-value functions

0

10

20

0
5

10
15

20
0

20

40

60

80

100

Optimal Value Function

0

10

20

0
5

10
15

20
−20

0

20

40

60

80

Value Function Approximation using Laplacian Eigenfunctions

0
5

10
15

20

0

10

20
0

10

20

30

Value Function Approximation using Polynomials

0
5

10
15

20

0

10

20
0

20

40

60

80

Value Function Approximation using Radial Basis Functions

Figure 12: This figure compares the optimal value function for a two-room grid MDP (top
left) with approximations produced by RPI (using the Bellman residual ap-
proach) with 20 Laplacian eigenfunctions per action (top right); a degree 10
polynomial approximator using LSPI (bottom left); and radial basis function
approximator using LSPI with 9 basis functions (bottom right). The value func-
tion is nonlinear due to the “bottleneck” region representing the door connecting
the two rooms. The Laplacian approximation clearly captures the nonlinearity
arising from the bottleneck, whereas the polynomial and the radial basis function
approximators smooth the value function across the walls as they are “blind” to
the large-scale geometry of the environment. Higher degree polynomial and ra-
dial basis function approximators produced significantly poorer approximations.

33

Mahadevan and Maggioni

CIRCLE

�� �� �� � �� � � �	 	

� � � �� �� � �� � � �� �
� �� � �� �� �� � �� � ! !
" "# # $% &' () * *+ + , ,- -
. ./ / 01 23 45 6 67 7 8 89 9
: :; ; <= >? @A B BC C D DE E

FG H HI J JKL LMN NO O

TORUS

P PQ Q RS
T TU V VW

X XY
Z[\ \]]

_̂
à

bc
d de e f fg g hi

jk
lm

CYLINDER

GRID

HYPERCUBE

PATH

n no o

Figure 13: The spectrum and eigenspace of structured state spaces, including grids, hyper-
cubes, cylinders, and tori, can be efficiently computed from “building block” sub-
graphs, such as paths and circles. Applied to MDPs, this hierarchical framework
greatly reduces the computational expense of computing and storing proto-value
functions.

framework is now described for efficiently computing and compactly storing proto-value
functions that is for all practical purposes independent of the size of the state space. Many
RL domains lead to factored representations where the state space is generated as the
cartesian product of the values of state variables (Poupart et al., 2002). Abstractly, consider
a hypercube Markov decision process with d dimensions, where each dimension can take on
k values. The size of the resulting state space is O(kd), and the size of each proto-value
function is O(kd). Using the hierarchical framework presented below, the hypercube can be
viewed as the Kronecker sum of d path or chain graphs, each of whose transition matrix is
of size (in the worst case) O(k2). Now, each factored proto-value function can be stored in
space O(dk2), and the cost of spectral analysis greatly reduces as well. Even greater savings
can be accrued since usually only a small number of basis functions are needed relative to
the size of a state space. We present detailed experimental results in Section 8 on a large
factored multiagent domain of > 106 states, where proto-value functions are constructed
from diagonalizing Laplacian matrices of size only 10× 10, a huge computational savings!

Following (Cvetkovic et al., 1980), various compositional schemes can be defined for
constructing complex graphs from simpler graphs. We focus on compositions that involve
the Kronecker (or the tensor) sum or products of graphs. Let G1, . . . , Gn be n undirected
graphs whose corresponding vertex and edge sets are specified as Gi = (Vi, Ei). The Kro-
necker sum graph G = G1 ⊕ . . . ⊕ Gn has the vertex set V = V1 × . . . Vn, and edge set
E(u, v) = 1, where u = (u1, . . . , un) and v = (v1, . . . , vn), if and only if uk is adjacent to
vk for some uk, vk ∈ Vk and all ui = vi, i 6= k. For example, the grid graph illustrated
in Figure 13 is the Kronecker sum of two path graphs; the hypercube is the Kronecker
sum of three or more path graphs. In contrast, the Kronecker product graph is the graph

34

Proto-value functions

G = G1 ⊗ . . . Gn defined as having a vertex set V = V1 × . . . Vn, and whose set of edges is
defined as follows: E(u, v) = 1 if and only if Ei(ui, vi) = 1 for all 1 ≤ i ≤ n.

The Kronecker sum and product graphs can also be defined using operations on the
component adjacency matrices. Given graphs G1 and G2, the adjacency matrix of the
product graph G = G1⊗G2 is A = A1⊗A2, the Kronecker product of the invidual adjacency
matrices.4 If A1 is an (p, q) matrix and A2 is a (r, s) matrix, the Kronecker product matrix
A is a (pr, qs) matrix, where A(i, j) = A1(i, j) ∗ A2. In other words, each entry of A1 is
replaced by the product of that entry with the entire A2 matrix. Similarly, the Kronecker
sum of two graphs G = G1⊕G2 can be defined as the graph whose adjacency matrix is the
Kronecker sum A = A1 ⊗ I2 + A2 ⊗ I1, where I1 and I2 are the identity matrices of size
equal to number of rows (or columns) of A1 and A2, respectively.

Two more general graph composition schemes, which include the Kronecker sum and
product as special cases, are the p-sum and the non-complete extended p-sum (NEPS)
(Cvetkovic et al., 1980). The p-sum of a set of graphs G1, . . . , Gn is the graph G whose
vertex set V = V1× . . . Vn, and whose edge set E(u, v) = 1 if and only if exactly p pairs, say
ui, . . . , up and vi, . . . , vp, are adjacent vertices in the constituent graphs, namely (ui, vi) ∈
Ei, . . . , (up, vp) ∈ Ep, and the other n − p pairs are identical vertices. Notice that when
p = 1, this reduces to the sum of two graphs, and when p = n, this reduces to the product of
two graphs. Let B be any set of n-tuples (β1, . . . , βn) where each βi ∈ (0, 1), except for the
tuple (0, . . . , 0). The non-extended complete p-sum (NEPS) of n graphs G1, . . . , Gn is the
graph G whose vertex set V is the cartesian product of the vertex sets V1, . . . , Vn, and whose
edge set is defined as follows: E(u, v) = 1 if and only if there is an n-tuple (β1, . . . , βn) ∈ B
such that ui = vi holds exactly when βi = 0 and (ui, vi) ∈ Ei exactly when βi = 1. Note
that for the case of the sum of two graphs, we set B = {(0, 1), (1, 0)} and the product of
two graphs is given by B = {(1, 1)}.

8.2 Spectra and Eigenspaces of Composite Graphs

Composition Operators

Kronecker Sum Combinatorial Laplacian

Kronecker Product Normalized Laplacian, Random Walk

p-sum Adjacency

NEPS Adjacency

Table 3: Spectral operators under different composition schemes.

Table 3 summarizes how the different graph operators behave under the compositional
schemes introduced above. A brief explanation of some of these results follows.

4. The Kronecker product of two matrices is often also referred to as the tensor product in the literature
(Chow, 1997).

35

Mahadevan and Maggioni

Theorem 2 (Cvetkovic et al., 1980) Let A1, . . . , An be the adjacency matrices of graphs
G1, . . . , Gn. Then, the NEPS of these graphs has the adjacency matrix A specified as

A =
∑

β∈B
Aβ1

1 ⊗ . . .⊗Aβn
n

As an example, if G = G1⊕G2, the sum of two graphs, then its adjacency matrix becomes
A = A1 ⊗ I2 + A2 ⊗ I1 as before (since B = {(0, 1), (1, 0)}) whereas for the product of two
graphs G = G1 × G2, we get A = A1 ⊗ A2 (since B = {(1, 1)}). A crucial property we
will exploit below is that the eigenvectors of the Kronecker product of two matrices can be
expressed as the Kronecker products of the eigenvectors of the component matrices.

Theorem 3 Let A and B be full rank square matrices of size r× r and s× s, respectively,
whose eigenvectors and eigenvalues can be written as

Aui = λiui, 1 ≤ i ≤ r Bvj = µjvj , 1 ≤ j ≤ s

Then, the eigenvalues and eigenvectors of the Kronecker product A⊗B and Kronecker sum
A⊕B are given as

(A⊗B)(ui ⊗ vj) = λiµj(ui ⊗ vj)

(A⊗ Is + Ir ⊗B)(ui ⊗ vj) = (λi + µj)(ui ⊗ vj)

The proof of this theorem relies on the following identity regarding Kronecker products
of matrices: (A ⊗ B)(C ⊗D) = (AC) ⊗ (BD) for any set of matrices where the products
AC and BD are well defined. This theorem forms the basis for several of the results below,
starting with the most general one regarding the eigenspace of the NEPS of graphs. Here,
we denote the set of eigenvectors of an operator T by the notation X(T) and its spectrum
by σ(T). The next result follows immediately from the above theorems.

Theorem 4 (Cvetkovic et al., 1980) Let A1, . . . , An be the adjacency matrices of graphs
G1, . . . , Gn, where each individual spectrum and eigenspace is given by σ(Ai) = (λi1, . . . , λini

)
and X(Ai) = (xi1, . . . , xini

). Then, the spectrum and eigenspace of the NEPS of these graphs
is given by all possible combinations of the form

Λi1,...,in =
∑

β∈B
λβ1

1i1
. . . λβn

nin
x ∈ X = x1i1 ⊗ · · · ⊗ xnin

In effect, the eigenvectors of the adjacency matrix of the NEPS of n graphs is simply
the Kronecker product of the eigenvectors of individual adjacency matrices. For the graph
Laplacians, this crucial property holds true under more restricted conditions. In particular,
the combinatorial graph Laplacian is well-defined for the sum of two graphs:

Theorem 5 If L1 = L(G1) and L2 = L(G2) are the combinatorial Laplacians of graphs G1

and G2, then the spectral structure of the combinatorial Laplacian L(G) of the Kronecker
sum of these graphs G = G1 ⊕G2 can be computed as

(σ(L), X(L)) = {λi + κj , li ⊗ kj}
where λi is the ith eigenvalue of L1 with associated eigenvector li and κj is the jth

eigenvalue of L2 with associated eigenvector kj.

