
Pitt at TREC 2013: Different Effects of Click-through and
Past Queries on Whole-session Search Performance

Jiepu Jiang*
School of Computer Science,

University of Massachusetts Amherst

jpjiang@cs.umass.edu

Daqing He
School of Information Sciences,

University of Pittsburgh

dah44@pitt.edu

ABSTRACT
Past search queries and click-through information within a search
session have been heavily exploited to improve search
performance. However, it remains unclear how do these two data
source contribute to whole-session search performance due to the
lack of reliable evaluation approaches. For example, as pointed out
in our last year’s report [2], using past search queries as positive
relevance feedback information can make search results of the
current query similar to previous queries’ results. Such issues
cannot be disclosed by evaluation metrics such as nDCG@10.
Therefore, in this paper, we focus on analyzing the effects of past
queries and click-through information on whole-session search
performance. We adopted alternative evaluation approaches other
than the TREC official ones. We found that past queries may
seemingly enhance nDCG@10 by retrieving previously returned
results, which is difficult to result in real improvements of whole-
session search performance; in comparison, click-through can
enhance search performance without sacrificing search novelty,
consequently leading to improved search performance across the
whole session. However, after appropriate demotion of repeated
results, both past queries and click-through can improve search
performance while balancing novelty of results.

Keywords
Search session; TREC; evaluation; relevance feedback.

1. INTRODUCTION
Since 2011, the main task of the TREC session track is to improve
search performance of a query in a search session using previous
user behaviors (such as past search queries and clicked results).
However, our studies [1, 2] revoked us to reconsider the validity of
this task and its evaluation approach. In both the 2011 and 2012
TREC session track logs, we found that each time reformulating a
query, there was no significant change of search performance (as
measured by nDCG@10), but substantial difference in the set of
results retrieved (with the Jaccard similarity of two queries’ top 10
results ranging from 0.1 to 0.2). Due to this fact, we argued that
users may expect to find novel search results, instead of simply to
improve search performance when they reformulate queries [2].
Therefore, it may also be problematic to evaluate a system purely
by whether or not it can improve search performance of a query in
a search session and the magnitude of the improvement.
Except for the reason stated above, our concern also comes from
the observation that a popular approach taken by many groups in
the TREC session tracks may sacrifice novelty to improve search
performance. The approach is to utilize past queries and clicked
results as positive relevance feedback information for the current

* The majority of the work was finished when Jiepu Jiang was at School of
Information Sciences, University of Pittsburgh.

query. Our systems in the 2011 and 2012 TREC session tracks [2,
3] as well as many other participants’ systems all adopted similar
approaches. However, previous search queries and clicked results
are probably related to relevant but obsolete information for the
users. As found in our last year’s TREC report [2], search results
became more similar to those retrieved by previous queries after
applying this approach. Therefore, it is unclear whether or not the
improvement of search performance comes from novel relevant
information or just some repeated relevant results found also by
previous queries. Such issues had not been disclosed in the TREC
session track due to its evaluation approaches.
These two reasons motivate us to explore approaches balancing
search performance and novelty of results in a search session, as
well as alternative metrics for evaluating systems and analyzing
search results at whole-session level. We focus on the following
research goals in this year’s participation:
1. Although last year we suspected that the positive relevance
feedback approach is problematic, we did not fully investigate
whether it is true and how serious it is due to the lack of proper
evaluation approaches. Also, it is unclear how such issues affect
system performance at whole-session level. Therefore, this year we
conducted more detailed analysis of this approach based on
alternative metrics indicating whole-session search performance.
We introduce this approach and our findings in section 2 and 3.
Results indicate that using previous queries as positive relevance
feedback information may largely reduce the novelty of search
results to enhance metrics such as nDCG@10. In comparison, using
click-through as positive relevance feedback consistently improves
search performance without loss of novelty of results.
2. Last year we proposed an approach to demote the rankings of the
repeatedly occurred results. However, this approach only
considered the results repetition issue but cannot help with the
content novelty in a search session. Therefore, we propose another
approach trying to rank results based on whole-session relevance
(run “KM1” and “KM1N”). Unfortunately, it did not perform well
in the TREC 2013 session track evaluation. Due to the lack of qrels
data at the time of finalizing our report, we do not analyze this
approach in details.
The rest of the paper introduces our approaches, experiments, and
findings.

