
CMPSCI 187 / Spring 2015
Heaps and Priority Queues

Due on Thursday, April 16, at 8:30 a.m.

Marc Liberatore and John Ridgway

Morrill I N375
Section 01 @ 10:00
Section 02 @ 08:30

1

CMPSCI 187 / Spring 2015 Heaps and Priority Queues

Contents

Overview 3

Learning Goals . 3

General Information 3

Policies . 3

Test Files . 3

Problem 1 4

Import Project into Eclipse . 4

Extend and Implement AbstractArrayHeap . 5

Write MinQueue and MaxQueue . 5

Write Tests . 6

Export and Submit . 6

Page 2 of 6

CMPSCI 187 / Spring 2015 Heaps and Priority Queues

Overview

For this assignment you will be implementing a heap using an array; and implementing a min-priority queue and
a max-priority queue. You will also be required to write JUnit tests, and these tests will be a major focus of this
assignment. Your tests will be tested and graded.

Learning Goals

• Develop your understanding of the priority queue abstraction and its implementation as a heap.

• Meet the Comparator interface, and demonstrate your ability to use it.

• Demonstrate your ability to read and understand a specification by implementing it.

• Demonstrate your ability to write new JUnit test cases from a specification to test an implementation of that
specification.

General Information

Read this entire document. If, after a careful reading, something seems ambiguous or unclear to you, then email
cs187help@cs.umass.edu immediately.

Start this assignment as soon as possible. Do not wait until 5pm the night before the assignment is due to tell us you
don’t understand something, as our ability to help you will be minimal.

Reminder: Copying partial or whole solutions, obtained from other students or elsewhere, is academic dishonesty. Do
not share your code with your classmates, and do not use your classmates’ code.

You are responsible for submitting project assignments that compile and are configured correctly. If your project
submission does not follow these policies exactly you may receive a grade of zero for this assignment.

Policies

• For some assignments, it will useful for you to write additional class files. Any class file you write that is used
by your solution MUST be in the provided src directory you export.

• The TAs and instructors are here to help you figure out errors, but we won’t do so for you after you submit
your solution. When you submit your solution, be sure to remove all compilation errors from your project.
Any compilation errors in your project will cause the autograder to fail, and you will receive a zero for your
submission.

Test Files

In the test directory, we provide several JUnit test cases that will help you keep on track while completing the
assignment. We recommend you run the tests often and use them to help create a checklist of things to do next. But
you should be aware that we deliberately don’t provide you the full test suite we use when grading.

Page 3 of 6

mailto:cs187help@cs.umass.edu

CMPSCI 187 / Spring 2015 Heaps and Priority Queues

We recommend that you think about possible cases and add new @Test cases to these files as part of your program-
ming discipline. Simple tests to add will consider questions such as:

• Do your methods taking integers as arguments handle positives, negatives, and zeroes (when those values are
valid as input)?

• Does your code handle unusual cases, such as empty or maximally-sized data structures?

More complex tests will be assignment-specific. To build good test cases, think about ways to exercise methods. Work
out the correct result for a call of a method with a given set of parameters by hand, then add it as a test case. Note that
we will not be looking at your test cases, they are just for your use.

Before submitting, make sure that your program compiles with and passes all of the original tests. If you have errors
in these files, it means the structure of the files found in the src directory have been altered in a way that will cause
your submission to lose some (or all) points.

Problem 1

Import Project into Eclipse

Begin by downloading the starter project and importing it into your workspace. It is very important that you do not
rename this project as its name is used during the autograding process. If the project is renamed, your assignment will
not be graded, and you will receive a zero.

The imported project may have some errors, but these should not prevent you from getting started. Specifically, we
may provide JUnit tests for classes that do not yet exist in your code. You can still run the other JUnit tests.

The project should normally contain the following root items:

src This is the source folder where all code you are submitting must go. You can change anything you want in this
folder (unless otherwise specified in the problem description and in the code we provide), you can add new files,
etc.

support This folder contains support code that we encourage you to use (and must be used to pass certain tests). You
must not change or add anything in this folder. To help ensure that, we suggest that you set the support folder
to be read-only. You can do this by right-clicking on it in the package explorer, choosing Properties from the
menu, choosing Resource from the list on the left of the pop-up Properties window, unchecking the Permissions
check-box for Owner-Write, and clicking the OK button. A dialog box will show with the title “Confirm recursive
changes”, and you should click on the “Yes” button.

test The test folder where all of the public unit tests are available.

JUnit 4 A library that is used to run the test programs.

JRE System Library This is what allows Java to run; it is the location of the Java System Libraries.

If you are missing any of the above or if errors are present in the project (other than as specifically described below),
seek help immediately so you can get started on the project right away.

Problem 1 continued on next page. . . Page 4 of 6

CMPSCI 187 / Spring 2015 Heaps and Priority Queues Problem 1 (continued)

Extend and Implement AbstractArrayHeap

For this part of the assignment, you will implement a heap. A heap is a binary tree of ordered objects that respects the
heap property. The heap property states that, for every node in the tree, the children of that node will be “less than (or
equal to)” the node itself. In addition to this the tree must be complete. Your implementation will keep the tree in an
array (actually an ArrayList) and will use implicit pointers, as discussed in the book and in class.

