Many-Layered Learning

Paul E. Utgoff
David J. Stracuzzi
Department of Computer Science
University of Massachusetts
Ambherst, MA 01003 U.S.A.
{utgoff]|stracudj} @cs.umass.edu

Abstract

We examine how a network of many knowledge layers can
be constructed in an on-line manner, such that the learned
units represent building blocks of knowledge that serve to
compress the overall representation. Our novel STL algo-
rithm demonstrates a method for simultaneously acquiring
and organizing a collection of concepts and functions as a
many-layered network.

1 Introduction

A human cannot learn an arbitrary piece of knowledge
at any time. Instead, as simpler knowledge is acquired,
formerly difficult knowledge becomes simple enough to
absorb. Knowledge that could be acquired readily upon
presentation constitutes a frontier of receptivity, and the
knowledge already learned by the agent provides a basis
on which to assimilate new knowledge. As currently sim-
ple knowledge is mastered, the frontier of receptivity ad-
vances, improving the basis for further understanding of
currently complex knowledge. We explore the idea that
knowledge can accumulate incrementally in a virtually un-
bounded number of layers, and we refer to this view as
many-layered learning. How can an agent process its in-
put stream so that it structures its knowledge in a usefully
layered organization, and how can it do so over the agent’s
lifetime?

2 Background

One critical means of achieving compactness is to refer
to previously acquired knowledge whenever possible, rather
than to replicate it in place. One finds this notion in struc-
tured programming, by coding useful procedures or func-
tions, and then referring to them as needed. This results in
large coding efficiencies, as the functionality needed in mul-
tiple locales is produced and debugged independently just
once. Shapiro (1987) applied this model of structured pro-
gramming to learning, calling it structured induction. Each
learned function is available for subsequent learning. Effi-
ciency from layering is much more than a matter of saving

space. A function can be learned once, free of the contexts
in which it appears, and then be reused as needed within a
variety of contexts. We refer to a concept or function refer-
enced by others as a building block.

Some systems construct multiple layers, but are focused
on reducing residual error for a single classification problem
fixed ahead of time (Fahlman & Lebiere, 1990). What of the
longer view, in which we wish agents to learn new tasks in
terms of 0ld? One means of forming building blocks is to
learn concepts in a sequential manner, so that old concepts
are available for use in expressing new concepts (Sammut
& Banerji, 1986).

Clark & Thornton (1997) discuss the need for layers of
representation based on the need to map one representation
to another. They offer a very helpful distinction between
two classes of learning problems, which they call Type-1
and Type-2 learning. For Type-1 learning problems, our
well-studied statistical methods capture regularity that is di-
rectly observable, even if only faintly. However, for Type-2
learning, a mapping of the given variables to new variables
is required in order to uncover otherwise unobservable reg-
ularity. Indeed, the difficulty in applying Type-1 methods to
Type-2 problems accounts for the common practice of man-
ually engineering an input representation in order to pro-
duce a Type-1 problem. Of course, more than one level
of mapping to new variables may be needed, further com-
plicating the learning problem. A clear implication is that
such Type-2 mappings can arise from learning a variety of
concepts or functions in a Type-1 manner, some of which
happen to provide useful mappings for problems that will
arise sometime thereafter.

New work is beginning to appear that approaches larger
learning problems in a bottom up manner. For example,
Stone & Veloso (2000) have explored many-layered learn-
ing in the domain of robotic soccer, having observed that the
larger learning tasks were intractable with standard (Type-1)
methods. Valiant (2000) has proposed a ‘neuroidal’ archi-
tecture in which concepts are represented in layers of linear
threshold units. He discusses the idea that each unit should

correspond to a concept, and that each unit be trained in-
dividually (a localized training signal). The goal is to ex-
press concepts in terms of other building block concepts.
This is an important step toward deep networks of building
blocks, and away from limitations imposed by employing
only gradient-descent driven by output error.