2. POSITIVE RELEVANCE FEEDBACK
USING PAST SEARCH BEHAVIORS
This section addresses our first research goal this year. We evaluate
how a popular approach of using past search behaviors as positive
relevance feedback affect whole-session search performance.

2.1 Retrieval Model
The approaches adopted by the Pitt group in the 2011 and 2012
TREC session track [2, 3] are variants of the “context-sensitive
relevance feedback” approach [8]. This approach adopts the KL-
Divergence language modeling framework [5, 9] for retrieval and
highlights a query language model combining the current search
query, past search queries, and click-through documents. In our
study, we adopt this approach as an example of using past search
behaviors for positive relevance feedback due to its popularity2.
Shen et al. [8] proposed four query model estimation methods. In
our experiments, we adopt the “FixInt” method because both Shen
et al. and we found that it outperforms the other methods.
Let qk be the kth query in a search session, FixInt estimates query
language model θk as Eq(1): P(w|qk) is the current query’s MLE
model; P(w|Hc) and P(w|Hq) are, respectively, relevance feedback
models estimated based on click-through documents and previous
queries. Eq(2) and Eq(3) show details of Hc and Hq: Ci is the
concatenation of all clicked documents’ summaries returned by qi;
P(w|qi) is the ith query’s MLE model. Parameter α is the weight of
the current query in the FixInt query language model.

() () () () () ()| | 1 | 1 |k k c qP w P w q P w H P w Hθ α α β β = + − + − 
 (1)

() ()
1

1

1| |
1

k

c i
i

P w H P w C
k

−

=

=
− ∑ (2)

() ()
1

1

1| |
1

k

q i
i

P w H P w q
k

−

=

=
− ∑ (3)

2.2 Demoting Repeated Results
We assume that the usefulness of a result for the user degrades each
time viewing the result or its snippet. Therefore, repeatedly
occurred results within a search session should be demoted in a rank
list. We demote the rankings of the repeatedly results by P(d|s),
which can be explained as: the probability that the user will still be
interested in examining the document d provided the session search
history s, which typically includes past search queries and results.
We explained this approach in details in our previous studies [1, 2].
We assume the following user behaviors:

• The user examines results by sequence from top to bottom.
The user will always examine the first result in a result page.
After examined each result, the user has probability p to
continue examining the next one, and probability 1 – p to stop
(either to reformulate a new query for search or to terminate
the current session). This browsing model is similar to the one
adopted in rank-biased precision [6].

• Each time the user examined a result, it has probability β that
the result will lose its attractiveness to the user in the rest of
the search session.

According to these assumptions, as in Eq(4), a document d can keep
its attractiveness if and only if it did not lose attractiveness in any
of the previous searches. In Eq(4): R(i) refers to the results for the
ith query in the session (assuming q is the nth query); Pexamine(d|R(i))
is the probability that d will be examined when the user browses
results R(i), as calculated in Eq(5); rank(d, i) is the rank of d in R(i).
According to this model, a document will be demoted to a larger
magnitude if it was retrieved by many of the previous queries
and/or it was ranked at top positions.

2 By the time of finalizing our report, Shen et al.’s article [8] has been cited
329 times according to Google Scholar.

()
1

()
examine

1

(|) 1 1 (|)
n

i

i

P d s P d Rβ
−

=

= − − ⋅∏ (4)

(,) 1 ()
()

examine ()

(|)

0

rank d i i
i

i

p d R
P d R

d R

− ∈
= 

∉
 (5)

2.3 Alternative Evaluation Approach
We use the TREC session track 2012 datasets for evaluation. The
dataset includes static search session logs and whole-session level
relevance judgments. A static search session is the search history
of a real user in an interactive search system, including the users’
search queries, click-through, and other information. For each static
search session, whole-session level relevance judgments are
provided in the datasets: annotators judged documents regarding
whether or not they are relevant to the topic or task underlying the
search session (instead of an individual query).

The past TREC session tracks evaluated participant systems based
on nDCG@10 of the last queries in each session. In comparison,
we adopted the following experiment procedure to study the whole-
session search performance. Let {q1, q2, … , qn} be a static search
session in the dataset. We iteratively produce results for q1, q2, … ,
qn using FixInt. For each qi, we use the past queries and click-
through (if any) in the static search session log as positive relevance
feedback information to produce search results. For q1, FixInt
downgrades to query likelihood model.