36

Proto-value functions

The proof is omitted, but fairly straightforward by exploiting the property that the
Laplace operator acts on a function by summing the difference of its value at a vertex with
those at adjacent vertices. In contrast, the normalized Laplacian is not well-defined under
sum, but has a well-defined semantics for the product of two graphs:

Theorem 6 If L1 = L(G1) and L2 = L(G2) be the normalized Laplacians of graphs G1, G2,
then the spectral structure of the normalized Laplacian L(G) of the product of these graphs
G = G1 ⊗G2 can be computed as

(σ(L), X(L)) = {λi × κj , li ⊗ kj}

where λi is the ith eigenvalue of L1 with associated eigenvector li and κj is the jth eigenvalue
of L2 with associated eigenvector kj.

Not surprisingly, the random walk operator is well-behaved for graph products as well.
Both these results exploit the property that the adjacency matrix of the product graph is
the Kronecker product of the adjacency matrices of the individual graphs. One can easily
show that the random walk stochasticization term S(A) = D−1A distributes over the Kro-
necker product of matrices (Chow, 1997):

S(A1 ⊗ · · · ⊗An) = S(A1)⊗ · · · ⊗ S(An)

and the result follows immediately by applying the above theorem regarding the spectrum
of the Kronecker product of a set of matrices. For both Laplacians, the constant vector 1

is an eigenvector with associated eigenvalue λ0 = 0. Since the eigenvalues of the Kronecker
sum graph are the sums of the eigenvalues of the individual graphs, 0 will be an eigenvalue
of the Laplacian of the sum and product graphs as well. Furthermore, for each eigenvector
vi, the Kronecker product vi⊗ 1 will also be an eigenvector of the sum and product graphs.
One consequence of these properties is that geometry is well preserved, so for example
the Laplacians produce well-defined embeddings of structured spaces. Figure 14 shows the
embedding of a cylinder (Kronecker sum of a closed and open chain) under the combinatorial
Laplacian.

8.3 Factored Representation Policy Iteration for Structured Domains

We derive the update rule for a factored form of RPI (and LSPI) for structured domains
when the basis functions can be represented as Kronecker products of elementary basis
functions on simpler state spaces. Basis functions are column eigenvectors of the diagonal-
ized representation of a spectral operator, whereas embeddings φ(s) are row vectors rep-
resenting the first k basis functions evaluated on state s. By exploiting the property that
(A⊗B)T = AT⊗BT , it follows that embeddings for structured domains can be computed as
the Kronecker products of embeddings for the constituent state components. As a concrete
example, a grid world domain of size m × n can be represented as a graph G = Gm ⊕ Gn

where Gm and Gn are path graphs of size m and n, respectively. The basis functions for the
entire grid world can be written as the Kronecker product φ(s) = φm(sr) ⊗ φn(sc), where
φm(sr) is the basis (eigen)vector derived from a path graph of size m (in particular, the row
sr corresponding to state s in the grid world), and φn(sc) is the basis (eigen)vector derived

37

Mahadevan and Maggioni

−0.2 −0.15 −0.1 −0.05 0 0.05 0.1 0.15 0.2
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2
Laplacian Embedding of a Cylinder

Figure 14: This figure shows the embedding of a cylinder using two low-order eigenvectors
(3rd and 4th) of the combinatorial Laplacian. The cylinder is modeled as the
Kronecker sum of a closed and open chain graph.

from a path graph of size n (in particular, the column sc corresponding to state s in the
grid world).

Extending this idea to state action pairs, the basis function φ(s, a) can written as eI(a)⊗
φ(s), where eI(a) is the unit vector corresponding to the index of action a (e.g., action a1

corresponds to e1 = [1, 0, . . .]T). Actually, the full Kronecker product is not necessary if only
a relatively small number of basis functions are needed. For example, if 50 basis functions
are to be used in a 10×10×10 hypercube, the full state embedding is a vector of size 1000,
but only the first 50 terms need to be computed. Such savings imply proto-value functions
can be efficiently computed even in very large structured domains. For a factored state
space s = (s1, . . . , sm), we use the notation si to denote the value of the ith component. We
can restate the update rules for factored RPI and LSPI as follows:

Ãt+1 = Ãt + φ(st, at)
(

φ(st, at)− γφ(s′t, π(s′t))
)T

= Ãt + eI(at) ⊗
∏

⊗
φi(s

i
t)

×
(

eI(at)

∏

⊗
φi(s

i
t)− γeI(π(s′t))

⊗
∏

⊗
φi(s

′
t
i
)

)T

= Ãt + (eI(at)(eI(at))
T)⊗

∏

⊗
(φi(s

i
t)φi(s

i
t)

T)− γ(eI(st)(eI(s′t)
)T)⊗

∏

⊗
(φi(s

i
t)φi(s

′
t
i
)T)

The corresponding update equation for the reward component is:

b̃t+1 = b̃t + φ(st, at)rt

= b̃t + rteI(at) ⊗
∏

⊗
φi(s

i
t)

38

Proto-value functions

8.4 Experimental Results

0
2

4
6

8
10

0

5

10
20

40

60

80

100

Optimal Value Function

0
2

4
6

8
10

0

5

10
40

50

60

70

80

90

100

Value Function Approximated using Factored Combinatorial Laplacian

0
2

4
6

8
10

0

5

10
20

40

60

80

100

Value Function Approximated using Factored Normalized Laplacian

Figure 15: The figure on the left is the exact value function on a 10×10 grid world with a re-
ward of +100 at the center. In the middle is the factored (combinatorial) Lapla-
cian approximation using basis functions constructed by taking tensor products
of basis functions for chain graphs (of length corresponding to row and column
sizes). On the right is the similar approximation using the normalized Lapla-
cian basis functions, which is significantly poorer since the eigenvectors of the
normalized Laplacian of a grid cannot be decomposed as the tensor product of
the eigenvectors of the normalized Laplacian on chain graphs.

Figure 15 shows the results of using the factored RPI algorithm on a 10 × 10 grid
world domain. There are four (compass direction) actions, each of which succeeds with
probability 0.9. Any “illegal” action (going “north” from the first row) leaves the agent in
the same state. The only reward of +100 is received for reaching the center of the grid.
The discount factor was set at γ = 0.9. If a “flat” approach was used, each basis function
is a vector of size 100 and requires diagonalizing a Laplacian matrix of size 100 × 100.
The factored proto-value functions are computed as the Kronecker product of the proto-
value functions on a 10 node chain graph, which requires both significantly smaller space of
O(10) and much less computational effort (diagonalizing a Laplacian of size 10×10). These
computational savings obviously magnify in larger grid world domains (e.g., in a grid world
with 106 states, “flat” proto-value functions require O(106) space and time O((106)3) to
be computed, whereas the factored basis functions only require space O(103) to store with
much less computational cost to find).

We now present a detailed study using a much larger factored multiagent domain called
the “blockers” task (Sallans and Hinton, 2004). This task, shown in Figure 16, is a coop-
erative multiagent problem where a group of agents try to reach the top row of a grid, but
are prevented in doing so by “blocker” agents who move horizontally on the top row. If
any agent reaches the top row, the entire team is rewarded by +1; otherwise, each agent
receives a negative reward of −1 on each step. The agents always start randomly placed
on the bottom row of the grid, and the blockers are randomly placed on the top row. The
blockers remain restricted to the top row, executing a fixed strategy. The overall state
space is the cartesian product of the location of each agent. Our experiments on the blocker
domain include more difficult versions of the task not studied in (Sallans and Hinton, 2004)
specifically designed to test the scalability of the pure tensor product bases to “irregular”
grids whose topology deviates from a pure hypercube or toroid. In the first variant, shown

39

Mahadevan and Maggioni

on the left in Figure 16, horizontal interior walls extend out from the left and right side
walls between the second and third row. In the second variant, an additional interior wall
is added in the middle as shown on the right. Both of these variants are “perturbations”
of the pure product of grids or cylinders topology generated by the original “obstacle-free”
blocker domain designed to test the robustness of the tensor product approach.

The basis functions for the overall blockers state space were computed as tensor products
of the basis functions over each agent’s state space. Basis functions for each agent were
computed in two ways. In the simplest “pure” approach, each agent’s state space was
modeled as a grid (as in Figure 15) or a cylinder (for the “wrap-around” case); the latter
case is modeled as a Kronecker sum graph of a “column” open chain and a “row” cycle
graph. In effect, the overall basis functions were then computed as a two-level nested tensor
product of the basis functions for the “row” chain and the “column” cylinder. The presence
of interior walls obviously violates the pure product of cylinders or grids topology. We
compared the performance of the “pure” two-level nested tensor approach with a one-level
tensor product approach, where an undirected graph representing the irregular grid was
first learned from a random walk, and then basis functions for the overall state space were
constructed as tensor products of Laplacian basis functions for each learned irregular state
grid.

1 2 3 4 5 6 7 8 9 10

1

2

3

4

5

6

7

8

9

10

123

1 2 3 4 5 6 7 8 9 10

1

2

3

4

5

6

7

8

9

10

123

Figure 16: Two versions of the blocker domain are shown, each generating a state space of
> 106 states. Interior walls shown create an “irregular” factored MDP whose
overall topology can be viewed as a “perturbed” variant of a pure product of
grids or cylinders (for the “wrap-around” case).