3 Design Goals and Assumptions

Our primary goal is to design a single learning mecha-
nism that can exhibit difficult (Type-2) learning by way of
layered simple (Type-1) learning. This constitutes a differ-
ent paradigm from the more typical approach of applying a
Type-1 method to a Type-1 problem. In our view, learning
of difficult concepts takes place only after learning of pre-
requisites renders them not difficult. This is very different
in scope from the common attitude, much evident in prac-
tice, that one should be able to turn on a learning system and
watch it run to completion. We share this goal, but hold that
systems capable of Type-2 learning will require more than
Type-1 learning algorithms. We conjecture that they will
also require a bottom-up layering mechanism, so that Type-
1 problems and results can be composed to realize Type-2
learning. Our paradigm does not mean that such a learning
system could not be used to learn a single difficult concept
of interest, but it does mean that preparatory learning would
need to occur as a prerequisite.

We make three basic assumptions in order to produce a
workable scope for experimentation. The first is that lin-
ear threshold units and linear combination units are the only
unit types, and that they are individually trainable. The sec-
ond is that such a unit can be adjusted at any time by pre-
senting a training instance to it, wherever the unit may be
located in the network. We do not propagate errors back-
ward; gradient-descent is applied only locally at each unit
to train its adjustable parameters (weights). The third as-
sumption is that the instance (input) representation consists
of a set of propositional and numeric variables.

4 A Card-Stackability Domain

To ground the discussion, we employ a domain in which
the most advanced of the concepts are two kinds of card
stackability found in many forms of card solitaire. The first
kind of card stackability, called column_stackable, pertains
to cards that are still in play. A card c; can be stacked onto
a card ¢, already at the bottom of a column if two condi-
tions hold. First, the color of the suit of card ¢; and the
color of the suit of card ¢, must differ, and second, the rank
(ace..king) of card c; must be exactly one less than that of
card c;. We shall ignore the rules for which cards may be
placed at the head of a column, as they are immaterial here.

The second kind of card stackability, called
bank_stackable, applies to cards that become out of
play upon being stacked onto a bank. A card c; that is still

in play may be placed onto a card ¢ that is out of play in a
bank if two conditions hold. First, the suit of card ¢, and
the suit of card ¢; must be identical, and second, the rank
of card ¢, must be exactly one more than that of card c;.
Again we shall ignore the rules for which cards may start a
bank (typically the aces).

For humans, these concepts and functions are not difficult
to compute, primarily because the rank, suit, and suit_color
are indicated plainly on each card. However, to make the
problem slightly richer, suppose that the deck of cards to be
used does not have these standard indications. Imagine in-
stead that each of the fifty-two cards has solely one of the
integers in the interval [0,51] indicated. This produces a
problem that is still simple enough to understand, yet that is
rich enough to lend itself to requiring many layers of knowl-
edge. We state these definitions formally, though we shall
not attempt to learn them in this form:

suit(x) = (x div 13)
rank(x) = (x mod 13)
suit_color(x) = (suit(x) mod 2)
column_stackable(cl,c2) <>
(suit_color(cl) # suit_color(c2)) A
(14rank(c1) = rank(c2))
bank_stackable(c2,cl) <>
(suit(cl) = suit(c2)) A (14rank(cl) = rank(c2))

Figure 1 shows a hand-designed many-layered network
consisting of the inputs, a variety of building block units,
and the two target concepts. All the units are shown in a
row of boxes at the top, with the units of each layer shown
as a group. For any unit, its output line descends diagonally
to the right, and its input line ascends diagonally from the
left. An output line of one unit is connected to the input line
of another unit only where a dot appears at their intersec-
tion. A linear threshold unit is shown as a clear box, and a
linear combination unit is shown as a shaded box. Notice
that there are six layers of computation, indicated by the
seven groups of units.

S Learning From An Organized Stream

We would like to design an on-line learning algorithm
that learns new concepts, using previously learned concepts
as additional inputs to each learning task.

5.1 A Curriculum Algorithm

The hand-designed network in the figure can be learned
sequentially, one layer at a time. Each concept or function
to be learned at a layer is trained individually in a supervised
manner, as though it were an independent learning task. The
stream of training examples is processed by presenting each
training example to its corresponding unit. One waits until
the concepts at a layer are learned sufficiently well before
proceeding to the next. This supposes a good teacher for
organizing the training in such a sequential manner, and de-

=

diamond(c2)

)

(c1,c2)
column_stackable(c1,c2)

(c1.2)

rank_successor
suit_colors_differ(c1,c2)

diamond(c1,c2)

one_or_fewer

bank_stackable(c1,c2

Figure 1. Hand-Designed Many-Layered Network

ciding when to proceed to the next layer.

