
CMPSCI 187 / Spring 2015
HamSpam

Due on 2015-01-29 08:30 EST

Marc Liberatore and John Ridgway

Morrill I N375
Section 01 @ 10:00
Section 02 @ 08:30

1

CMPSCI 187 / Spring 2015 HamSpam

Contents

Overview 3

Learning Goals . 3

General Information 3

Policies . 3

Test Files . 4

Problem 1 4

Download the Starter Code . 4

Install the Eclipse Development Environment . 4

Import the Code into Eclipse . 5

On Ham and Spam . 6

Using Eclipse . 6

Diagnosing and Fixing the Problems . 7

Export and Submit . 7

Page 2 of 7

CMPSCI 187 / Spring 2015 HamSpam

Overview

For this assignment, you will need to install and configure Eclipse. You will learn the standard procedure that you will
use in this class for completing a programming assignment, testing your code, and turning it in through Moodle.

In this assignment and others, you will be starting from some initial code provided by us and then modifying it. Since
you will repeat a similar process for each programming assignment, make sure you can complete the steps in this
assignment and that you understand each one.

We strongly suggest you start this assignment early so that you can fix any Eclipse- or Moodle-related problems well
before the deadline. Remember, help is only an e-mail away: cs187help@cs.umass.edu.

Learning Goals

• To install the Eclipse integrated development environment (IDE).

• To download starter code from Moodle.

• To import an Eclipse project into the Eclipse IDE.

• To run Java code in the Eclipse IDE.

• To run JUnit tests in the Eclipse IDE.

• To write Java code in the Eclipse IDE.

• To properly export a Java project from Eclipse.

• To properly upload and submit a Java Eclipse project into Moodle.

General Information

Reminder: Copying partial or whole solutions, obtained from other students or elsewhere, is academic dishonesty. Do
not share your code with your classmates, and do not use your classmates’ code.

You are responsible for submitting project assignments that compile and are configured correctly. If your project
submission does not follow these policies exactly you may receive a grade of zero for this assignment.

Policies

• For some assignments, it will useful for you to write additional class files. Any class file you write that is used
by your solution MUST be in the provided src directory you export.

• The TAs and instructors are here to help you figure out errors, but we won’t do so for you after you submit
your solution. When you submit your solution, be sure to remove all compilation errors from your project.
Any compilation errors in your project will cause the autograder to fail, and you will receive a zero for your
submission.

Page 3 of 7

mailto:cs187help@cs.umass.edu

CMPSCI 187 / Spring 2015 HamSpam

Test Files

In the test directory, we provide several JUnit test cases that will help you keep on track while completing the
assignment. We recommend you run the tests often and use them to help create a checklist of things to do next. But
you should be aware that we deliberately don’t provide you the full test suite we use when grading.

We recommend that you think about possible cases and add new @Test cases to these files as part of your programming
discipline. Simple tests to add will consider questions such as:

• Do your methods taking integers as arguments handle positives, negatives, and zeroes (when those values are
valid as input)?

• Does your code handle unusual cases, such as empty or maximally-sized data structures?

More complex tests will be assignment-specific. To build good test cases, think about ways to exercise methods. Work
out the correct result for a call of a method with a given set of parameters by hand, then add it as a test case. Note that
we will not be looking at your test cases, they are just for your use.

Before submitting, make sure that your program compiles with and passes all of the original tests. If you have errors
in these files, it means the structure of the files found in the src directory have been altered in a way that will cause
your submission to lose some (or all) points.

Problem 1

Download the Starter Code

Download the provided archive file containing the starter code (“hamspam-student.zip”) for this assignment and
save it somewhere where you can find it. When you click on the link the zip file will be downloaded to your computer
wherever downloaded files normally go. Move it into a useful place. You do not need to unzip it—Eclipse will handle
that for you.

Install the Eclipse Development Environment

All the assignments in this course use the Eclipse Integrated Development Environment. The latest version is available
at http://eclipse.org/downloads/packages/eclipse-ide-java-developers/lunasr1a. You
can download the version you need by following that link. If you already have a version of Eclipse installed, please
make sure you upgrade to the latest version.