Figure 17 compares the performance of the “pure” two-level nested tensor product ap-
proach and the single-level tensor product Laplacian bases with a set of radial basis functions
(RBFs). The width of each RBF was set at 2|Sa|

k
where |Sa| is the size of each individual

agent’s grid, and k is the number of RBFs used. The RBF centers were uniformly spaced.
The results shown are are averages over 10 learning runs. On each run, the learned pol-
icy is measured every 25 training episodes. Each episode begins with a random walk of a
maximum of 70 steps (terminating earlier if the top row was reached). After every 25 such
episodes, RPI is run on all the samples collected thus far. The learned policy is then tested
over 500 test episodes. The graphs plot the probability of termination within a maximum
of 30 steps as well as the average number of steps to reach the goal. The experiments were
conducted on both “normal” grids (not shown) and “wrap around” cylindrical grids. The
results show that RBFs converge the fastest, but learn the worst policy. The single-level

40

Proto-value functions

nested tensor product Laplacian bases converge slower than RBFs, but learn a substantially
better policy. Finally, the simplest “pure” tensor Laplacian bases converges the slowest, but
surprisingly learns the best policy.

Figure 18 shows results for the second 10× 10 blockers task with both side and interior
middle walls, comparing 100 single-level tensor and nested two-level tensor factored Lapla-
cian bases with a similar number of RBFs. The results show a significant improvement in
performance of of both factored Laplacian bases over RBFs. Furthermore, although the
“pure” nested tensor bases converge more slowly than the one-level tensor bases, the ulti-
mate performance is almost as good, indicating little loss due to the perturbations caused
by the interior and middle walls. In terms of space, the two-level nested tensor product ap-
proach greatly reduces the computational complexity of finding and storing the Laplacian
bases of five orders of magnitude, from O(106) space for the non-factored approach and
O(102) for the one-level factored approach to O(10) for the two-level nested tensor product
approach! The two-level tensor bases scale polynomially with the row and column size of a
single grid (or cylinder). The one-level generates larger basis functions, scaling polynomially
in the size of each grid or cylinder. Both of these tensor approaches scale more efficiently
than the non-tensor “flat” approach.

0 100 200 300 400 500 600

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Factored Laplacian Bases vs RBF on 10x10 Blocker Domain

Number of training episodes

P
ro

ba
bi

lit
y

RBF

Factored
Laplacian

"Pure"
Factored
Laplacian

0 100 200 300 400 500 600
0

5

10

15

20

25

30
Factored Laplacian Bases vs. RBF on 10x10 Blocker Domain

Number of training episodes

S
te

ps

RBF

Factored
Laplacian

"Pure"
Factored
Laplacian

Figure 17: Comparison of two types of factored Laplacian basis functions with hand coded
radial basis functions (RBF) on a 10 × 10 “wrap-around” grid with 3 agents
and 2 blockers of > 106 states. All three approaches compared using 100 basis
functions.

Why does the pure tensor approach perform so well even in irregular structured MDPS,
as shown above? A detailed analysis requires the use of matrix perturbation analysis (Stew-
art and Sun, 1990), which is beyond the scope of this paper. However, Figure 19 provides
some insight. In the blockers task, the state space topologically can be modeled as the
product of cylinders (when the grid has “wrap-around-dynamics”). The Laplacian spectrum
of the product of cylinders has many repeated eigenvalues, which are clustered together.
A standard result in matrix perturbation analysis shows that under these conditions the
eigenspace defined by the eigenvectors associated with eigenvalues with high geometric mul-
tiplicity are fairly robust with respect to perturbations.

41

Mahadevan and Maggioni

0 100 200 300 400 500 600

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Results on 10x10 Blocker Domain with Middle and Side Walls

Number of training episodes

A
ve

ra
ge

 P
ro

ba
bi

lit
y

RBF

"Pure"
Factored
Laplacian

Factored
Laplacian

0 100 200 300 400 500 600
0

5

10

15

20

25

30

Results on 10x10 Blocker Domain with Middle and SideWalls

Number of training episodes

A
ve

ra
ge

 S
te

ps
 to

 G
oa

l

RBF

Factored
Laplacian

"Pure"
Factored
Laplacian

Figure 18: Performance on the second more irregular blockers domain comparing 100 fac-
tored one-level and two-level tensor product Laplacian basis functions with 100
RBFs.

0 10 20 30 40 50
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
Spectrum of Kronecker Sum of Two Cylinders

Figure 19: This figure shows the first 50 eigenvalues in the spectrum of the Kronecker sum
of two cylinders, revealing that many of the eigenvalues are of high algebraic
multiplicity.

9. Scaling Proto-Value Functions to Continuous Domains

Thus far, the construction of proto-value functions was restricted to discrete MDPs. We
now show how proto-value functions can be constructed for continuous MDPs, which present
significant challenges not encountered in discrete state spaces. The eigenfunctions of the
Laplacian can only be computed and stored on sampled real-valued states, and hence must
be interpolated to novel states. We apply the Nyström interpolation method. While this
approach has been studied previously in kernel methods (Williams and Seeger, 2000) and
spectral clustering (Belongie et al., 2002), our work represents the first detailed study of

42

Proto-value functions

the Nyström method for learning control, as well as a detailed comparison of graph normal-
ization methods (Mahadevan et al., 2006).

9.1 Nyström Extension

To learn policies on continuous MDPs, it is necessary to be able to extend eigenfunctions
computed on a set of points ∈ Rd to new unexplored points. We describe here the Nyström
method, which can be combined with iterative updates and randomized algorithms for low-
rank approximations. The Nyström method interpolates the value of eigenvectors computed
on sample states to novel states, and is an application of a classical method used in the
numerical solution of integral equations (Baker, 1977). It can be viewed as a technique
for approximating a semi-positive definite matrix from a low-rank approximation. In this
context it can be related to randomized algorithms for low-rank approximation of large
matrices (Frieze et al., 1998). Let us review the Nyström method in its basic form. Suppose
we have a positive semi-definite operator K, with rows and columns indexed by some
measure space (X, µ). K acts on a vector space of functions on X by the formula

Kf(x) =

∫

X

K(x, y)f(y)dµ(y) ,

for f in some function space on X. Examples include:

(i) X = R, µ is the Lebesgue measure, and Kσ(x, y) = e−
|x−y|2

σ , and K acts on square

integral functions f on R by Kσf(x) =
∫ +∞
−∞ e−

|x−y|2

σ f(y)dy = Kσ ∗ f .

(ii) X is a compact Riemannian manifold (M, ρ) equipped with the measure corresponding
to the Riemannian volume, ∆ is the Laplace-Beltrami operator onM, with Dirichlet
or Neumann boundary conditions if M has a boundary, and K = (I − ∆)−1 is the
Green’s function or potential operator associated with ∆.

Since K is positive semi-definite, by the spectral theorem it has a square root F , i.e.
K = F T F . Sometimes this property is expressed by saying that K is a Gram matrix, since
we can interpret K(x, y) as the inner product between the x-th and y-th columns of F . In
applications one approximates operators on uncountable spaces (such as R or a manifoldM
as in the examples above) by a finite discretization x1, . . . , xn, in which case X = {0, . . . , n},
the measure µ is an appropriate set of weights on the n points, and K is a n × n matrix
acting on n-dimensional vectors. To simplify the notation we use this discrete setting in
what follows.

The Nyström approximation starts with a choice of a partition of the columns of F into
two subsets F1 and F2. Let k be the cardinality of F1, so that F1 can be represented as
n× k matrix and F2 as a n× (n− k) matrix. One can then write

K =

(

F T
1 F1 F T

1 F2

F T
2 F1 F T

2 F2

)

The Nyström method consists of the approximation

F T
2 F2 ∼ (F T

1 F2)
T (F T

1 F1)
−1(F T

1 F2) . (12)

43

Mahadevan and Maggioni

The quantity on the righthand side requires only the knowledge of (F T
1 F2) and F T

1 F1, i.e.
the first k rows (or columns) of K. Moreover if the matrix K has rank k and F1 spans the
range of K, then the Nyström approximation is in fact exactly equal to F T

2 F2.

This technique applies to the discretization of integral equations (Baker, 1977), where the
k points F1 can be chosen according to careful mathematical and numerical analysis of the
problem, and has been applied to speeding up the computations in learning and clustering
algorithms (Platt, 2004; Williams and Seeger, 2000; Belongie et al., 2002). The natural
question that arises is of course how to choose F1 in these situations. Various heuristics
exist, and mixed results have been obtained (Platt, 2004). The most desirable choice of
F1, when the error of approximation is measured by ||F T

2 F2 − (F T
1 F2)

T (F T
1 F1)

−1(F T
1 F2)||2

(or, equivalently, the Fröbenius norm) would be to pick F1 such that its span is as close as
possible to the span of the top k singular vectors of K. Several numerical algorithms exist,
which in general require O(kN2) computations. One can use randomized algorithms, which
pick rows (or columns) of K accordingly to some probability distribution (e.g. dependent
on the norm of the row or column). There are guarantees that these algorithms will select
with high probability a set of rows whose span is close to that of the top singular vectors:
see for example (Frieze et al., 1998; Drineas et al., 2004; Drineas and Mahoney, 2005).