Although in our example the main goal for the agent is
to learn the two concepts regarding stackability, these are
too difficult to learn immediately. One needs to learn the
simpler concepts first, to build a satisfactory basis for sub-
sequent Type-1 learning. In this domain, it is important to
learn first that certain intervals of integer values are impor-
tant to recognize. From that basis, it becomes much easier
for the agent to learn the suit concepts. So it goes, each
new layer of knowledge advancing the frontier of receptiv-
ity, preparing the agent to acquire the next. It is the layering
of Type-1 learning that produces Type-2 learning.

We implemented an algorithm to train the layers succes-
sively as described above. This is an instance of a curricu-
lum algorithm, which we shall characterize as any algorithm
that is designed to provide instruction in an order that cor-
responds to a workable progression of an agent’s frontier of
receptivity. When an ordered pair of cards is presented, a
class label (or function value) is included so that the cor-
responding unit can be trained. If the unit is on the first
computational layer, it is trained in a straightforward man-
ner, using the appropriate error correction rule. Each lin-
ear threshold unit is adjusted by stochastic gradient-descent
to reduce the absolute error, using stepsize 0.1, real inputs
normalized by the largest magnitude for each input variable
individually, and Boolean inputs mapped onto 1 for TRUE
and -1 for FALSE. Each linear combination unit is adjusted
to reduce the mean-squared error, using the same stepsize,

normalization, and input encoding. If the unit is beyond the
first computational layer, all the units preceding it are first
evaluated in a feed-forward manner, so that its inputs are
available, given the ordered pair of cards (Rivest & Sloan,
1994).

5.2 Experiments

In a simple experiment, all the exact dependencies of the
knowledge elements were known, sidestepping any prob-
lems of connectivity. The units of each layer were learned
successively in 2, 2, 557, 3, 2, and 2 epochs for each layer
respectively, using all the examples as the training corpus.
Total cpu time was 13.2 seconds on a 1.13-gigahertz Pen-
tium III. A second experiment was run in which the connec-
tivity was not known in advance. Instead, for each new layer
of unlearned units, the output of every previously learned
unit (including the input units) was connected as an input
to each unlearned unit of the new layer. In this case, the
layers were learned successively in 4, 2, 537, 4, 2, and 3
epochs respectively, in 41.6 seconds. We address this high-
connectivity issue below.

We conducted experiments with a variety of feed-forward
artificial neural networks and backprop (Rumelhart & Mc-
Clelland, 1986), which are too numerous to report in detail.
In summary, putting aside speed issues, network topologies
with more than two layers of hidden units failed. This was
so even when providing a topology with perfect connec-
tivity, as given in the hand-designed network. When con-
fronting the task with the common two layers of hidden

units, convergence was also elusive. Notice that the cur-
riculum algorithm was given specific information for each
of its units, and the backprop algorithm was not. We are not
offering a classical comparison of any kind. Rather, we are
illustrating that there are limitations to backpropagation of
error, a form of top-down learning, that are avoided with a
curriculum algorithm, a form of bottom-up learning.

For sequential Type-2 learning to work well, the decom-
position of the presumably final targets into useful sub-
concepts must already have occurred. One must learn the
building-block knowledge for future tasks yet to be en-
countered. In some sense this seems impossible, but it is
only a matter of viewpoint. It is only in the top-down-
decompositional view of the world that time must run back-
ward. In the bottom-up-compositional view, building blocks
are created based on experience. A new block is learnable
if and only if the prerequisites are in place.

6 Learning From An Unorganized Stream

We present and discuss our STL algorithm, which
demonstrates a mechanism for organizing concepts in terms
of each other at the same time that they are acquired. This
models quite directly the notion of an advancing frontier of
receptivity, even without a teacher prescribing the layering.