Depending upon your operating system, you might need to install a Java Development Kit. You should be using the
Standard Edition, version 7, sometimes abbreviated as the Java SE7 JDK. The latest version of this JDK is available at
http://www.oracle.com/technetwork/java/javase/downloads/jdk7-downloads-1880260.

html. You want the first thing that appears on that page, the Java SE Development Kit (probably version 7u71). Ac-
cept the license agreement and choose the appropriate version for your operating system.

After you have the correct versions of the JDK and Eclipse installed you can proceed to the next section.

Problem 1 continued on next page. . . Page 4 of 7

http://eclipse.org/downloads/packages/eclipse-ide-java-developers/lunasr1a
http://www.oracle.com/technetwork/java/javase/downloads/jdk7-downloads-1880260.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk7-downloads-1880260.html

CMPSCI 187 / Spring 2015 HamSpam Problem 1 (continued)

Update: We have had some reports from students of problems with Eclipse. These only occur if you download
and install Java 7 after installing Eclipse. The symptom is that the downloaded project will show several items
under the Problems tab (The project cannot be built until build path errors are resolved. and Unbound classpath
container: JRE System Library [JavaSE-1.7] in project hamspam-student). Many items in the source will show
a red underline, and nothing will build. The solution is to:

• make sure that JDK 7 is installed,

• open Eclipse,

• to Eclipses preferences,

• expand the Java item on the left,

• select Installed JREs,

• click the Search button to add the Java7 JRE, and

• close the preferences window.

Import the Code into Eclipse

Open the Eclipse Application
You will be asked to specify a location for your Eclipse workspace. This is a directory on your system where all of
your Eclipse projects can be stored. You can use one workspace throughout the entire class, and this is where you
will set it up. If you are opening Eclipse for the first time, you may see a welcome screen with links to instructions,
tutorials, etc. You are welcome to read these, but eventually you should click on the upper right: there is a button that
will take you to the “Workbench,” the standard view for working in Eclipse.

Import the Starter Code
Choose “File → Import” from the menu. A window will come up so you can choose how to import. Select “General”
and within that, “Existing Projects into Workspace.” (It may seem strange, but do not choose “Archive File.”) Then click
“Next”. Choose the button for “Select archive file” and locate the file you downloaded. above. Then click “Finish”. You
should see a hamspam-student Java project in the Package Explorer window on the left. Click on the triangles to
reveal the content of this directory and the src, support, and test directories within it.

Make the support Directory Read-Only
The support folder contains support code that we encourage you to use (and which must be used to pass certain tests),
but you are not allowed to change or add anything in this folder. To help ensure that you do not change anything there,
we suggest that you set the support folder to be read-only. You can do this by right-clicking on it in the Package
Explorer, choosing “Properties” from the menu, choosing “Resource” from the list on the left of the pop-up “Properties”
window, unchecking the “Permissions” check-box for “Owner-Write”, and clicking the “OK” button. A dialog box will
show with the title “Confirm recursive changes”, and you should click on the “Yes” button.

You should see three Java source files among the directories:

File Location Description
HamSpam.java src The behavior and state associated with ham and spam

integers and arrays.
HamCommander.java support A command-line program to drive HamSpam.
HamSpamTest.java test An incomplete set of tests for HamSpam.

Problem 1 continued on next page. . . Page 5 of 7

CMPSCI 187 / Spring 2015 HamSpam Problem 1 (continued)

You can open them by double-clicking on them. Do so, and take a look through each of them. You’ll quickly note
they involve a game about “Ham”, “Spam”, and numbers.

On Ham and Spam

“Ham and Spam” is a children’s counting game. Before it is played, the players agree on a ham number and a spam
number. Both are integers greater than one, and they cannot be the same number. The players then take turns saying
the hamspam value for each successive integer, starting at one. But:

• If the number they are supposed to say is divisible by the ham number and not the spam number they say “ham”
instead of the number.

• If the number they are supposed to say is divisible by the spam number and not the ham number they say “spam”
instead of the number.