The Nyström method is applied to the approximation of the eigenfunctions of the graph
Laplacian Lφi = λiφi by letting F1 be the matrix with k eigenfunctions as columns: equation
(12) yields

φi(x) =
1

1− λi

∑

y∼x

w(x, y)
√

d(x)d(y)
φi(y) , (13)

where d(z) =
∑

y∼z w(z, y), and x is a new vertex in the graph. The Nyström method can be
refined with fast iterative updates as follows: first compute an extension of the eigenvectors
to new points (states), to obtain approximated eigenvectors of the extended graph {φ̃i}.
Input these eigenvectors into an iterative eigensolver as initial approximate eigenvectors:
after very few iterations the eigensolver will refine these initial approximate eigenvectors
into more precise eigenvectors on the larger graph. The extra cost of this computation is
O(IN) if I iterations are necessary, and if the adjacency matrix of the extended graph is
sparse (only N non-zero entries).

9.2 Representation Policy Iteration for Continuous Domains

Figure 21 presents the modified RPI algorithm for continuous Markov decision processes.
The core of the algorithm remains the same as before, but there are important differences
from the discrete case. First, the proto-value functions are computed on a subsampled set of
states, for two reasons: the number of samples needed to compute the proto-value functions
is much less than that needed to learn a good policy using RPI, as the experiments in
Section 9.5 reveal. In Figure 21, DZ denotes the subsampled set of states. For example, in
the inverted pendulum, typically fewer than 500 state samples are sufficient to compute a
good set of proto-value functions. On the other hand, to learn a good policy requires many
more samples. The choice of the subsampling method can make a significant difference, as
explained below. The second major difference is the use of the Nyström method to extend
proto-value functions from the samples stored in DZ to all the states visited during the

44

Proto-value functions

initial random walk (denoted D in Figure 21), as well as new states encountered during
the testing of a learned policy.

9.3 Sampling from Point Sets ∈ Rd

One challenge in continuous MDPs is how to choose a subset of samples from which a
graph can be built and proto-value functions computed. The set of samples collected during
the course of exploration and random walk can be very large, and a much smaller set of
samples is usually sufficient to learn proto-value functions. Many ways of constructing a
subsample from the overall sample can be devised. The simplest method is of course to
randomly subsample from the complete set, but this might not be the most efficient way of
using the samples. Figure 20 illustrates two methods for subsampling in the mountain car
domain (described below in more detail), including random subsampling and trajectory-
based subsampling. The trajectory-based method also tries to retain “important” samples,
such as goal states or states with high reward. Note that the random subsampling method
clearly loses important information about the trajectory, which is nicely retained by the
trajectory method.

−1.5 −1 −0.5 0 0.5
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2
Original random walk:4441 states

−1.5 −1 −0.5 0 0.5
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2
Random Subsampling: 800 states

−1.5 −1 −0.5 0 0.5
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2
Trajectory−based subsampling: 765 states

Figure 20: The problem of subsampling is illustrated in the mountain car domain. On the
left is shown the original states visited during a random walk. In the middle is
the subsampled data using a random subsampling algorithm. On the right is a
trajectory based subsampling method.

9.4 Graph Construction from Point Sets ∈ Rd

Given a data set {xi} in Rd, we can associate different weighted graphs to this point set.
There are different choices of edges and for any such choice there is a choice of weights on
the edges. For example, edges can be inserted between a pair of points xi and xj if:

(E1) ||xi − xj ||Rd ≤ δ, where δ > 0 is a parameter;

(E2) xj is among the k nearest neighbors of xi, where k > 0 is a parameter.

Weights can be assigned to the edges in any of the following ways:

45

Mahadevan and Maggioni

RPI Algorithm (T,N,Z, ε, k, P,O):

// T : Number of initial random walk trials
// N : Maximum length of each trial
// Z: Size of the subsampled data to build the graph from
// ε : Convergence condition for policy iteration
// k: Number of nearest neighbors
// P : Number of proto-value basis functions to use
// O: Type of graph operator used

1. Representation Learning Phase: Perform a random walk of T trials, each of maximum
N steps, and store the states visited in the dataset D. Construct a smaller dataset DZ of
size Z from the collected data D by some sampling method, such as random subsampling or
trajectory-based subsampling (see Section 9.3).

2. Build an undirected weighted graph G from DZ , in one of the ways described in the section
on the construction of graphs from point sets. Construct one of the operators O on graph G
as discussed in Section 9.4.

3. Compute the k “smoothest” eigenvectors of O on the sub-sampled graph DZ , and collect them
as columns of the basis function matrix Φ, a |DZ |×k matrix. The embedding of a state action
pair φ(s, a) where s ∈ DZ is given as ea ⊗ φ(s), where ea is the unit vector corresponding to
action a, φ(s) is the sth row of Φ, and ⊗ is the tensor product.

4. Control Learning Phase: Initialize w0 ∈ Rk to a random vector. Repeat the following
steps

(a) Set i← i+1. For each transition (st, at, s
′
t, a

′
t, rt) ∈ D, compute low rank approximations

of matrix A and b as follows:

Ãt+1 = Ãt + φ(st, at) (φ(st, at)− γφ(s′t, a
′
t)))

T

b̃t+1 = b̃t + φ(st, at)rt

where φ(st, at) is approximated using the Nyström extension whenever st /∈ DZ .

(b) Solve the system Ãwi = b̃

5. until ‖wi − wi+1‖2 ≤ ε.

6. Return Q̂π =
∑

i wiΦ as the approximation to the optimal value function.

end

Figure 21: Pseudo-code of the representation policy iteration algorithm for continuous
MDPs.

46

Proto-value functions

(W1) all edges have the same weight (say, 1);

(W2) W (i, j) = α(i)e−
||xi−xj ||

2
Rd

σ , where σ > 0 is a parameter, and α a weight function to be
specified;

(W3) W (i, j) = α(i)e
−

||xi−xj ||
2
Rd

||xi−xk(i)|| ||xj−xk(j)|| where k > 0 is a parameter and xk(i) is the k-th
nearest neighbor of xi (this is called self-tuning Laplacian (L. Zelnik-Manor, 2004)).
Again α a weight function to be specified.

Observe that in case (E2) the graph is in general not undirected, since xj can be among
the K nearest neighbors of xi but xi may not be among the K nearest neighbors of xj .
Since here we consider undirected graphs, in such cases we replace the weight matrix W
constructed so far by the symmetric W +W T , WW T or W T W . If the points {xi} are drawn
uniformly from a Riemannian manifold, then it is shown in (Belkin and Niyogi, 2004) that
(E1)+(W2), with α = 1, approximates the continuous Laplace-Beltrami operator on the
underlying manifold. If {xi} is not drawn uniformly from the manifold, as it typically
happens here when the space is explored by an agent, it is shown in (Lafon, 2004) that a
pre-processing normalization step can (must) be performed that yields the weight function
α, so that (E1)+(W2) yields an approximation to the Laplace-Beltrami operator. In the
experiments below, we use the following terminology:

1. ’Ave’ means that the eigenvectors of D−1(D−W) are computed (the discrete Lapla-
cian). This applies to any combination of (E1,2)-(W1-3)

2. ’GraphMarkov’ means that the eigenvectors of the normalized graph Laplacian are
computed, with any combination of (E1,2)-(W1-3)

3. ’Beltrami’ applies to any combination of (E1,2)-(W1-3), however the only theorem
known about approximation to the continuous Laplace-Beltrami is for the combination
(E1) (with large δ) together with (W2).

9.5 Experimental Results on Continuous Markov Decision Processes

This section presents detailed experimental results of the RPI algorithm illustrated in Fig-
ure 21 using benchmark continuous control tasks, including the inverted pendulum and the
mountain car. The experiments test the variance in performance with respect to various
parameters, such as the local distance metric used, and also compare the performance of
RPI with using handcoded function approximators, such as radial basis functions.

The Inverted Pendulum: The inverted pendulum problem requires balancing a pen-
dulum of unknown mass and length by applying force to the cart to which the pendulum
is attached. We used the implementation described in (Lagoudakis and Parr, 2003). The
state space is defined by two variables: θ, the vertical angle of the pendulum, and θ̇, the
angular velocity of the pendulum. The three actions are applying a force of -50, 0, or 50
Newtons. Uniform noise from -10 and 10 is added to the chosen action. State transitions
are defined by the nonlinear dynamics of the system, and depend upon the current state
and the noisy control signal, u.

47

Mahadevan and Maggioni

θ̈ =
g sin(θ)− αmlθ̇2 sin(2θ)/2− α cos(θ)u

4l/3− αml cos2(θ)
(14)

where g is gravity, 9.8 m/s2, m is the mass of the pendulum, 2.0 kg, M is the mass of
the cart, 8.0 kg, l is the length of the pendulum, .5 m, and α = 1/(m+M). The simulation
time step is set to 0.1 seconds. The agent is given a reward of 0 as long as the absolute value
of the angle of the pendulum does not exceed π/2. If the angle is greater than this value
the episode ends with a reward of -1. The discount factor was set to 0.95. The maximum
number of episodes the pendulum was allowed to balance was fixed at 3000 steps. Each
learned policy was evaluated 10 times.

Figure 22 illustrates a sample run of the RPI algorithm for the inverted pendulum task.
The initial random walk was carried out for a period of 300 episodes, each of maximum
length 30 steps. The actual number of transitions collected was 2744 steps, indicating that
the average length of an episode was around 9 steps until the pole was dropped. The graph
was constructed by randomly subsampling 500 states from this larger data set, as shown
in the figure. The discount factor was set at 0.9. The graph operator used in this run was
the “beltrami” operator described above. The number of nearest neighbors was k = 50. 50
proto-value functions were used to approximate the action value function for each action.
Figure 23 illustrates four sample proto-value functions that were learned for the inverted
pendulum task. Finally, Figure 24 shows the quality of the learned policy, measured by
the number of steps the pole was successfully balanced (up to a maximum of 3000 steps),
averaged over 20 learning runs.

