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ABSTRACT 
Past search queries and click-through information within a search 
session have been heavily exploited to improve search 
performance. However, it remains unclear how do these two data 
source contribute to whole-session search performance due to the 
lack of reliable evaluation approaches. For example, as pointed out 
in our last year’s report [2], using past search queries as positive 
relevance feedback information can make search results of the 
current query similar to previous queries’ results. Such issues 
cannot be disclosed by evaluation metrics such as nDCG@10. 
Therefore, in this paper, we focus on analyzing the effects of past 
queries and click-through information on whole-session search 
performance. We adopted alternative evaluation approaches other 
than the TREC official ones. We found that past queries may 
seemingly enhance nDCG@10 by retrieving previously returned 
results, which is difficult to result in real improvements of whole-
session search performance; in comparison, click-through can 
enhance search performance without sacrificing search novelty, 
consequently leading to improved search performance across the 
whole session. However, after appropriate demotion of repeated 
results, both past queries and click-through can improve search 
performance while balancing novelty of results. 
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1. INTRODUCTION 
Since 2011, the main task of the TREC session track is to improve 
search performance of a query in a search session using previous 
user behaviors (such as past search queries and clicked results). 
However, our studies [1, 2] revoked us to reconsider the validity of 
this task and its evaluation approach. In both the 2011 and 2012 
TREC session track logs, we found that each time reformulating a 
query, there was no significant change of search performance (as 
measured by nDCG@10), but substantial difference in the set of 
results retrieved (with the Jaccard similarity of two queries’ top 10 
results ranging from 0.1 to 0.2). Due to this fact, we argued that 
users may expect to find novel search results, instead of simply to 
improve search performance when they reformulate queries [2]. 
Therefore, it may also be problematic to evaluate a system purely 
by whether or not it can improve search performance of a query in 
a search session and the magnitude of the improvement. 
Except for the reason stated above, our concern also comes from 
the observation that a popular approach taken by many groups in 
the TREC session tracks may sacrifice novelty to improve search 
performance. The approach is to utilize past queries and clicked 
results as positive relevance feedback information for the current 
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query. Our systems in the 2011 and 2012 TREC session tracks [2, 
3] as well as many other participants’ systems all adopted similar 
approaches. However, previous search queries and clicked results 
are probably related to relevant but obsolete information for the 
users. As found in our last year’s TREC report [2], search results 
became more similar to those retrieved by previous queries after 
applying this approach. Therefore, it is unclear whether or not the 
improvement of search performance comes from novel relevant 
information or just some repeated relevant results found also by 
previous queries. Such issues had not been disclosed in the TREC 
session track due to its evaluation approaches. 
These two reasons motivate us to explore approaches balancing 
search performance and novelty of results in a search session, as 
well as alternative metrics for evaluating systems and analyzing 
search results at whole-session level. We focus on the following 
research goals in this year’s participation: 
1. Although last year we suspected that the positive relevance 
feedback approach is problematic, we did not fully investigate 
whether it is true and how serious it is due to the lack of proper 
evaluation approaches. Also, it is unclear how such issues affect 
system performance at whole-session level. Therefore, this year we 
conducted more detailed analysis of this approach based on 
alternative metrics indicating whole-session search performance. 
We introduce this approach and our findings in section 2 and 3. 
Results indicate that using previous queries as positive relevance 
feedback information may largely reduce the novelty of search 
results to enhance metrics such as nDCG@10. In comparison, using 
click-through as positive relevance feedback consistently improves 
search performance without loss of novelty of results. 
2. Last year we proposed an approach to demote the rankings of the 
repeatedly occurred results. However, this approach only 
considered the results repetition issue but cannot help with the 
content novelty in a search session. Therefore, we propose another 
approach trying to rank results based on whole-session relevance 
(run “KM1” and “KM1N”). Unfortunately, it did not perform well 
in the TREC 2013 session track evaluation. Due to the lack of qrels 
data at the time of finalizing our report, we do not analyze this 
approach in details. 
The rest of the paper introduces our approaches, experiments, and 
findings. 