6.1 A Stream-To-Layers Algorithm

Consider again the two target concepts column_stackable
and bank_stackable. = Suppose now that when an or-
dered pair (cl,c2) instance is presented, a set of ob-
served relations is also stated, each as a positive or
negative atom. For example, consider the following
instance, in which cI is bound to 46 (the 8<}), and
c2 is bound to 34 (the 9): {c1/46,c2/34},A(~less13(cl),
~less26(cl), ~Iless39(cl), ~spade(cl), ~heart(cl), ~club(cl), dia-
mond(cl), ~black(cl), red(cl), rank(cl,7), ~lessl3(c2), ~less26(c2),
less39(c2), ~spade(c2), ~heart(c2), club(c2), ~diamond(c2), black(c2),
~red(c2), rank(c2,8), ~both_spade(cl,c2), ~both_heart(cl,c2),
~both_club(cl,c2), ~both_diamond(cl,c2), ~black_red(cl,c2),
red_black(cl,c2), rank_one_or_more(cl,c2), rank_one_or-fewer(cl,c2),
~suits_identical(c1,c2), suit_colors_ditfer(cl,c2), rank_successor(cl,c2),
column_stackable(cl,c2), ~bank_stackable(cl,c2)).

This may be more information than is strictly necessary
because the agent may already know how to infer some of
these atoms from (c1,c2) due to earlier successful learning
of some of the building block concepts. In terms of level
of discourse, this would be a mismatch between sender and
receiver. Information that the agent could already infer is
irrelevant, as is information that is currently too difficult to
absorb.

We assume that the stream of observations holds the
atoms that correspond to the concepts. Note that an impor-
tant segmentation of the agent’s observations has therefore
already occurred, and this is one of the basic assumptions
that we discussed above. However, an agent’s waking hours

Table 1. The STL Algorithm

Input: A stream O of observations, each of the form o; =
(Br,L;), where B, is a set of variable bindings and L, is a con-
junction of literals.

Initially: U <+ 0, where U is the set of all defined units.
M + 0, where M is the set of all learned units or base inputs.
On-line Algorithm: For each observation o;:

1. Compute value of every uy € U using bound input vari-
ables.

2. M+ MU{0}UYV,, where 8 is the distinguished bias
input which is always 1, and V; is the set of input vari-
ables in B;.

3. For each literal /; € L;: (Let A denote predicate or func-
tion to be learned corresponding to atom name in /;.)

(a) If there is a numeric argument g; of /; then A is a
linear combination unit with target 7' <— a;. Oth-
erwise, A is a linear threshold unit; if /; is positive
then T + lelset + —1.

(b) IfnotA € U then create unit for A, U < U U{A},
set A to be undefined, Ajpurs < M, Ayeighis < W,
where each wy is sampled from uniform density
over [-0.05,0.05].

(c) Update unit A using target 7, appropriate
gradient-descent correction, stepsize (0.1 for
combination, 0.01 for threshold), input values
each normalized to maximum magnitude 1.0.

(d) If A has been learned sufficiently well (see dis-
cussion) then M «+ MU{A}.

(e) If A is unlearnable over Aj,pus (see discussion)
then N < M _Ainpuls, A[nputs — A[nputs UN, ini-
tialize new weights for new inputs N as in Step
3b, reset A as learnable, go to Step 3c.

(f) If A € M and A has some inputs not tried for dele-
tion then:

i. If A" is undefined (see Step 3b) then A" + A

(copy of A), remove one of Aﬁnpm selected

at random and mark the deleted input as
‘tried’.

ii. Update A’ as in Step 3c.

iii. If A" has been learned sufficiently well, as in
Step 3d, then M + M — {A}, U + U —{A},
discard A, set A to refer to A, set A’ to be
undefined, M + MU{A}, M + M U{A}.

iv. Otherwise, if A" is unlearnable over Aj, .,

as in Step 3e, then discard A’, set A’ to be

undefined.

include a stream of perceptions and observations, and our
interest is in being able to learn from such a stream. To this
end, we manufacture such a stream, putting aside the prob-
lem of what mechanisms in an agent could produce such a
stream.