Mountain Car The goal of the mountain car task is to get a simulated car to the top
of a hill as quickly as possible (Sutton and Barto, 1998). The car does not have enough
power to get there immediately, and so must oscillate on the hill to build up the necessary
momentum. This is a minimum time problem, and thus the reward is -1 per step. The state
space includes the position and velocity of the car. There are three actions: full throttle
forward (+1), full throttle reverse (-1), and zero throttle (0). Its position, xt and velocity
ẋt, are updated by

xt+1 = bound[xt + ẋt+1] (15)

ẋt+1 = bound[ẋt + 0.001at +−0.0025cos(3xt)], (16)

where the bound operation enforces −1.2 ≤ xt+1 ≤ 0.6 and −0.07 ≤ ẋt+1 ≤ 0.07. The
episode ends when the car successfully reaches the top of the mountain, defined as position
xt >= 0.5. In our experiments we allow a maximum of 500 steps, after which the task is
terminated without success. The discount factor was set to 0.99.

Figure 25 illustrates some Laplacian basis functions learned for the mountain car domain.
Figure 24 illustrates a sample learning run, averaged over 20 trials. Each trial was carried
out for a maximum of 500 episodes, each episode was for a maximum of 90 steps unless the
goal was reached before then.

Figure 26 compares the approximated value functions using proto-value functions with
108 radial basis functions (placed in an uniform 6× 6 array for each of the 3 actions with
widths automatically computed from the data), showing that proto-value functions learn

48

Proto-value functions

−2 −1 0 1 2
−10

−5

0

5

10
Original data

−2 −1 0 1 2
−10

−5

0

5

10
Subsampled data

−1.5 −1 −0.5 0 0.5 1 1.5
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2
Trajectory

Angle

A
ng

ul
ar

 V
el

oc
ity

0 500 1000 1500 2000 2500 3000
−3

−2

−1

0

1

2

3
Angular Velocity

Steps

A
ng

ul
ar

 V
el

oc
ity

Figure 22: Sample run of RPI on the inverted pendulum, showing (in row major order) the
subsampled data from the complete random walk, the action value function for
the action of applying a thrust of −50 to the left, a trajectory of 3000 showing
the learned policy successfully balancing the pole, and the corresponding angular
velocity.

an approximation that is much richer. To do a more thorough comparison, the next section
presents a detailed sensitivity analysis for both the inverted pendulum and mountain car
domains. Here, the discount factor was set at 0.99. The graph operator used in this run
was the “ave” operator described above. The number of nearest neighbors was k = 20. 30
proto-value functions were used to approximate the action value function for each action.

9.6 Perturbation Analysis

Given that proto-value functions are a non-parametric framework for constructing basis
functions, it is natural to expect that they would be less biased than parametric methods,
but suffer from a larger degree of variance. The goal of this section is to explore this
hypothesis by varying the key parameters in the RPI algorithm. Table 4 summarizes the
range of parameters over which the RPI algorithm was tested in the two continuous domains.
Values in boldface are the defaults for experiments in which those parameters were not
being varied. The results for the following experiments were averaged over 20 runs. Table 5
specifies the settings of the parametric radial basis function architecture that was used in

49

Mahadevan and Maggioni

Figure 23: Proto-value functions learned by RPI on the inverted pendulum, showing (in
row major order), the basis functions numbered 5, 10, 20, and 30 associated
with applying a thrust of −50.

100 150 200 250 300 350 400 450 500 550 600

0

500

1000

1500

2000

2500

3000

3500
Inverted Pendulum using Laplacian Proto−Value Functions

Number of training episodes

S
te

ps

0 100 200 300 400 500
0

50

100

150

200

250

300

350

400

450

500
Mountain Car using Laplacian Proto−Value Functions

Number of training episodes

S
te

ps

Figure 24: Results of a learning run of RPI on the inverted pendulum task (left) and the
mountain car task (right) using Laplacian proto-value functions.

the experiments. For the purpose of these experiments, a random subsampling method was
used to build the graph from which proto-value functions were extracted.

50

Proto-value functions

Figure 25: Proto-value functions learned by RPI on the mountain car task, showing (in row
major order), the basis functions numbered 5, 10, 20, and 30 associated with
the forward action.

The experiments reported below revealed significant differences between the two do-
mains. In the mountain car domain, random subsampling produced significantly poorer
results than the results shown earlier in Figure 24 using the trajectory subsampling method.
In the inverted pendulum domain, performance with random subsampling was much better.
One reason for this difference is the nature of the underlying manifold: the samples in the
inverted pendulum are in a relatively narrow region around the 45 degree line. In contrast,
the samples in the inverted pendulum domain are distributed across a wider region of the
state space. Another difference in these domains was the nature of the random walk. In the
inverted pendulum domain, the initial state was always set the same, with the pole starting
from the vertical position at rest. In the mountain car domain, however, starting the car
from a position of rest at the bottom of the hill produced poorer results than starting from
the bottom with the velocities initialized randomly. Also, the experiments reported below
used the raw state variables without any scaling. However, in the mountain car domain,
scaling the velocity axis by a factor of 3 produces better results (in the results shown in
Figure 24, the velocity dimension was scaled by a factor of 3). The effects of scaling are
explored later in Figure 32. Finally, the performance of the RBF architecture was sensitive

51

Mahadevan and Maggioni

Figure 26: This figure compares the value function approximation using Laplacian eigen-
functions (left) vs. radial basis functions (right). Note the qualitative difference
in the approximation.

to parameters such as width, which are not tuned below. The goal of this study was not to
explore the performance of RBF, and hence we used a default radius of σ = 1.

Parameter Inverted Pendulum Mountain Car

T (100 to 600) (50 to 550)

N 500 90

Z {100,500, 1000} {200,500, 800, 1500}
ε 10−5 10−3

k {25,50, 100} {15,25, 40, Gaussian}
P {25,50, 100, 150} {50,100, 200}
δ 0.95 1

O varied graph markov

Table 4: Parameter values (as defined in Figure 21) for inverted pendulum and mountain
car experiments. Default values are in bold.

While performance in both domains is measured by the number of steps, note that for
the mountain car task, lower numbers indicate better performance since we are measuring
the steps to reach the top of the hill. In the inverted pendulum, however, since we are
measuring the number of steps that the pole remained upright, higher numbers indicate
better performance. Figure 27 displays the first set of experiments, which varied the number
of random samplesDZ over which proto-value functions were computed. In the mountain car
task, performance monotonically improves as the number of random samples is increased,

52

Proto-value functions

Number of RBFs Inverted Pendulum RBF Parameters

10 3 x-axis, 3 y-axis, σ = 1

37 6 x-axis, 6 y-axis, σ = 0.7

50 7 x-axis, 7 y-axis, σ = 0.3

Number of RBFs Mountain Car RBF Parameters

13 4 x-axis, 3 y-axis, σ = 1

49 8 x-axis, 6 y-axis, σ = 1

Table 5: RBF parameter settings for inverted pendulum and mountain car experiments.

up to a maximum of 1500 states. However, interestingly, in the pendulum task, a sample
size of 500 produced the best results, and performance appears to degrade for larger sizes.

150 200 250 300 350 400 450 500 550 600
100

150

200

250

300

350

400

450

500

550
Mountain Car: Performace vs. Sample Size

Number of training episodes

S
te

p
s

200 subset size
500 subset size
800 subset size
1500 subset size

100 200 300 400 500 600
0

500

1000

1500

2000

2500

3000

3500

Number of training episodes

S
te

p
s

Pendulum: Performance vs. Sample Size

100 subset size
500 subset size
1000 subset size

Figure 27: Performance on mountain car and inverted pendulum as a function of the number
of subsampled points on which proto-value functions were computed.

In the second experiment, illustrated in Figure 28, the effect of varying the local distance
metric was evaluated. In the mountain car domain, the nearest neighbor metric outper-
formed the gaussian distance metric. Also, using a lower number of nearest neighbors im-
proved the performance. However, in the inverted pendulum task, performance improved
as the number of nearest neighbors was increased, up to to 50, after which performance
seemed to degrade.

Figure 29 varied the number of protovalue functions (PVFs) used. Here, there were sig-
nificant differences in the two tasks. In the inverted pendulum task, performance dramat-
ically improved from 25 to 50 proto-value functions, whereas in the mountain car domain,
performance differences were less acute (note that the mountain car results used only 500
samples, which results in worse performance than using 1500 samples, as shown earlier in
Figure 27).

53

Mahadevan and Maggioni

150 200 250 300 350 400 450 500 550 600
100

150

200

250

300

350

400

450

500

550
Mounatian Car: Performance vs. Local Distance Metric

Number of training episodes

S
te

p
s

15 nn
25 nn
40 nn
Gaussian

100 200 300 400 500 600
0

500

1000

1500

2000

2500

3000

3500

Number of training episodes

S
te

p
s

Pendulum: Performance vs Local Distance Metric

25 NN
50 NN
100 NN

Figure 28: Performance on mountain car and inverted pendulum as a function of the nearest
neighbors.

150 200 250 300 350 400 450 500 550 600
100

150

200

250

300

350

400

450

500

550
Mountain Car: Performance vs. Number of Proto−Value Functions

Number of training episodes

S
te

p
s

50 PVF
100 PVF
200 PVF

100 150 200 250 300 350 400 450 500 550 600

0

500

1000

1500

2000

2500

3000

3500
Pendulum: Performance vs. Number of Proto−Value Functions

Number of training episodes

S
te

p
s

25 PVF

50 PVF

100 PVF

150 PVF

Figure 29: Performance on mountain car and inverted pendulum as a function of the number
of proto-value functions.