2. POSITIVE RELEVANCE FEEDBACK 
USING PAST SEARCH BEHAVIORS 
This section addresses our first research goal this year. We evaluate 
how a popular approach of using past search behaviors as positive 
relevance feedback affect whole-session search performance. 

                                                                 



2.1 Retrieval Model 
The approaches adopted by the Pitt group in the 2011 and 2012 
TREC session track [2, 3] are variants of the “context-sensitive 
relevance feedback” approach [8]. This approach adopts the KL-
Divergence language modeling framework [5, 9] for retrieval and 
highlights a query language model combining the current search 
query, past search queries, and click-through documents. In our 
study, we adopt this approach as an example of using past search 
behaviors for positive relevance feedback due to its popularity2. 
Shen et al. [8] proposed four query model estimation methods. In 
our experiments, we adopt the “FixInt” method because both Shen 
et al. and we found that it outperforms the other methods. 
Let qk be the kth query in a search session, FixInt estimates query 
language model θk as Eq(1): P(w|qk) is the current query’s MLE 
model; P(w|Hc) and P(w|Hq) are, respectively, relevance feedback 
models estimated based on click-through documents and previous 
queries. Eq(2) and Eq(3) show details of Hc and Hq: Ci is the 
concatenation of all clicked documents’ summaries returned by qi; 
P(w|qi) is the ith query’s MLE model. Parameter α is the weight of 
the current query in the FixInt query language model. 
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2.2 Demoting Repeated Results 
We assume that the usefulness of a result for the user degrades each 
time viewing the result or its snippet. Therefore, repeatedly 
occurred results within a search session should be demoted in a rank 
list. We demote the rankings of the repeatedly results by P(d|s), 
which can be explained as: the probability that the user will still be 
interested in examining the document d provided the session search 
history s, which typically includes past search queries and results. 
We explained this approach in details in our previous studies [1, 2]. 
We assume the following user behaviors: 

• The user examines results by sequence from top to bottom. 
The user will always examine the first result in a result page. 
After examined each result, the user has probability p to 
continue examining the next one, and probability 1 – p to stop 
(either to reformulate a new query for search or to terminate 
the current session). This browsing model is similar to the one 
adopted in rank-biased precision [6]. 

• Each time the user examined a result, it has probability β that 
the result will lose its attractiveness to the user in the rest of 
the search session. 

According to these assumptions, as in Eq(4), a document d can keep 
its attractiveness if and only if it did not lose attractiveness in any 
of the previous searches. In Eq(4): R(i) refers to the results for the 
ith query in the session (assuming q is the nth query); Pexamine(d|R(i)) 
is the probability that d will be examined when the user browses 
results R(i), as calculated in Eq(5); rank(d, i) is the rank of d in R(i). 
According to this model, a document will be demoted to a larger 
magnitude if it was retrieved by many of the previous queries 
and/or it was ranked at top positions. 

2 By the time of finalizing our report, Shen et al.’s article [8] has been cited 
329 times according to Google Scholar. 
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2.3 Alternative Evaluation Approach 
We use the TREC session track 2012 datasets for evaluation. The 
dataset includes static search session logs and whole-session level 
relevance judgments. A static search session is the search history 
of a real user in an interactive search system, including the users’ 
search queries, click-through, and other information. For each static 
search session, whole-session level relevance judgments are 
provided in the datasets: annotators judged documents regarding 
whether or not they are relevant to the topic or task underlying the 
search session (instead of an individual query). 

The past TREC session tracks evaluated participant systems based 
on nDCG@10 of the last queries in each session. In comparison, 
we adopted the following experiment procedure to study the whole-
session search performance. Let {q1, q2, … , qn} be a static search 
session in the dataset. We iteratively produce results for q1, q2, … , 
qn using FixInt. For each qi, we use the past queries and click-
through (if any) in the static search session log as positive relevance 
feedback information to produce search results. For q1, FixInt 
downgrades to query likelihood model. 

After generated results for each query in a static session, we 
calculate the following measures: 

(1) nDCG@10 (macro-average). Let {S1, S2, … , Sm} be m static 
search sessions in a dataset, and {Ri1, Ri2, … , Rin} be the results of 
the n queries in session Si. We calculate the macro-average 
nDCG@10 of the dataset (referred to as nDCG@10) as follows: 
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Note that we do not count the first query of each session because 
for the first query there is no search history information available 
(and here we mainly hope to examine the effect of the past search 
history to search performance). 