After generated results for each query in a static session, we
calculate the following measures:

(1) nDCG@10 (macro-average). Let {S1, S2, … , Sm} be m static
search sessions in a dataset, and {Ri1, Ri2, … , Rin} be the results of
the n queries in session Si. We calculate the macro-average
nDCG@10 of the dataset (referred to as nDCG@10) as follows:

()
1 2

1 1 @10
1

m n

ij
i j

nDCG R
m n= =

 
⋅ ⋅ − 
∑ ∑

Note that we do not count the first query of each session because
for the first query there is no search history information available
(and here we mainly hope to examine the effect of the past search
history to search performance).

(2) nsDCG@10 (normalized session DCG). For a static search
session, nsDCG@10 concatenates the top 10 results of each query
and evaluates the performance of the concatenated list of results.
Please refer to [4] for details. The same parameters have been
adopted in this study.

(3) Instance recall (instRec). This is a variant of a major metric
adopted in the early TREC interactive tracks [7]. In previous TREC
interactive tracks, annotators identified relevant instances of each
topic and marked up the occurrences of relevant instances in
documents. The metric “instance recall” was originally calculated
as the proportion of relevant instances covered by the search results
over all the identified instances. Here we calculate a similar
measure by considering each single relevant document as a unique
instance.

Let {Di} be the top 10 results of qi, and DR be the set of judged
relevant documents. We concatenate the top 10 results of each
query in the session as a whole set of retrieved documents (DF).

Then, we calculate instance recall (instRec) of the session as the
proportion of DR covered by DF.

i
1

{ }
n

F
i

D D
=

=


 instRec F R

R

D D
D

=


(4) Jaccard similarity. For a static session, we calculate for each
unique pair of queries the Jaccard similarity of the pair of queries’
top 10 results. Then, we calculate the macro-average value for each
unique pair of queries across all search sessions. Although jaccard
similarity is not a metric of search performance, it can help us
analyze the novelty of search results.

2.4 Results
We separately examine the effects of past queries and clicked
results to whole-session search performance. Figure 1 and Figure 2
show the whole-session search performance of FixInt model using
sorely past queries or clicked results with different weights α.
Figure 3 and Figure 4 further shows the whole-session search
performance of FixInt using past queries or click-through results
after demotion of repeated results.
Our results indicate that:
(1) As we suspected in [2], past queries can lead to serious decline
of search novelty by making the results of the current query similar
to previous queries’ results. As shown in Figure 1, in all types of
tasks, the average Jaccard similarity of top 10 results can be
increased from around 0.3 (α = 1.0, using sorely the user query) to
around 0.8 (α = 0, using sorely the past queries). Whenever we
increase the weight of past queries, there will be increase of the
jaccard similarity.
When nDCG@10 reaches the peak value, although we achieve
10% – 20% increase in nDCG@10, there is also 0.1 – 0.2 increase
of jaccard similarity. In addition, instance recall dropped from
0.088 (α = 1.0) to 0.082 (α = 0.5) in the 2012 dataset (counting all
types of tasks). This makes it difficult to assess whether there is a
true improvement of search performance, because the increase of
nDCG@10 may come from previously retrieved relevant results.
Overall we found that past queries have no apparent effect of
improving whole-session search performance such as instance
recall. Average nDCG@10 of queries does not consider the novelty
of search results and therefore cannot disclose the drop of novelty
in FixInt. As shown in Figure 1, instRec can at most be increased
from 0.0881 (α = 1.0) to 0.0896 (α = 0.8). We also did not observe
that FixInt performed differently in any type of tasks.
(2) In comparison, our results suggest that click-through is a
valuable relevance feedback information for improving search
performance without sacrificing novelty of results. As shown in
Figure 2, using click-through documents, the jaccard similarity of
results will at most increase by about 0.1 (comparing to the increase
from about 0.3 to 0.8 when using past queries).
In all types of tasks, click-through can increase nDCG@10 by 10%
– 20%. In addition, instRec can also be increased by 10%, from
0.088 (α = 1.0) to 0.101 (α = 0.5) (counting all types of tasks). When
instRec reaches the peak value, there are also about 10% increase
of nDCG@10, indicating that click-through may improve the
ranking of relevant documents without sacrificing novelty of
results, which result in performance improvement all over the
search session (as indicated from instRec).
(3) Table 1 shows the correlation (Pearson’s r) of various metrics
on different parameter values of α and β. Results indicate that
nDCG@10 & nsDCG@10 have slight negative correlation with
instRec.

