
IBM Research – Almaden

Ø  GARAM is close to Buffered for small gk and performs the best when gk is large

Ø  GARAM shuffles the least in all cases due to the much more aggressive pre-filtering
in the mappers based on the coordination

All Groups

Groupwise Analytics via Adaptive MapReduce
Liping Peng, Kai Zeng, Andrey Balmin, Vuk Ercegovac, Peter J. Haas, Yannis Sismanis

 Evaluation: Stratified Sampling

k = 1000

Ø  Significantly outperforms GARAM in the
case of 13961 strata: 20x less data, 2x faster
Ø  Does not improve much over GARAM in
the case of 854 strata, but shorter duration
indicates little overhead relative to GARAM

Top-r Groups

•  Data:
–  A table in SDSS
–  245 columns
–  586 million records
–  2.45TB in HDFS

•  Cluster:
–  12 nodes with 10Gbs Ethernet
–  12-core Intel Xeon 64-bit CPU

@2.2GHz, 96GB RAM and 12
SATA disks per node

–  Hadoop v1.1.2
–  1 node for Hadoop JobTracker

for HDFS
–  1 node for ZooKeeper Server
–  10 workers, each with 8 map

slots and 4 reduce slots

 Top-r Stratified Sampling
•  In micro-marketing applications, focus on

the r largest (age, zip code) customer
groups due to resource or time limitation

•  SELECT sample(k)
FROM dataset
GROUP BY strata
ORDER BY count(*)
LIMIT r ;

•  Key idea:
GARAM + approximate thresholding

Group

G
ro

up
 s

iz
e Needlessly

shuffled!

Maintain a uniform random sample of size k for each of the r largest groups in {G1, …, Gg} as in GARAM

•  Track running top-r groups using distributed algorithm of Babcock & Olston
•  For running top-r groups, use threshold sequence generated by GARAM

•  For running non-top-r groups, combine GARAM threshold sequence with a
set of estimated thresholds {q}

Ø  For a final top-r group Gi that was once not in the running top-r groups:
•  Algorithm produces a statistically correct sample for Gi
•  The sample size may be less than k but with probability less than ε

 = current size of rth currently largest group n⇤
[r]Beta

⇣
q; k, n⇤

[r]�k+1
⌘
= 1�✏

•  Micromarketing, fraudulent transaction
detection, .etc

•  SELECT synopsis(k)
FROM dataset
GROUP BY strata;

JobID
Group1

histogram
map1
map2….
mapm

threshold
Group2….
Groupg

Root

Mapper

Coordinator

Reducer

DMDS

①

②

③

Input Data

④

②
②

Asynchronous Coordination with DMDS

Groupwise Set-Valued Analytics

Reducer

Reducer

Mapper

< Group1, >
< Group2, >

< Groupg, >

< Group1, >

< Groupg, >

< Group2, >Mapper

< Group1, >
< Group2, >

< Groupg, >

•  Mapper: run bottom-k algorithm and emit a local synopsis of k records per group
•  Reducer: collect all synopses of the same group and merge into a global synopsis

Ø  O(gkm) records are shuffled
Ø  Memory consumed at each mapper is O(gk)

g = # groups
m = # mappers

Buffered MapReduce for Bottom-k Query

Reducer

Reducer

Mapper

< Group1, >
< Group2, >

< Groupg, >

< Group1, >

< Groupg, >

< Group2, >Mapper

< Group1, >
< Group2, >

< Groupg, >

Coordinator

•  The coordinator communicates with all mappers, thus has a more accurate view of
the global threshold than mappers

•  The coordinator periodically tells the mappers its view of the global threshold which
mappers can use to pre-filter local samples

Groupwise Analytics Running on Adaptive MapReduce
•  Global threshold wi,(k)
–  The k-th smallest weight for all records in group Gi

–  Each mapper maintains the set of records with weights no larger than wi,(k)
–  The number of shuffled records can be reduced from O(gkm) to O(gk)

§  Stratified top-k
§  Stratified bottom-k
§  Stratified sampling

•  Each mapper periodically sends equi-depth
histogram of group values to coordinator

•  Coordinator periodically merges mapper
histograms to estimate global threshold

