Classifier-Adjusted Density Estimation for Anomaly Detection and One-Class Classification

Lisa Friedland, Amanda Gentzel, David Jensen

School of Computer Science
University of Massachusetts Amherst

Method Overview

- Classifier-adjusted density estimation (CADE) detects anomalies by identifying low-probability instances in large, multivariate data sets.
- CADE estimates the joint probability density function of its training data by using a classifier to "correct" a naive density estimate.

1. Start with unlabeled data.
2. Label original data positive (non-anomalous). Construct a naive density estimate of the positives \(P(X | A) \).
3. Generate pseudo-negatives (pseudo-anomalies) from \(P(X | A) \).
4. Train a classifier to distinguish the positives from the pseudo-negatives.
5. Combine classifier’s prediction with initial density estimate to compute a final density estimate \(P(X | T) \).
6. Apply final density estimator \(P(X | T) \) to unlabeled data to identify anomalies.

Summary

- High-quality anomaly detection is possible in multivariate data with a relatively simple method that estimates a joint probability function.
- Experimental evidence across a range of data sets shows CADE to be competitive and scalable.
- Within CADE, simple components often work well:
 - Marginally independent initial density estimates
 - Adjusted by random forest or k-nearest neighbor classifier
- Probability density estimators are more robust than local outlier factor methods to the challenge of irrelevant attributes.

Algorithm Components and Performance

Many density estimate/classifier combinations perform well.

![Graph showing performance of different density estimates and classifiers](image)

Comparer with Local Outlier Factor

[Breunig, Kriegel, Ng, Sander. SIGMOD 2000]

CADE performs competitively with LOF (varies by data set).

Robustness to irrelevant attributes: when uniform noise attributes are added, LOF degrades quickly. CADE is much more resistant.

Unsupervised Runs on Large Data Sets

Data Set Employee

- **Source**: Collected for DARPA
- **ADAMS** project on insider threat detection. Describes computer activities of ~5500 employees of a real company.
- **# features**: 88
- **# instances**: 108,215 to 133,770 (6 separate months)
- **# anomalies**: 8 to 98
- **Avg. runtime**: 368.1 sec

Density Estimate

- **Uniform**
- **Gaussian**
- **KDE**
- **Bayes Net**
- **LOF**

Classifier

- None
- **KNN**
- **RF**
- **Bagged LOF**

![Graph showing performance of different density estimates and classifiers](image)

Unsupervised Runs on Large Data Sets

Data Set Shuttle

- **Source**: UCI
- **# features**: 9
- **# instances**: 45,596 to 54,489
- **# anomalies**: 10 to 8903
- **Avg. runtime**: 104.3 sec

Density Estimate

- **Uniform**
- **Gaussian**
- **KDE**
- **Bayes Net**
- **LOF**

Classifier

- None
- **KNN**
- **RF**
- **Bagged LOF**

![Graph showing performance of different density estimates and classifiers](image)

Funding was provided by the U.S. Army Research Office and Defense Advanced Research Projects Agency under Contract Number W911NF-11-C-0088. The content of the information in this document does not necessarily reflect the position or the policy of the Government, and no official endorsement should be inferred. The U.S. Government is authorized to reproduce and distribute reprints for Government purposes notwithstanding any copyright notation here on.