Table 1. Pearson’s correlation of metrics on different
parameter values of α and β.

 TREC 2011 TREC 2012
 nDCG@10 instRec nDCG@10 instRec

nDCG@10 1.000 -0.235 1.000 0.245
nsDCG@10 0.985 -0.244 0.994 0.204

instRec -0.235 1.000 0.245 1.000
avgJaccard 0.413 -0.957 0.180 -0.890

(4) Our approach of demoting repeated results leads to slight
decrease of nDCG@10 but apparent increase of instRec. After
selecting appropriate parameters, it can achieve improved search
performance balancing nDCG@10 and novelty of results. For
example, as shown in Figure 3 (FixInt with past queries), when
setting both p and β to 0.5, we can increase nDCG@10 from 0.252
(α = 0 and do not demote repeated results) to 0.272 (α = 0.8, p =
0.5, β = 0.5) and at the same time increase instRec from 0.088 to
0.106. This indicates that past queries should be combined with
proper approaches demoting repeated results in order to balance
search performance and novelty of results.

3. SUBMITTED RUNS
Based on our observations, we submitted three groups of runs:

(1) FixInt28: a FixInt run optimizing macro-average nDCG@10 (α
= 0.2, β = 0.8). FixInt28N further applied the ranking discount
method we proposed last year to FixInt28.

(2) FixInt58: a FixInt run optimizing instance recall (α = 0.5, β =
0.8). FixInt58N further applied the ranking discount method we
proposed last year to FixInt58.

(3) KM1 and KM1N: new retrieval models aiming at whole-session
relevance. Unfortunately, this new approach did not work well. Due
to the lack of qrels at the time of finalizing our report, we do not
examine details of this approach.

4. CONCLUSIONS
We evaluated the effects of using past queries and click-through as
positive relevance feedback information on whole-session search
performance. Our results indicate that it is risky to utilize past
queries because we may easily sacrifice novelty of results to
enhance search performance. In comparison, click-through seems
to be a more valuable resource to balance search performance and
novelty of results. However, after demoted repeated results in a
search session, we can balance search performance and novelty of
results using either past queries or click-through effectively. This
also indicates that it is very necessary to demote repeated results in
a search session.

5. REFERENCES
[1] Jiang, J. et al. 2012. Contextual evaluation of query

reformulations in a search session by user simulation.
Proceedings of the 21st ACM international conference on
Information and knowledge management (CIKM ’12) (New
York, New York, USA, Oct. 2012), 2635.

[2] Jiang, J. et al. 2012. On Duplicate Results in a Search Session.
Proceedings of the 21st Text REtrieval Conference, (TREC
2012) (2012).

[3] Jiang, J. et al. 2011. Pitt at TREC 2011 session track.
Proceedings of the 20th Text REtrieval Conference, (TREC
2011) (2011).

[4] Kanoulas, E. et al. 2010. Session track overview. The 19th
Text REtrieval Conference Notebook Proceedings (TREC
2010) (2010).

[5] Lafferty, J. and Zhai, C. 2001. Document language models,
query models, and risk minimization for information retrieval.
Proceedings of the 24th annual international ACM SIGIR
conference on Research and development in information
retrieval (New York, NY, USA, 2001), 111–119.

[6] Moffat, A. and Zobel, J. 2008. Rank-biased precision for
measurement of retrieval effectiveness. ACM Trans. Inf. Syst.
27, 1 (Dec. 2008), 2:1–2:27.

[7] Over, P. 2001. The TREC interactive track: an annotated
bibliography. Information Processing & Management. 37, 3
(2001), 369–381.

[8] Shen, X. et al. 2005. Context-sensitive information retrieval
using implicit feedback. Proceedings of the 28th annual
international ACM SIGIR conference on Research and
development in information retrieval - SIGIR ’05 (New York,
New York, USA, Aug. 2005), 43.

[9] Zhai, C. and Lafferty, J. 2001. Model-based feedback in the
language modeling approach to information retrieval.

Proceedings of the tenth international conference on
Information and knowledge management (2001), 403–410.

