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Remember that every student gets a copy of this handout, but every pair still hands in one response, on a
separate answer sheet provided. Do not hand in this paper.

We have been looking at algorithms for sorting sets of elements, from a class that has a compareTo method.
A comparison-based sorting algorithm works for any such class because it only deals with the elements by
comparing one to another with this method. We’ve shown that simple algorithms use O(n?) comparisons to
sort n elements, and we’ll see that more sophisticated algorithms use O(n log n) comparisons.

It turns out that no comparison-based algorithm can sort using fewer than O(n logn) comparisons. We will
show this using an adversary argument, like the one we used to show that searching a sorted array requires
at least log n tests in the worst case. As you’ll recall from our cheating guess-a-number game, any search
algorithm for the numbers 1 through n that gets too-high or too-low responses, and uses fewer than logn
tests, fails on some possible input, the one that the cheating program claims after the fact to have picked at
the beginning.

We can similarly argue that since there are n! possible linear orders for n elements, any comparison-based
algorithm that asks fewer than log(n!) questions cannot in the worst case give the right answer. To be sure
of that answer, the algorithm must have identified one of the n! orders and ruled out the other n! — 1. The
only tool we have to rule out orders is to compare one element against another.

For example, consider a list with the three elements a, b, and c. They might be originally in six possible
orders: abc, ach, bac, bca, cab, or cba. If we find out that a comes before ¢, we know that the order must be
abe, ach, or bac. If we then find that b comes before ¢, we know that it is either abc or bac. Testing a against
b tells us which order it was. In this case we needed to do all three possible comparisons, but sometimes we
can find out the order without doing all of them.

If we ask k possible yes-or-no questions, there are 2¥ possible outcomes; we divide the n! orders into 2¥
categories. If our sorting algorithm is correct in every case, each of the orders is in its own category, so n!
must be less than or equal to 2¥. The number k, therefore, must be at least log, (n!), which is O(n logn) by
an argument we won’t do today.

Your specific questions are on the other side of this handout.



Question 1: List the 4! = 24 possible orders of four elements a, b, ¢, and d.

Question 2: Describe (in English) how you could list all the possible orders of n + 1 elements, if you had
a list of all the possible orders of n elements. Given this idea, describe (in English) a recursive algorithm to
list the orders of n elements. What is the base case of this recursion?

Question 3: Draw a binary tree where the internal nodes are comparisons of two elements from {a, b, c},
each internal node has two children for the two possible outcomes of the comparison, and the leaves are the
3! = 6 orderings of the three elements.

Question 4: Repeat Question 3 for four elements. Your tree should have depth as small as possible while
still having a leaf for each of the 4! = 24 possible orders. You may be able to describe parts of the tree using
symmetry rather than drawing out every node.