(2) nsDCG@10 (normalized session DCG). For a static search 
session, nsDCG@10 concatenates the top 10 results of each query 
and evaluates the performance of the concatenated list of results. 
Please refer to [4] for details. The same parameters have been 
adopted in this study. 

(3) Instance recall (instRec). This is a variant of a major metric 
adopted in the early TREC interactive tracks [7]. In previous TREC 
interactive tracks, annotators identified relevant instances of each 
topic and marked up the occurrences of relevant instances in 
documents. The metric “instance recall” was originally calculated 
as the proportion of relevant instances covered by the search results 
over all the identified instances. Here we calculate a similar 
measure by considering each single relevant document as a unique 
instance. 

Let {Di} be the top 10 results of qi, and DR be the set of judged 
relevant documents. We concatenate the top 10 results of each 
query in the session as a whole set of retrieved documents (DF). 

                                                                 



Then, we calculate instance recall (instRec) of the session as the 
proportion of DR covered by DF. 
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(4) Jaccard similarity. For a static session, we calculate for each 
unique pair of queries the Jaccard similarity of the pair of queries’ 
top 10 results. Then, we calculate the macro-average value for each 
unique pair of queries across all search sessions. Although jaccard 
similarity is not a metric of search performance, it can help us 
analyze the novelty of search results. 

2.4 Results 
We separately examine the effects of past queries and clicked 
results to whole-session search performance. Figure 1 and Figure 2 
show the whole-session search performance of FixInt model using 
sorely past queries or clicked results with different weights α. 
Figure 3 and Figure 4 further shows the whole-session search 
performance of FixInt using past queries or click-through results 
after demotion of repeated results. 
Our results indicate that: 
(1) As we suspected in [2], past queries can lead to serious decline 
of search novelty by making the results of the current query similar 
to previous queries’ results. As shown in Figure 1, in all types of 
tasks, the average Jaccard similarity of top 10 results can be 
increased from around 0.3 (α = 1.0, using sorely the user query) to 
around 0.8 (α = 0, using sorely the past queries). Whenever we 
increase the weight of past queries, there will be increase of the 
jaccard similarity. 
When nDCG@10 reaches the peak value, although we achieve 
10% – 20% increase in nDCG@10, there is also 0.1 – 0.2 increase 
of jaccard similarity. In addition, instance recall dropped from 
0.088 (α = 1.0) to 0.082 (α = 0.5) in the 2012 dataset (counting all 
types of tasks). This makes it difficult to assess whether there is a 
true improvement of search performance, because the increase of 
nDCG@10 may come from previously retrieved relevant results. 
Overall we found that past queries have no apparent effect of 
improving whole-session search performance such as instance 
recall. Average nDCG@10 of queries does not consider the novelty 
of search results and therefore cannot disclose the drop of novelty 
in FixInt. As shown in Figure 1, instRec can at most be increased 
from 0.0881 (α = 1.0) to 0.0896 (α = 0.8). We also did not observe 
that FixInt performed differently in any type of tasks. 
(2) In comparison, our results suggest that click-through is a 
valuable relevance feedback information for improving search 
performance without sacrificing novelty of results. As shown in 
Figure 2, using click-through documents, the jaccard similarity of 
results will at most increase by about 0.1 (comparing to the increase 
from about 0.3 to 0.8 when using past queries). 
In all types of tasks, click-through can increase nDCG@10 by 10% 
– 20%. In addition, instRec can also be increased by 10%, from 
0.088 (α = 1.0) to 0.101 (α = 0.5) (counting all types of tasks). When 
instRec reaches the peak value, there are also about 10% increase 
of nDCG@10, indicating that click-through may improve the 
ranking of relevant documents without sacrificing novelty of 
results, which result in performance improvement all over the 
search session (as indicated from instRec). 
(3) Table 1 shows the correlation (Pearson’s r) of various metrics 
on different parameter values of α and β. Results indicate that 
nDCG@10 & nsDCG@10 have slight negative correlation with 
instRec. 