Figure 30 measures the effect of varying the type of graph normalization in the pendulum
task, which seems to cause little difference in the results. The same behavior was observed
for the mountain car task (not shown).

Figure 31 compares the performance of the proto-value function with radial basis func-
tions on the mountain car and inverted pendulum tasks. In the mountain car task, proto-
value functions (bottom-most curve) significantly outperform several choices of RBFs (keep-
ing the caveats mentioned above in mind). For the inverted pendulum, the performance
of proto-value functions (top curve) appears significantly better than RBFs as well. These

54

Proto-value functions

100 200 300 400 500 600 700
1200

1400

1600

1800

2000

2200

2400

2600

2800

3000

3200
Pendulum: Performance vs. Graph Normalization

Number of training episodes

S
te

p
s

Ave
Graph Markov
Beltrami
Graph

Figure 30: Results from the pendulum task, showing the variation in performance as a
function of the type of graph normalization. Similar results were seen in the
mountain car domain (not shown).

comparisons should be interpreted with some caution. The goal here is to provide a bench-
mark for comparison. In practice, the performance of RBFs and PVFs is determined by
many factors, and it is possible for one to outperform the other depending on the parameters
chosen (as the above sensitivity analysis clearly demonstrated). Overall, the experiments
suggest that Laplacian PVFs can perform as well or better than some handcoded func-
tion approximators, indicating that they are a promising alternative to parametric function
approximators. Ultimately, much more empirical experience will be needed before a full
assessment of the Laplacian framework can be made.

In the last set of experiments, we analyze the sensitivity of Laplacian bases to scaling
of the state space using the mountain car. In this task, the velocity dimension ranges
between −0.07 to 0.07, whereas the position dimension ranges from −1.2 to 0.6, an order
of magnitude larger. Figure 32 plots the performance of Laplacian PVFs (average number
of steps to goal) over 20 learning runs, for several different choices of scaling. In each
experiment, the velocity dimension was scaled by some number, ranging from 1 (no scaling)
to 4. As the results show, there is some sensitivity to scaling, with the best results obtained
for a scaling factor of 3. The results shown in this figure were obtained using trajectory
sampling.

10. Discussion

Many extensions of the framework proposed in this paper are being actively explored, which
are briefly summarized here. We have naturally restricted our discussion to the simplest
methods, but the scope of proto-value functions can easily be extended to cover more general
situations as discussed below.

55

Mahadevan and Maggioni

150 200 250 300 350 400 450 500 550 600
100

150

200

250

300

350

400

450

500
Mountain Car: Proto−Value Functions vs. Radial Basis Functions

Number of training episodes

S
te

p
s

100 PVF
39 RBF
75 RBF
147 RBF

100 150 200 250 300 350 400 450 500 550 600 650
1200

1400

1600

1800

2000

2200

2400

2600

2800

3000

3200
Pendulum: Proto−Value Functions vs Radial Basis Functions

Number of training episodes

S
te

p
s

10 RBF
50 PVF
36 RBF
50 RBF

Figure 31: A comparison of radial basis functions and proto-value functions on the mountain
car task (left) and the inverted pendulum task (right).

0 100 200 300 400 500
0

50

100

150

200

250

300

350

400

450

500

550
Effects of Scaling in the Mountain Car Domain

Number of training episodes

Av
er

ag
e

St
ep

s t
o

Go
al

scale = 1

scale = 2.5

scale = 3

scale=4

Figure 32: This experiment investigates the effect of scaling the velocity axis in the moun-
tain car domain on the performance of the Laplacian bases. The results show
that the best performance is achieved by scaling the velocity dimension by a
factor of 3. These results were obtained using trajectory subsampling to build
the Laplacian bases. The results shown used 30 basis functions for each action.

10.1 Bias-Variance Analysis

A fundamental property of any machine learning framework is its bias-variance tradeoff
(Hastie et al., 2001). More precisely, the mean-squared error of any approximator can be
decomposed into a sum of two terms: a bias term reflecting how far the average prediction
differs from the true prediction; and a variance term reflecting how far each prediction
differs from the average prediction. Parametric function approximators of low-dimension,
such as polynomials of low degree or RBFs with a low number of basis functions, are at

56

Proto-value functions

one end of the bias-variance spectrum, constituting an approximation architecture whose
bias is high (since the true value may be far from the approximated value), but whose
variance is low (since each set of predictions on a random dataset may not be too far off
from the averaged set of predictions). The proposed Laplacian framework can be similarly
characterized at the other extreme: it provides a highly flexible approximation architecture
with customizable basis functions, with potentially low bias (at least for sufficient numbers
of basis functions), but whose variance may be high for low to medium number of samples.
An important ongoing research direction is to make precise this bias-variance tradeoff. It is
important to emphasize there are a variety of intermediate approximation architectures that
lie in between pure graph-based methods and pure parametric methods, whose bias-variance
tradeoff on some problems may be more desirable.

10.2 Incremental Methods

A natural question is whether representation learning by spectral analysis of the graph
Laplacian can be done incrementally, making it easier to combine with incremental pa-
rameter estimation techniques such as Q-learning (Watkins, 1989). Decentralized spectral
algorithms for computing the top k eigenvectors of a symmetric matrix have been devel-
oped recently (Kempe and McSherry, 2004), which rely on gossip algorithms for computing
averages over values stored at the nodes of a graph. In these algorithms, the amount of
computation required at each node is O(k3) for computing the top k eigenvectors, which
can be substantially smaller than centralized methods which require O(kn2) (here n is the
number of vertices of the graph). Furthermore, the adjacency matrix of the graph is never
stored centrally. An interesting problem for future research is to develop incremental meth-
ods for computing proto-value functions using gossip algorithms, and combine them with
incremental RL methods, such as Q-learning. An incremental ISOMAP manifold learning
technique has also recently been developed (Law and Jain, 2006).

10.3 Directed Graphs and Non-reversible Random Walks

We have restricted the analysis and construction of proto-value functions to “off-policy”
basis functions, where the random walk on an undirected graph is used to produce the basis
representations. Of necessity, this random walk represents a reversible Markov process. It
is possible to extend our approach to both “on-policy” analysis by directly diagonalizing
the Green’s function associated with a policy (see (Maggioni and Mahadevan, 2005) and the
second paper (Maggioni and Mahadevan, 2006) for more details). In particular, we have
recently implemented the directed graph Laplacian proposed by Chung (2005)), which is
defined as

LD = Dφ −
DφP + P T Dφ

2

where Dφ is a diagonal matrix whose entries are given by φ(v), the Perron vector or leading
eigenvector associated with the spectral radius of the transition matrix P specifying the di-
rected random walk on G. For a strongly connected directed graph G, the Perron-Frobenius
theorem can be applied to show that the transition matrix is irreducible and non-negative,
and consquently the leading eigenvector associated with the largest (real) eigenvalue must
have all positive components φ(v) > 0. Our initial results (Johns et al., 2006) using the

57

Mahadevan and Maggioni

directed graph Laplacian above indicate that in some cases, it can result in more efficient
approximations in MDPs when actions are highly directional (e.g., a modifed two-room task
where there are two “one-way” doors leading from one room to the other).

10.4 Theoretical Analysis

Another ongoing research direction is providing theoretical guarantees on the efficiency of
proto-value functions in approximating value functions. As discussed in Section 5, some
results follow immediately from the construction of proto-value functions. For example, it
can be shown easily that the approximation produced by projecting a given function on a
graph to the smallest k proto-value functions produces globally the smoothest approxima-
tion. There are also classical results on the efficiency of Fourier bases for approximating
smooth functions in a Sobolev space (Mallat, 1989), which can be carried over to the dis-
crete case of graphs. We discuss some of these issues at length in the companion paper
(Maggioni and Mahadevan, 2006). Another direction is to study the convergence of RPI,
which must of necessity sample the underlying manifold on the state space. In this case,
the theoretical analysis must depend on making some assumptions regarding the underly-
ing manifold. In the interests of generality and ease of readability, we have ignored these
important theoretical considerations. Belkin and Niyogi (2005) show that under uniform
sampling conditions, the graph Laplacian (constructed in a certain way) converges to the
Laplace-Beltrami operator on the underlying manifold. However, it may be difficult to
guarantee uniform sampling in the reinforcement learning context, where an agent has to
choose actions to explore its environment. We are also currently exploring the stability
of the subspaces defined by proto-value functions using the tools of matrix perturbation
theory (Stewart and Sun, 1990), which quantifies the degree to which small perturbations
of (positive definite) matrices lead to bounded changes in the spectrum and eigenspace as
well. Such analyses have been carried out for eigenvector methods, such as PageRank (Ng
et al., 2001b), and would provide a deeper insight into the robustness of spectral methods
for value function approximation.

10.5 Proto-Value Functions for Hierarchical Reinforcement Learning

As mentioned in the introduction, proto-value functions provide a broad theoretical frame-
work that unifies the study of problems raised in recent work on automating hierarchical
reinforcement learning (Barto and Mahadevan, 2003). These include the question of de-
composing the overall state space by finding bottlenecks (Hengst, 2002) and symmetries
(Ravindran and Barto, 2003). For example, as shown earlier in Figure 3, the second proto-
value function can be thresholded to find bottlenecks. In the second paper (Maggioni and
Mahadevan, 2006), the multiresolution diffusion wavelet method provides an even more
powerful method for constructing sparse representations of temporally extended actions.