Start this part of the assignment by opening up the AbstractArrayHeap class (in the support directory). Review
what is already provided for you and what you have to implement. Your implementation must be a class named
StudentArrayHeap that extends AbstractArrayHeap. There is a file with that name already in your src
directory. It will not compile as distributed; you will need to complete it.

Your heap is going to store pairs consisting of a priority and a value. For comparison purposes all that will be
compared is the priority. The definition of the class is generic and uses two type variables P and V. P is the type
of the priority values and V the type of the paired value. Note that the declaration for P doesn’t state that it must
extend Comparable. So how do we compare them? The constructor for the AbstractArrayHeap class takes an
argument, a comparator of type Comparator<P>. This allows us to provide arbitrary ordering for Priorities.
If we want a max-heap, we simply pass in a Comparator that says larger values come first. For a min-heap we use
a Comparator that says smaller values come first.

Since we are storing priority-value pairs you will notice that our add method is a little bit different in that it takes
in two arguments: a priority and a value. This allows us to insert two elements with the same value but different
priorities. After receiving these inputs, we transform them into an Entry<P,V> and use this to store our element.
This is commonly referred to as a priority-value pair.

How does bubbleUp work? The add method simply creates an entry and adds it to the end of the array. Then it
calls to bubbleUp on the index of the newly added element. The bubbleUp method will cause the new entry to
float up the heap until it is in a location such that the properties of a heap are maintained.

How does bubbleDown work? The remove method has the opposite problem; it removes the first element in the
array, and replaces it with the very last. It then calls bubbleDown to bubble the element down until the heap property
is restored.

Write MinQueue and MaxQueue

Using the StudentArrayHeap class implemented in the previous part, finish two classes: MinQueue<V> and
MaxQueue<V>. Each of these should be a PriorityQueue that use Integer priorities. The MinQueue is
implemented such that lower integer values have the highest priority. The MaxQueue is implemented such that higher
integer values have the highest priority. (Stubs for these classes are present in your src/structures directory.

To do this part, you will also need to finish two classes, one called IntegerComparator and the other called
ReverseIntegerComparator, both of which implement the Comparator<Integer> interface. There are
stubs for these classes already in your src/comparators folder. An example Comparator has been provided in
the support package: comparators.StringLengthComparator. This Comparator orders Strings such
that shorter Strings have lower priority than longer Strings.

Problem 1 continued on next page. . . Page 5 of 6

CMPSCI 187 / Spring 2015 Heaps and Priority Queues Problem 1 (continued)

Write Tests

An important difference between this assignment and previous assignments is that we will be grading the tests that
you write. We will do this by creating a number of flawed implementations of the five classes you are writing, and
check that your tests discover the flaws. We will also run your tests on a flawless (well, as close as we can make it)
version to ensure that your tests are not rejecting valid code.

There are five existing test classes: one that ought to be called StudentArrayHeapTest but is actually called
AbstractArrayHeapTest; two for your priority queues: MaxQueueTest and MinQueueTest; and two for
your comparators: IntegerComparatorTest and ReverseIntegerComparatorTest. These are all in
your test directory. Add your tests to these files, and leave these files in the test directory.

The existing tests will give you some idea how to write your new tests, and there are a couple of pointers we would
like to give you:

1. Keep each test small; it should test only one thing. Sometimes you will have to do several other things first in
order to do that one thing, but only test one thing. For instance, if you wanted to check that adding five elements
and then removing four left a heap with a size of one, then you would have to add five elements, remove four
elements, and finally test that the size is one.

2. If you look at the tests we use for grading you will see that they often test several things in a single test. That’s
because our tests have a different purpose. Your tests should each test only one thing.

3. Write a test for each thing that is given in the specification; if the specification says “if this happens, then the
method returns that,” then write a test that makes “this” happen, and ensures that the method returns “that”.

4. Also write tests to verify the basic operation. For instance, if you’re testing a stack you should write a test to
ensure that if you do a push and then a pop, the popped element should be the same element that was pushed
on.

5. Each test must have an @Test annotation, which may have arguments:

• To test whether a method throws the exception that it is supposed to under certain circumstances (e.g., a
NullPointerException), annotate your test as follows:

1 @Test (timeout = 100, expected = NullPointerException.class)

Note that you need to put the .class at the end, and that you should replace NullPointerException
with the name of whatever exception you’re actually checking for.

• The timeout = 100 annotation is a way of ensuring that the test can recover from infinite loops; the
test will be aborted after (in this case) 100 milli-seconds.

Export and Submit

When you have completed the changes to your code, you should export an archive file containing the entire Java
project. To do this, click on the heap-queues-student project in the package explorer. Then choose “File →
Export” from the menu. In the window that appears, under “General” choose “Archive File”. Then choose “Next” and
enter a destination for the output file. Be sure that the project is named heap-queues-student. Save the exported
file with the zip extension (any name is fine). Log into Moodle and submit the exported zip file.

Page 6 of 6

	Overview
	Learning Goals

	General Information
	Policies
	Test Files

	Problem 1
	Import Project into Eclipse
	Extend and Implement [language=Java,breaklines=true,stringstyle=]AbstractArrayHeap
	Write [language=Java,breaklines=true,stringstyle=]MinQueue and [language=Java,breaklines=true,stringstyle=]MaxQueue
	Write Tests
	Export and Submit

