Groupwise Analytics via Adaptive MapReduce

Liping Peng, Kai Zeng, Andrey Balmin, Vuk Ercegovac, Peter J. Haas, Yannis Sismanis

Groupwise Set-Valued Analytics

- Micromarketing, fraudulent transaction detection, .etc
- SELECT synopsis(*k*) FROM dataset GROUP BY strata;

Stratified top-k Stratified bottom-k

Buffered MapReduce for Bottom-*k* **Query**

<u>Mapper</u>: run bottom-k algorithm and emit a local synopsis of k records per group Reducer: collect all synopses of the same group and merge into a global synopsis

Stratified sampling

Groupwise Analytics Running on Adaptive MapReduce

- Global threshold $W_{i,(k)}$ •
 - The k-th smallest weight for all records in group G_i
 - Each mapper maintains the set of records with weights no larger than $w_{i,(k)}$
 - The number of shuffled records can be reduced from O(gkm) to O(gk)

- The coordinator communicates with all mappers, thus has a more accurate view of the global threshold than mappers
- The coordinator periodically tells the mappers its view of the global threshold which mappers can use to pre-filter local samples

- \succ O(gkm) records are shuffled
- \succ Memory consumed at each mapper is O(gk)

g = # groups m = # mappers

Asynchronous Coordination with DMDS

Top-r Stratified Sampling

- Track running top-r groups using distributed algorithm of Babcock & Olston
- For running top-*r* groups, use threshold sequence generated by GARAM
- For running non-top-*r* groups, combine GARAM threshold sequence with a set of estimated thresholds $\{q\}$

indicates little overhead relative to GARAM

IBM Research – Almaden

Beta $(q; k, n_{[r]}^* - k + 1) = 1 - \epsilon \quad n_{[r]}^* = \text{current size of } r^{\text{th}} \text{ currently largest group}$

> For a final top-*r* group G_i that was once not in the running top-*r* groups:

- Algorithm produces a statistically correct sample for G_i
- The sample size may be less than k but with probability less than ε

Group

- > GARAM shuffles the least in all cases due to the much more aggressive pre-filtering in the mappers based on the coordination