• If the number they are supposed to say is divisible by both the spam number and the ham number they say
“hamspam” instead of the number.

For example, if the ham number is three, and the spam number is four, then the first twelve hamspam values are:

1, 2, ham, spam, 5, ham, 7, spam, ham, 10, 11, hamspam

For this assignment, you are going to modify the HamSpam class provided to produce the correct value or values for a
game of “Ham and Spam”.

Using Eclipse

Running the code.
First explore the code as it is. Under support, choose the HamCommander.java file, then click the green play button
in the top row of the Eclipse window, or choose “Run” from the Run menu. A console will appear in the bottom of the
Eclipse window. Follow along, pressing Enter after each number you enter, to see the (sometimes incorrect) results of
the current implementation of Ham and Spam.

Testing the code.
Next, choose HamSpamTest.java in the Package Explorer and run it using the play button or the menu, as above.
The package explorer on the left will switch to a JUnit pane, which will show the testing output. You should see a
total of seven tests: three tests that pass, and four tests that fail. Familiarize yourself with the testing interface. If you
select the first failed test, you should see the following under Failure Trace:

org.junit.ComparisonFailure: getValue returns incorrect value
expected:<[hamspam]> but was:<[12]>
at hamspam.HamSpamTest.testHamAndSpamGetValue(HamSpamTest.java:41)

(You may have to resize the JUnit pane to see the full message.)

Problem 1 continued on next page. . . Page 6 of 7

CMPSCI 187 / Spring 2015 HamSpam Problem 1 (continued)

Diagnosing and Fixing the Problems

JUnit tests work by checking that the expected result of a method call equals the actual result. The failed test indicates
that one (or more) methods in the starter code aren’t returning correct values. Examine the test; you can double-click
on at hamspam.HamSpamTest.testHamAndSpamGetValue(HamSpamTest.java:41) to jump to the test in the
source pane. Here, you can see that the test case expects the result of hamspamThreeFour.getValue(12) to be the
String "hamspam", but as the output in the Failure Trace indicates, it produced the String "12".

Go to the declaration of getValue(); you can do so by right-clicking on it and selecting “Open Declaration”, or by
double-clicking on HamSpam.java in the Package Explorer and scrolling to it.

Your goal should be to correct the implementation of the getValue() method. The correct solution is not merely to
make the function return "hamspam" when n == 12. Instead, you should revise the code so that the function will
return the correct String for any n.

There are at least two things to correct. First, the HamSpam class constructor takes a ham number and a spam number,
but it doesn’t store them as state (for example, as private instance variables). Second, the getValue() method checks
currently checks for equality against numbers, not divisibility. You can use the modulus (remainder) operator (%) to
check for divisibility. It divides one number by another and returns the remainder. For example, if you wanted to print
out whether the value of a variable n was divisible by three, you could write:

if ((n % 3) == 0) {
System.out.println(n + " is divisible by 3");

else {
System.out.println(n + " is not divisible by 3");

}

When we grade your program, we will test both getValue() and getValues() with other ham and spam numbers to
make sure each works properly. Our test cases will obey the constraints described in this assignment (for example, the
ham number and spam number will always be greater than one, and never be equal to one another), but are otherwise
unconstrained.

We suggest you add a few additional test methods (remember the @Test decorator) to check your work. You can also
use the HamCommander class for interactive testing.

Export and Submit

When you have completed the changes to your code, you should export an archive file containing the entire Java
project. To do this, click on the hamspam-student project in the package explorer. Then choose “File → Export”
from the menu. In the window that appears, under “General” choose “Archive File”. Then choose “Next” and enter a
destination for the output file. Be sure that the project is named hamspam-student. Save the exported file with the
zip extension (any name is fine). Log into Moodle and submit the exported zip file.

Page 7 of 7

	Overview
	Learning Goals

	General Information
	Policies
	Test Files

	Problem 1
	Download the Starter Code
	Install the Eclipse Development Environment
	Import the Code into Eclipse
	On Ham and Spam
	Using Eclipse
	Diagnosing and Fixing the Problems
	Export and Submit