10.6 Transfer Across Tasks

Proto-value functions are learned not from rewards, but from the topology of the underlying
state space (in the “off-policy” case). Consequently, they immediately suggest a solution
to the well-known problem of transfer in reinforcement learning, which has been studied by

58

Proto-value functions

many researchers (e.g., (Mahadevan, 1992; Sherstov and Stone, 2005)). One key advantage
of proto-value functions is that they provide a theoretically justified framework for transfer,
which respects the underlying manifold. We have recently begun a new framework called
proto-transfer learning, which explores the transfer of learned representations from one task
to another (in contrast to transferring learned policies) (Ferguson and Mahadevan, 2006).

11. Summary

This paper describes a unified framework for learning representation and behavior in Markov
decision processes. The fundamental novel concept is the notion of a proto-value function,
which represent building blocks of the set of all (square-integrable) value functions on a
manifold or graph. Proto-value functions can be defined in several ways: this first paper
focuses on the eigenfunctions of the graph Laplacian which formally constitutes a global
Fourier analysis of the state space manifold. Eigenfunctions were shown to have properties
crucial for value function approximation: projections of a function onto the eigenfunctions of
the graph Laplacian not only provide the globally smoothest approximation, but also results
in an approximation that respects the underlying manifold. An immediate consequence of
this approach is that nonlinearities and other global geometric invariants are automatically
captured by proto-value functions. A novel algorithm called representation policy iteration
(RPI) was described that was able to use proto-value functions to learn optimal policies
in Markov decision processes. Several variants of RPI were described, including ones for
large factored MDPs as well as for continuous MDPs. The extension to continuous states
was accomplished using the Nystrom̈ interpolation method. Detailed experimental results
from discrete and continuous domains not only showed the effectiveness of the proto-value
function approach, but also provided some evidence that this approach may outperform
handcoded parametric function approximators such as polynomials and radial basis func-
tions. Much research remains to be done in this framework: as such, this paper represents
a first step on the road to a new unified paradigm combining the learning of representation
and behavior.

Appendix: Implementation Details

The experiments reported in this paper were implemented in MATLAB. The eigenfunctions
of the Laplacian were computed using the MATLAB eigs routine. Since the graphs con-
structed for both discrete and continuous MDPs were very sparse, much of the code was
optimized to exploit sparse matrix operations.The control learning component of RPI was
implemented using a highly modified MATLAB implementation of LSPI. We are indebted
to Michail Lagoudakis and Ronald Parr for making available their MATLAB software for
LSPI. The modifications to LSPI include vectorized optimizations, batch methods for com-
puting basis functions, and caching of intermediate results wherever possible.

We have refrained from giving CPU times in the paper, since running times will invari-
ably be platform specific. For example, on a fast Intel 2 Gigahertz dual-core laptop running
Windows XP, RPI learns to solve the inverted pendulum task in around 5 seconds (this in-
cludes basis function construction as well as least-squares fixpoint updates). The mountain
car task takes about 20 seconds. In the blockers task, RPI took around a minute to learn

59

Mahadevan and Maggioni

a good policy in the 10× 10 grid with 3 agents and 3 blockers. Further code optimizations
in progress will improve these times. We intend to distribute the RPI codebase, including
several discrete and continuous testbeds, and the Laplacian eigenfunction and the diffusion
wavelet basis software, using the RL repository.

Acknowledgments

We would like to acknowledge the help and support of many researchers who have in-
spired and helped us during the course of this research. We thank Kimberly Ferguson and
Sarah Osentoski for carrying out the experiments on the inverted pendulum and the moun-
tain car domains. We would like to thank Andrew Barto, and other current and former
members of the Autonomous Learning Laboratory, including Ravi Balaraman, Mohammad
Ghavamzadeh, Jeff Johns, George Konidaris, Amy McGovern, Khashayar Rohanimanesh,
and Ozgur Simsek for their feedback. Support for this research was provided in part by the
National Science Foundation under grants ECS-0218125, IIS-0534999 and DMS-0512050.

References

S. Amarel. On representations of problems of reasoning about actions. In Donald Michie,
editor, Machine Intelligence 3, volume 3, pages 131–171. Elsevier/North-Holland, 1968.

S. Axler, P. Bourdon, and W. Ramey. Harmonic Function Theory. Springer, 2001.

J. Bagnell and J. Schneider. Covariant policy search. In Proceedings of the International
Joint Conference on Artificial Intelligence (IJCAI), 2003.

C T H Baker. The numerical treatment of integral equations. Oxford: Clarendon Press,
1977.

A. Barto and S. Mahadevan. Recent advances in hierarchical reinforcement learning. Dis-
crete Event Systems Journal, 13:41–77, 2003.

M. Belkin and P. Niyogi. Towards a theoretical foundation for laplacian-based manifold
methods. In Proceedings of the International Conference on Computational Learning
Theory, 2005.

M. Belkin and P. Niyogi. Semi-supervised learning on Riemannian manifolds. Machine
Learning, 56:209–239, 2004.

S Belongie, C Fowlkes, F Chung, and J Malik. Spectral partitioning with indefinite kernels
using the Nyström extension. ECCV, 2002.

D. P. Bertsekas and J. N. Tsitsiklis. Neuro-Dynamic Programming. Athena Scientific,
Belmont, Massachusetts, 1996.

J. A. Boyan. Least-squares temporal difference learning. In Proceedings of the 16th Interna-
tional Conference on Machine Learning, pages 49–56. Morgan Kaufmann, San Francisco,
CA, 1999.

60

Proto-value functions

S. Bradtke and A. Barto. Linear least-squares algorithms for temporal difference learning.
Machine Learning, 22:33–57, 1996.

James C Bremer, Ronald R Coifman, Mauro Maggioni, and Arthur D Szlam. Dif-
fusion wavelet packets. Tech. Rep. YALE/DCS/TR-1304, Yale Univ., Appl. Comp.
Harm. Anal., submitted, Sep. 2004. doi: http://www.math.yale.edu/\simmmm82/
DiffusionWaveletPackets.pdf.

J Cheeger. A lower bound for the smallest eigenvalue of the laplacian. In RC Gunning,
editor, Problems in Analysis, pages 195–199. Princeton Univ. Press, 1970.

T. Chow. The Q-spectrum and spanning trees of tensor products of bipartite graphs.
Proceedings of the American Mathematical Society, 125(11):3155–3161, 1997.

F Chung. Laplacians and the Cheeger Inequality for Directed Graphs. Annals of Combi-
natorics, 2005.

Fan Chung. Spectral Graph Theory. Number 92. CBMS-AMS, May 1997.

Ronald R Coifman and Mauro Maggioni. Diffusion wavelets. Tech. Rep. YALE/DCS/TR-
1303, Yale Univ., Appl. Comp. Harm. Anal., Sep. 2004. doi: http://www.math.yale.edu/
\simmmm82/DiffusionWavelets.pdf. to appear.

Ronald R Coifman, Yves Meyer, S Quake, and Mladen V Wickerhauser. Signal processing
and compression with wavelet packets. In Progress in wavelet analysis and applications
(Toulouse, 1992), pages 77–93. Frontières, Gif, 1993.

Ronald R Coifman, Stephane Lafon, Ann Lee, Mauro Maggioni, Boaz Nadler, Frederick
Warner, and Steven Zucker. Geometric diffusions as a tool for harmonic analysis and
structure definition of data. part i: Diffusion maps. Proc. of Nat. Acad. Sci., (102):
7426–7431, May 2005a.

Ronald R Coifman, Stephane Lafon, Ann Lee, Mauro Maggioni, Boaz Nadler, Frederick
Warner, and Steven Zucker. Geometric diffusions as a tool for harmonic analysis and
structure definition of data. part ii: Multiscale methods. Proc. of Nat. Acad. Sci., (102):
7432–7438, May 2005b.

Ronald R Coifman, Mauro Maggioni, Steven W Zucker, and Iannis G Kevrekidis. Geometric
diffusions for the analysis of data from sensor networks. Curr Opin Neurobiol, 15(5):576–
84, October 2005c.

D. Cvetkovic, M. Doob, and H. Sachs. Spectra of Graphs: Theory and Application. Academic
Press, 1980.

I Daubechies. Ten lectures on wavelets. Society for Industrial and Applied Mathematics,
1992. ISBN 0-89871-274-2.

P. Dayan. Improving generalisation for temporal difference learning: The successor repre-
sentation. Neural Computation, 5:613–624, 1993.

61

Mahadevan and Maggioni

Frank Deutsch. Best Approximation In Inner Product Spaces. Canadian Mathematical
Society, 2001.

T. Dietterich and X. Wang. Batch value function approximation using support vectors. In
Proceedings of Neural Information Processing Systems. MIT Press, 2002.

P Drineas and M W Mahoney. On the Nyström method for approximating a Gram matrix
for improved kernel-based learning. J. Machine Learning Research, (6):2153–2175, 2005.

P. Drineas, R. Kannan, and M.W. Mahoney. Fast Monte Carlo algorithms for matrices II:
Computing a low-rank approximation to a matrix. Technical Report YALEU/DCS/TR-
1270, Yale University Department of Computer Science, New Haven, CT, February 2004.

C. Drummond. Accelerating reinforcement learning by composing solutions of automatically
identified subtasks. Journal of AI Research, 16:59–104, 2002.

D. Farias. The linear programming approach to approximate dynamic programming. In
Learning and Approximate Dynamic Programming: Scaling up to the Real World. John
Wiley and Sons, 2003.

K. Ferguson and S. Mahadevan. Proto-transfer learning in markov decision processes using
spectral methods. In ICML Workshop on Transfer Learning, 2006.

M. Fiedler. Algebraic connectivity of graphs. Czech. Math. Journal, 23(98):298–305, 1973.

D. Foster and P. Dayan. Structure in the space of value functions. Machine Learning, 49:
325–346, 2002.

A Frieze, R Kannan, and S Vempala. Fast Monte Carlo algorithms for finding low-rank
approximations. In Proceedings of the 39th annual IEEE symposium on foundations of
computer science, pages 370–378, 1998.