Figure 1. The weight of past queries as positive relevance feedback information in FixInt and the corresponding whole-session search performance
(the greater the value of α, the smaller the weight of past queries in FixInt; α = 1.0 means only using user query for ranking, and α = 0 means sorely using past queries).

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

α

FixInt + Past Queries
ALL tasks

nDCG@10
nDCG@10_last
nsDCG@10
instRec
avgJaccard

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

α

FixInt + Past Queries
Known-Item tasks

nDCG@10
nDCG@10_last
nsDCG@10
instRec
avgJaccard

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

α

FixInt + Past Queries
Known-Subject tasks

nDCG@10
nDCG@10_last
nsDCG@10
instRec
avgJaccard

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

α

FixInt + Past Queries
Interpretive tasks

nDCG@10
nDCG@10_last
nsDCG@10
instRec
avgJaccard

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

α

FixInt + Past Queries
Exploratory tasks

nDCG@10
nDCG@10_last
nsDCG@10
instRec
avgJaccard

Figure 2. The weight of click-through as positive relevance feedback information in FixInt and the corresponding whole-session search performance
(the greater the value of α, the smaller the weight of click-through in FixInt; α = 1.0 means only using user query for ranking, and α = 0 means sorely using click-through).

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

α

FixInt + Click-through
ALL tasks

nDCG@10
nDCG@10_last
nsDCG@10
instRec
avgJaccard

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

α

FixInt + Click-through
Known-Item tasks

nDCG@10
nDCG@10_last
nsDCG@10
instRec
avgJaccard

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

α

FixInt + Click-through
Known-Subject tasks

nDCG@10
nDCG@10_last
nsDCG@10
instRec
avgJaccard

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

α

FixInt + Click-through
Interpretive tasks

nDCG@10
nDCG@10_last
nsDCG@10
instRec
avgJaccard

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

α

FixInt + Click-through
Exploratory tasks

nDCG@10
nDCG@10_last
nsDCG@10
instRec
avgJaccard

Figure 3. The weight of past queries as positive relevance feedback information in FixInt (after demoting repeated results) and the corresponding whole-session search performance
(the greater the value of α, the smaller the weight of past queries in FixInt; α = 1.0 means only using user query for ranking, and α = 0 means sorely using past queries).

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

α

FixInt + Past Queries
Do not discount duplicate results

nDCG@10
nDCG@10_last
nsDCG@10
instRec
avgJaccard

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

α

FixInt + Past Queries
Discount parameter: p = 0.5, β = 0.5

nDCG@10
nDCG@10_last
nsDCG@10
instRec
avgJaccard

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

α

FixInt + Past Queries
Discount parameter: p = 0.5, β = 0.8

nDCG@10
nDCG@10_last
nsDCG@10
instRec
avgJaccard

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

α

FixInt + Past Queries
Discount parameter: p = 0.8, β = 0.5

nDCG@10
nDCG@10_last
nsDCG@10
instRec
avgJaccard

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

α

FixInt + Past Queries
Discount parameter: p = 0.8, β = 0.8

nDCG@10
nDCG@10_last
nsDCG@10
instRec
avgJaccard

Figure 4. The weight of click-through as positive relevance feedback information in FixInt (after demoting repeated results) and the corresponding whole-session search performance
(the greater the value of α, the smaller the weight of click-through in FixInt; α = 1.0 means only using user query for ranking, and α = 0 means sorely using click-through).

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Title

Chart Title
nDCG@10

nDCG@10_last

nsDCG@10

instRec

avgJaccard

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Title

Chart Title nDCG@10

nDCG@10_last

nsDCG@10

instRec

avgJaccard

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Title

Chart Title nDCG@10

nDCG@10_last

nsDCG@10

instRec

avgJaccard

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Title

Chart Title nDCG@10

nDCG@10_last

nsDCG@10

instRec

avgJaccard

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Title

Chart Title nDCG@10

nDCG@10_last

nsDCG@10

instRec

avgJaccard

	trec2013_pitt_session_final
	1. INTRODUCTION
	2. POSITIVE RELEVANCE FEEDBACK USING PAST SEARCH BEHAVIORS
	2.1 Retrieval Model
	2.2 Demoting Repeated Results
	2.3 Alternative Evaluation Approach
	2.4 Results

	3. SUBMITTED RUNS
	4. CONCLUSIONS
	5. REFERENCES

	trec2013_pitt_session_final_table_figure