Table 1 shows the STL (stream to layers) algorithm,
which tries to learn all the concepts/functions that come
its way. Of course some concepts are learned sooner than
others. Any concept/function that is learned successfully
has its output value connected as an input to those con-

=
<
S
5
2
o
£
S
u|
=
5
2

both_spade(c1,c2)

(c1,c2)

both_heart

both_club!

(c1,c2)

)

(c1,c2)
(c1,c2)
(c1,c2)
(c1,c2)
(c1,c2)
(c1,c2)

(c1,c2)

t_colors_differ

k_one_or_fewer|

its_identical(c1,c2

ed_black
bank_stackable
column_stackable
rank_one_or_more|
rank_successor|

ral
sui
sui

Figure 2. STL Using A Reduced Set of Hand-Designed Concepts

cepts/functions that have not yet been learned reliably. This
has the effect of pushing the as-yet-unlearned concepts to
a deeper layer. This process continues, always pushing the
unlearned concepts deeper, and providing each with an im-
proved basis. The agent is receptive to what can be learned
simply, given what has already been acquired successfully.
This approach embodies an assumption that those concepts
that can be learned early should be considered as potential
building blocks (inputs) when learning other concepts later.

The STL algorithm operates in an on-line manner. The
algorithm must make two important decisions. The first
is to determine when a unit has successfully acquired its
target concept, and is therefore eligible to become an in-
put to other, unlearned units. The criterion for successful
learning in STL is that the unit must have produced a cor-
rect evaluation for at least n consecutive examples, where
n = 1000VC(u) for unit u. The VC dimension of a linear
unit is simply d + 1 for a unit with d inputs. We chose 1000
empirically for the problems at hand, and we are examining
how to formulate a more principled criterion.

The second decision that STL must make is to deter-
mine when a unit cannot learn a target concept sufficiently
well. STL relies on sample complexity to determine when
a unit requires additional input connections. If a unit is
presented with m examples without satisfying the above
learning criterion, the unit is considered to be unlearn-
able over its inputs, and new connections are added be-
fore training resumes. The number of required examples
ism> 5(VC(u) + ln(%)) with ¢ = 0.8, confidence param-
eter 0 = 0.01 and accuracy parameter € = 0.01 for thresh-
olded linear units. The number of examples required for
an unthresholded linear combination is described by a sim-

ilar formula m > % (10g2(1—86) +2Pdim(u)log,(2})) where
Pdim(u) is the pseudo-dimension of u and the confidence
8 =0.01 and accuracy € = 0.1 (Anthony & Bartlett, 1999).

6.2 Experiments

We presented all distinct (cl,c2) pairs and the corre-
sponding atoms as training instances. Although STL is an
on-line algorithm, we have only a finite amount of data,
52-52 = 2704 observations, so an infinite stream of input
data was simulated by treating this collection of observa-
tions as a circular list.

The algorithm learned all concepts and functions in
17,026,156 instances, requiring 47:40 minutes (47 minutes
and 40 seconds) on a 1.13-gigahertz Pentium III, produc-
ing 132 total connections. The network had learned per-
fectly after just 8:39 minutes, using the remaining time to
remove connections. The constructed network, not shown,
has four computational layers, and a different knowledge
organization from that of the hand-designed network. Re-
markably, the rank, suit_colors_differ, suits_identical, and
rank_successor units were learned but not used. It is some-
what unsatisfying to see these building blocks as superflu-
ous. It is explained in part by the difficulty in learning.
Something that takes much longer to learn, such as rank,
will be pushed to a deeper layer. Meanwhile, a different
basis for learning an advanced concept may be found.

The integer interval units, such as less13, are not needed
for learning the suit concepts. The spade and diamond suits
can be learned easily without the interval units. After spade
has been mastered, heart can be learned readily because it
is any card value less than 26 that is not a spade. Similarly,
club can be learned after diamond has been acquired. Hav-

ing seen that the interval units were not needed, we reran
STL while leaving them out. Figure 2 shows the result-
ing network, which was learned in 13,232,552 observations,
taking 31:49 minutes, with correctness achieved after just
4:48 minutes. There are six computational layers with 116
connections.

