Learning hatching for pen-and-ink illustrations of surfaces

Evangelos Kalogerakis1,2, Derek Nowrouzezahrai1,3,4, Simon Breslav1,5, Aaron Hertzmann1

1University of Toronto, 2Stanford University, 3Disney Research Zurich, 4University of Montreal, 5Autodesk Research
Goal: Synthesis of hatching illustrations

Exemplar shape

Artist’s illustration
Goal: Synthesis of hatching illustrations

Exemplar shape

Artist’s illustration

Learned model of hatching
Goal: Synthesis of hatching illustrations

Exemplar shape
Artist’s illustration

Input shape
Synthesized illustration

Learned model of hatching
Challenge: understanding hatching styles
Related work: hatching smooth surfaces

Iso-parametric curves

[Saito and Takahashi 1990, Winkenbach and Salesin 1996]
Related work: hatching smooth surfaces

Iso-parametric curves
[Saito and Takahashi 1990, Winkenbach and Salesin 1996]

Smooth curvature directions and shading-based tone
[Elber 1998, Hertzmann and Zorin 2000]
Related work: hatching smooth surfaces

Iso-parametric curves
[Saito and Takahashi 1990, Winkenbach and Salesin 1996]

Smooth curvature directions and shading-based tone
[Elber 1998, Hertzmann and Zorin 2000]

Shading gradients
[Singh and Schaefer 2010]
Related work: hatching smooth surfaces

- Iso-parametric curves
 [Saito and Takahashi 1990, Winkenbach and Salesin 1996]

- Smooth curvature directions and shading-based tone
 [Elber 1998, Hertzmann and Zorin 2000]

- Shading gradients
 [Singh and Schaefer 2010]

- Real-time hatching
 [Praun et al. 2001, Kim et al. 2008]
Related work: hatching smooth surfaces

Smoothed curvature directions
[Hertzmann and Zorin 2000]

Smoothed image gradients
[Singh and Schaefer 2010]
Related work: where do people draw lines?

[Cole et al. 2008]

Average images composed of artists’ drawings

Predicted line drawing
Our approach

Learns a model of hatching style from a single artist’s drawing of an input shape
Our approach

Learns a model of hatching style from a single artist’s drawing of an input shape

Can transfer the hatching style to different views of the exemplar shape as well as different shapes
Our approach

Learns a model of hatching style from a single artist’s drawing of an input shape

Can transfer the hatching style to different views of the exemplar shape as well as different shapes

The hatching style is determined by hatching properties related to hatching tone and orientations
Hatching properties

Hatching level

- No hatching
- Hatching
- Cross-hatching
Hatching properties

Hatching level

Stroke thickness
Hatching properties

Hatching level
Stroke thickness
Stroke spacing
Hatching properties

Hatching level
Stroke thickness
Stroke spacing
Stroke length
Hatching properties

Hatching level
Stroke thickness
Stroke spacing
Stroke length
Stroke intensity
Hatching properties

Hatching level
Stroke thickness
Stroke spacing
Stroke length
Stroke intensity

Hatching orientations
Hatching properties

Hatching level
Stroke thickness
Stroke spacing
Stroke length
Stroke intensity
Hatching orientations

Artist’s illustration
Computer-generated illustration
Learning stage
Learning stage

Variables:
- Thickness
- Spacing
- Intensity
- Length
- Hatching level
- Orientations
Learning stage

Shape features

Image-space features

Thickness

Spacing

Intensity

Length

Hatching level

Orientations
Learning stage

Shape and image features \(x \)

Hatching properties \(y \)

Image-space descriptors

Length

Hatching level

Orientations
Learning stage

\[y = f(x) \]

Shape and image features \(x \)

Hatching properties \(y \)

Image-space descriptors

Hatching level

Orientations
Learning hatching orientations

Linear model expressing hatching orientations as a weighted sum of selected orientation features.

\[f(\theta; w) = \sum_k w_k v_k \]

\[v = [\cos(2\theta), \sin(2\theta)]^T \]
Learning hatching orientations

Linear model expressing hatching orientations as a weighted sum of selected orientation features.