G. Gordon. Stable function approximation in dynamic programming. Technical Report
CMU-CS-95-103, Department of Computer Science, Carnegie Mellon University, 1995.

C. Guestrin, D. Koller, and R. Parr. Max-norm projections for factored markov decision
processes. In Proceedings of the 15th IJCAI, 2001.

C. Guestrin, D. Koller, R. Parr, and S. Venkataraman. Efficient solution algorithms for
factored MDPs. Journal of AI Research, 19:399–468, 2003.

T. Hastie, R. Tibshirani, and J. Friedman. The Elements of Statistical Learning. Springer,
2001.

Bernhard Hengst. Discovering hierarchy in reinforcement learning with HEXQ. In ICML,
pages 243–250, 2002.

J. Johns, S. Osentoski, and S. Mahadevan. Approximating action value functions using the
directed graph laplacian, 2006. Submitted.

62

Proto-value functions

S. Kakade. A natural policy gradient. In Proceedings of Neural Information Processing
Systems. MIT Press, 2002.

D. Kempe and F. McSherry. A decentralized algorithm for spectral analysis. In Proceedings
of ACM Symposium on Theory of Computing (STOC), pages 561–568. Morgan Kaufmann
Publishers, San Francisco, US, 2004.

D. Koller and R. Parr. Policy iteration for factored MDPs. In Proceedings of the 16th
Conference on Uncertainty in AI, 2000.

R. Kondor and R. Vert. Diffusion kernels. In Kernel Methods in Computational Biology.
MIT Press, 2004.

R. M. Kretchmar and C. W. Anderson. Using temporal neighborhoods to adapt function
approximators in reinforcement learning. In International Work Conference on Artificial
and Natural Neural Networks, 1999.

P. Perona L. Zelnik-Manor. Self-tuning spectral clustering. In Advances in Neural Infor-
mation Processing Systems 17 (NIPS 2004), 2004.

J. Lafferty and G. Lebanon. Diffusion kernels on statistical manifolds. Journal of Machine
Learning Research, 6:129–163, 2005.

Stephane Lafon. Diffusion maps and geometric harmonics. PhD thesis, Yale University,
Dept of Mathematics & Applied Mathematics, 2004.

M. Lagoudakis and R. Parr. Least-squares policy iteration. Journal of Machine Learning
Research, 4:1107–1149, 2003.

J. C. Latombe. Robot Motion Planning. Kluwer Academic Press, 1991.

S. Lavalle. Planning algorithms, 2005. Forthcoming text, to appear.

M. Law and A. Jain. Incremental nonlinear dimensionality reduction by manifold learning.
IEEE PAMI, 2006.

J. M. Lee. Introduction to Smooth Manifolds. Springer, 2003.

M. Maggioni and S. Mahadevan. A multiscale framework for markov decision processes
using diffusion wavelets. submitted, 2006.

M. Maggioni and S. Mahadevan. Fast direct policy evaluation using multiscale analysis
of markov diffusion processes. In University of Massachusetts, Department of Computer
Science Technical Report TR-2005-39, 2005.

S. Mahadevan. Samuel Meets Amarel: Automating Value Function Approximation using
Global State Space Analysis. In Proceedings of the Twentieth National Conference on
Artificial Intelligence (AAAI), Pittsburgh, 2005a. AAAI Press/MIT Press.

S. Mahadevan. Proto-Value Functions: Developmental Reinforcement Learning. In Pro-
ceedings of the International Conference on Machine Learning, 2005b.

63

Mahadevan and Maggioni

S. Mahadevan. Enhancing transfer in reinforcement learning by building stochastic mod-
els of robot actions. In Proceedings of the Ninth International Conference on Machine
Learning, Aberdeen, Scotland, pages 290–299, 1992.

S. Mahadevan. Representation Policy Iteration. In Proceedings of the Conference on Un-
certainty in Artificial Intelligence, 2005c.

S. Mahadevan, M. Maggioni, Kimberly Ferguson, and Sarah Osentoski. Learning represen-
tation and control in continuous markov decision processes. In Proceedings of the National
Conference on Artificial Intelligence (AAAI), 2006.

Stephane Mallat. A wavelet tour in signal processing. Academic Press, 1998.

Stephane G Mallat. A theory for multiresolution signal decomposition: The wavelet rep-
resentation. IEEE Trans. Pattern Anal. Mach. Intell., 11(7):674–693, 1989. ISSN 0162-
8828. doi: http://dx.doi.org/10.1109/34.192463.

Shie Mannor, Ishai Menache, Amit Hoze, and Uri Klein. Dynamic abstraction in reinforce-
ment learning via clustering. In ICML, 2004.

A. McGovern. Autonomous Discovery of Temporal Abstractions from Interactions with an
Environment. PhD thesis, University of Massachusetts, Amherst, 2002.

N. Menache, N. Shimkin, and S. Mannor. Basis function adaptation in temporal difference
reinforcement learning. Annals of Operations Research, 134:215–238, 2005.

R. Munos. Error bounds for approximate value iteration. In AAAI, 2005.

R. Munos. Error bounds for approximate policy iteration. In ICML, 2003.

A. Nedic and D. Bertsekas. Least-squares policy evaluation algorithms with linear function
approximation. Discrete Event Systems Journal, 13, 2003.

A. Ng, M. Jordan, and Y. Weiss. On spectral clustering: Analysis and an algorithm, 2001a.
URL citeseer.ist.psu.edu/ng01spectral.html.

A. Ng, A. Zheng, and M. Jordan. Link analysis, eigenvectors, and stability. In Proceedings
of the 15th IJCAI, 2001b.

A. Ng, M. Jordan, and Y. Weiss. On spectral clustering: Analysis and an algorithm. In
NIPS, 2002.

Partha Niyogi, I Matveeva, and Mikhail Belkin. Regression and regularization on large
graphs. Technical report, University of Chicago, Nov. 2003.

D. Ormoneit and S. Sen. Kernel-based reinforcement learning. Machine Learning, 49(2-3):
161–178, 2002.

J. Peters, S. Vijaykumar, and S. Schaal. Reinforcement learning for humanoid robots. In
Proceedings of the Third IEEE-RAS International Conference on Humanoid Robots, 2003.

64

Proto-value functions

J C Platt. FastMap, MetricMap, and Landmark MDS are all Nyström algorithms. Technical
Report MSR-TR-2004-26, Microsoft Research, Sep 2004.

P. Poupart, R. Patrascu, D. Schuurmans, C. Boutilier, and C. Guestrin. Greedy linear value
function approximation for factored markov decision processes. In AAAI, 2002.

M. L. Puterman. Markov decision processes. Wiley Interscience, New York, USA, 1994.

C. Rasmussen and M. Kuss. Gaussian processes in reinforcement learning. In Proceedings
of the International Conference on Neural Information Processing Systems. MIT Press,
2004.

B. Ravindran and A. Barto. SMDP homomorphisms: An algebraic approach to abstraction
in semi-markov decision processes. In Proceedings of the 18th IJCAI, 2003.

S Rosenberg. The Laplacian on a Riemannian Manifold. Cambridge University Press, 1997.

S. Roweis and L. Saul. Nonlinear dimensionality reduction by local linear embedding.
Science, 290:2323–2326, 2000.

B. Sallans and G. Hinton. Reinforcement learning with factored states and actions. Journal
of Machine Learning Research, 5:1063–1088, 2004.

A. L. Samuel. Some studies in machine learning using the game of checkers. IBM Journal
of Research and Development, 3:210–229, 1959.

A. Sherstov and P. Stone. Improving action selection in mdp’s via knowledge transfer. In
Proceedings of the Twentieth National Conference on Artificial Intelligence, 2005.

J. Shi and J. Malik. Normalized cuts and image segmentation. IEEE PAMI, 22:888–905,
2000.

Özgür Simsek and Andrew G. Barto. Using relative novelty to identify useful temporal
abstractions in reinforcement learning. In ICML, 2004.

G. Stewart and J. Sun. Matrix Perturbation Theory. Academic Press, 1990.

D. Subramanian. A theory of justified reformulations. Ph.D. Thesis, Stanford University,
1989.

R. Sutton. Temporal Credit Assignment in Reinforcement Learning. PhD thesis, University
of Massachusetts, Amherst, 1984.

R. Sutton and A. G. Barto. An Introduction to Reinforcement Learning. MIT Press, 1998.

R. S. Sutton. Learning to predict by the methods of temporal differences. Machine Learning,
3:9–44, 1988. URL citeseer.ist.psu.edu/sutton88learning.html.

J. Tenenbaum, V. de Silva, and J. Langford. A global geometric framework for nonlinear
dimensionality reduction. Science, 290:2319–2323, 2000.

65

Mahadevan and Maggioni

G. Tesauro. Practical issues in temporal difference learning. Machine Learning, 8:257–278,
1992.

J. Tsitsiklis and B. Van Roy. An analysis of temporal-difference learning with function
approximation. IEEE Transactions on Automatic Control, 42:674–690, 1997.

P. Utgoff and D. Stracuzzi. Many-layered learning. Neural Computation, 14:2497–2529,
2002.

C. Watkins. Learning from Delayed Rewards. PhD thesis, King’s College, Cambridge,
England, 1989.

Christopher K. I. Williams and Matthias Seeger. Using the nyström method to speed up
kernel machines. In NIPS, pages 682–688, 2000.

X. Zhou. Semi-Supervised Learning With Graphs. PhD thesis, Carnegie Mellon University,
2005.

66