7 Summary and Conclusions

We examined two approaches for modeling many-layered
learning. The first involves learning from a curriculum,
and simply illustrates that difficult problems can be learned
when broken into a sequence of simple problems. It is re-
markable that so much of the human academic enterprise
is devoted to organizing knowledge for presentation in an
orderly graspable manner. This fits well the supposition
that humans do indeed have a frontier of receptivity, and
that new knowledge is layed down in terms of old, to the
extent possible. We do not observe our teachers starting
a semester with the very last chapter of a text, and then
hammering away at it week after week, waiting for all the
subconcepts (hidden in the earlier chapters) to form them-
selves. Instead, teachers start quite sensibly at chapter one
and progress through the well-designed layered presenta-
tion.

The second approach dispensed with organized instruc-
tion, offering a possible mechanism for extracting structure
from a stream of rich information. We showed in the STL
algorithm how adoption of simple Type-1 learning mech-
anisms can learn and organize concepts into a network of
building blocks in an on-line manner. As simple concepts
on the agent’s frontier are mastered, the basis for under-
standing grows, enabling subsequent acquisition of con-
cepts that were formerly too difficult. The approach ac-
cepts the seeming paradox that our apparent ability to do
just Type-1 learning and layering is the bedrock of our in-
telligence because it produces Type-2 learning.

While it has been informative for us to explore how to
model learning of knowledge in many layers, some of the
problems suggest new approaches. For example, STL re-
lies on a kind of race to produce a knowledge organiza-
tion. Whatever can be learned next using simple means
achieves the status of building-block, which means it has
earned the right to be considered as an input to all units yet
to be learned. This strategy does not necessarily lead to the
best possible organization. Furthermore, the successfully
learned portion of an organized structure becomes statically
cast. We would rather have a mechanism in which each unit
can continue to consider which other units will serve it best
as inputs, and revise its selection of inputs dynamically.

Finally, while we have advocated a building block ap-
proach that is designed to eliminate replication of knowl-
edge structures, one can see quite plainly in Figure 1 that
many concepts learned for just one card were learned iden-

tically for the other. A mechanism for applying learned
functions to a variety of arguments would be highly useful.
Much of the work in inductive logic programming already
solves this problem. It will be useful to explore how variable
binding mechanisms can be modeled in networks of simple
computational devices (Valiant, 2000).

Our main results are an argument in favor of many-
layered learning, a demonstration of the advantages of
using localized training signals, and a method for self-
organization of building-block concepts into a many-
layered artificial neural network. Learning of complex
structures can be guided successfully by assuming that lo-
cal learning methods are limited to simple tasks, and that
the resulting building blocks are available for subsequent
learning.

Acknowledgments

This work was supported by Grants IRI-9711239 and
IRI-0097218 from the National Science Foundation. Rob-
bie Jacobs, Andy Barto, and Margie Connell provided help-
ful comments on an earlier version.

References

Anthony, M., & Bartlett, P. L. (1999). Neural network learn-
ing: Theoretical foundations. Cambridge University
Press.

Clark, A., & Thornton, C. (1997). Trading spaces: Com-
putation, representation, and the limits of uninformed
learning. Behavioral and Brain Sciences, 20, 57-90.

Fahlman, S. E., & Lebiere, C. (1990). The cascade correla-
tion architecture. Advances in Neural Information Pro-
cessing Systems, 2, 524-532.

Rivest, R. L., & Sloan, R. (1994). A formal model of hierar-
chical concept learning. Information and Computation,
114, 88-114.

Rumelhart, D. E., & McClelland, J. L. (1986). Parallel dis-
tributed processing. Cambridge, MA: MIT Press.

Sammut, C., & Banerji, R. B. (1986). Learning concepts by
asking questions. In Michalski, Carbonell & Mitchell
(Eds.), Machine learning: An artificial intelligence ap-
proach. San Mateo, CA: Morgan Kaufmann.

Shapiro, A. D. (1987). Structured induction in expert sys-
tems. Addison-Wesley.

Stone, P., & Veloso, M. (2000). Layered learning. Proceed-
ings of the Eleventh European Conference on Machine
Learning (pp. 369-381). Springer-Verlag.

Valiant, L. G. (2000). A neuroidal architecture for cognitive
computation. Journal of the Association for Computing
Machinery, 47, 854-882.