\[f(\theta; w) = \sum_k w_k v_k \]

\[v = [\cos(2\theta), \sin(2\theta)]^T \]
Learning hatching orientations

Artist’s illustration

Fitting a single model across the illustration
Learning orientation fields

Artist’s illustration
Mixture of experts model

Simultaneous segmentation & model fitting for each segment

\[
\begin{align*}
\vec{f}_1 &= \nabla a_2 \\
\vec{f}_2 &= .54(k_{max,1}) + .46(\vec{f}_\perp) \\
\vec{f}_1 &= .59(\vec{e}_{b,3}) + .41(\nabla(\vec{L} \cdot \vec{N})_3) \\
\vec{f}_2 &= .63(\vec{e}_{a,3}) + .37(\nabla(\vec{L} \cdot \vec{N})_\perp)_3
\end{align*}
\]

\[
\begin{align*}
\vec{f}_1 &= .73(\nabla I_3) + .27(\vec{f}) \\
\vec{f}_2 &= .69(k_{max,2}) + .31(\nabla I_\perp) \\
\vec{f}_1 &= .77(\vec{e}_{b,3}) + .23(\nabla I_3) \\
\vec{f}_2 &= \vec{v}
\end{align*}
\]

\[
\begin{align*}
\vec{f}_1 &= .88(\nabla a_3) + .12(\nabla(\vec{L} \cdot \vec{N})_3) \\
\vec{f}_2 &= .45(k_{max,2}) + .31(\nabla a_\perp) + .24(\vec{e}_{a,3})
\end{align*}
\]
Learning stroke properties

Map features to thickness, intensity, spacing, length

\[y = \prod_k (a_k x_k + b_k)^{\alpha_k} \]
Learning stroke properties

Map features to thickness, intensity, spacing, length

\[y = \prod_{k} \left(a_k x_k + b_k \right)^{\alpha_k} \]
Learning stroke properties

Map features to **thickness**

\[y = \prod_{k} (a_k x_k + b_k)^{\alpha_k} \]

![Extracted thickness](image1.png)

![Learned thickness](image2.png)
Learning stroke properties

Map features to **intensity**

\[y = \prod_{k} (a_k x_k + b_k)^{\alpha_k} \]

![Extracted intensity](image1)

![Learned intensity](image2)
Learning stroke properties

Map features to **spacing**

\[y = \prod_{k} (a_k x_k + b_k)^{\alpha_k} \]

Extracted spacing

Learned spacing
Learning stroke properties

Map features to **length**

\[y = \prod_{k} (a_k x_k + b_k)^{\alpha_k} \]

Extracted length

Learned length
Learning hatching level and segment labels

Map features to discrete values with Joint Boosting + CRF
Synthesis stage
Synthesis stage

Thickness Spacing Hatching level

Intensity Length Orientations
Artist’s illustration
Analysis of features used

Orientation features:
Analysis of features used

Orientation features:
- **Principal curvatures** and local symmetry axes dominate
Analysis of features used

Orientation features:

- Principal curvatures and local symmetry axes dominate
- Also orientations aligned with feature lines are also important
Analysis of features used

Hatching level: image intensity, shading features

Stroke thickness: shape descriptors, curvature, shading features, image gradients, location of feature lines, depth

Spacing: shape descriptors, curvature, derivatives of curvature, shading features

Intensity: shape descriptors, image intensity, shading features, depth, location of feature lines

Length: shape descriptors, curvature, radial curvature, shading feature, image intensity, image gradient

Segment label: shape descriptors
Summary

• An algorithm that learns hatching styles
Summary

• An algorithm that learns hatching styles

• Learns from a single drawing
Summary

• An algorithm that learns hatching styles
• Learns from a single drawing
• Synthesizes hatching illustrations in the input artist’s style for novel views and shapes
Limitations

• We do not always exactly match the artist’s illustration - aspects of hatching style are lost
Limitations

• We do not always exactly match the artist’s illustration - aspects of hatching style are lost

• Pre-processing stage relies on thresholds to robustly extract hatching properties.
Limitations

• We do not always exactly match the artist’s illustration - aspects of hatching style are lost
• Pre-processing stage relies on thresholds to robustly extract hatching properties.
• Computation time is large
 (5h-10h for training, 0.5-1h for synthesis)
Future Work

• Analyze larger set of drawings
Future Work

• Analyze **larger set of drawings**

• Extend our framework to analyze other **forms of art**
Future Work

• Analyze larger set of drawings

• Extend our framework to analyze other forms of art

• Applications to field design on surfaces
Thank you!

Acknowledgements:
Seok-Hyung Bae, Patrick Coleman, Vikramaditya Dasgupta, Mark Hazen, Thomas Hendry, Olga Vesselova, Olga Veksler, Robert Kalnins, Philip Davidson, David Bourguignon, Xiaobai Chen, Aleksey Golovinskiy, Thomas Funkhouser, Andrea Tagliasacchi, Richard Zhang, Aim@Shape, VAKHUN, Cyberware repositories