Table 1. Pearson’s correlation of metrics on different 
parameter values of α and β. 

 TREC 2011 TREC 2012 
 nDCG@10 instRec nDCG@10 instRec 

nDCG@10 1.000 -0.235 1.000 0.245 
nsDCG@10 0.985 -0.244 0.994 0.204 

instRec -0.235 1.000 0.245 1.000 
avgJaccard 0.413 -0.957 0.180 -0.890 

 
(4) Our approach of demoting repeated results leads to slight 
decrease of nDCG@10 but apparent increase of instRec. After 
selecting appropriate parameters, it can achieve improved search 
performance balancing nDCG@10 and novelty of results. For 
example, as shown in Figure 3 (FixInt with past queries), when 
setting both p and β to 0.5, we can increase nDCG@10 from 0.252 
(α = 0 and do not demote repeated results) to 0.272 (α = 0.8, p = 
0.5, β = 0.5) and at the same time increase instRec from 0.088 to 
0.106. This indicates that past queries should be combined with 
proper approaches demoting repeated results in order to balance 
search performance and novelty of results. 

3. SUBMITTED RUNS 
Based on our observations, we submitted three groups of runs: 

(1) FixInt28: a FixInt run optimizing macro-average nDCG@10 (α 
= 0.2, β = 0.8). FixInt28N further applied the ranking discount 
method we proposed last year to FixInt28. 

(2) FixInt58: a FixInt run optimizing instance recall (α = 0.5, β = 
0.8). FixInt58N further applied the ranking discount method we 
proposed last year to FixInt58. 

(3) KM1 and KM1N: new retrieval models aiming at whole-session 
relevance. Unfortunately, this new approach did not work well. Due 
to the lack of qrels at the time of finalizing our report, we do not 
examine details of this approach. 

4. CONCLUSIONS 
We evaluated the effects of using past queries and click-through as 
positive relevance feedback information on whole-session search 
performance. Our results indicate that it is risky to utilize past 
queries because we may easily sacrifice novelty of results to 
enhance search performance. In comparison, click-through seems 
to be a more valuable resource to balance search performance and 
novelty of results. However, after demoted repeated results in a 
search session, we can balance search performance and novelty of 
results using either past queries or click-through effectively. This 
also indicates that it is very necessary to demote repeated results in 
a search session. 
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Figure 1. The weight of past queries as positive relevance feedback information in FixInt and the corresponding whole-session search performance  
(the greater the value of α, the smaller the weight of past queries in FixInt; α = 1.0 means only using user query for ranking, and α = 0 means sorely using past queries). 

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

α

FixInt + Past Queries
ALL tasks

nDCG@10
nDCG@10_last
nsDCG@10
instRec
avgJaccard

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

α

FixInt + Past Queries
Known-Item tasks

nDCG@10
nDCG@10_last
nsDCG@10
instRec
avgJaccard

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

α

FixInt + Past Queries
Known-Subject tasks

nDCG@10
nDCG@10_last
nsDCG@10
instRec
avgJaccard

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

α

FixInt + Past Queries
Interpretive tasks

nDCG@10
nDCG@10_last
nsDCG@10
instRec
avgJaccard

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

α

FixInt + Past Queries
Exploratory tasks

nDCG@10
nDCG@10_last
nsDCG@10
instRec
avgJaccard



  

Figure 2. The weight of click-through as positive relevance feedback information in FixInt and the corresponding whole-session search performance  
(the greater the value of α, the smaller the weight of click-through in FixInt; α = 1.0 means only using user query for ranking, and α = 0 means sorely using click-through). 
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Figure 3. The weight of past queries as positive relevance feedback information in FixInt (after demoting repeated results) and the corresponding whole-session search performance  
(the greater the value of α, the smaller the weight of past queries in FixInt; α = 1.0 means only using user query for ranking, and α = 0 means sorely using past queries). 
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Figure 4. The weight of click-through as positive relevance feedback information in FixInt (after demoting repeated results) and the corresponding whole-session search performance  
(the greater the value of α, the smaller the weight of click-through in FixInt; α = 1.0 means only using user query for ranking, and α = 0 means sorely using click-through). 
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