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• Analysis of an old method using alternative 
evaluation approaches
• Are we really improving the performance?
• Whole-session relevance?
• Past query vs. click-through
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• Using past queries and past click-through data as 
relevance feedback
• Pretty old idea

e.g. context-sensitive RF (Shen, Tan & Zhai, SIGIR ’05)
• Seemingly very good performance

• e.g. our systems in 2011 and 2012 (a variant of 
context-sensitive RF) were ranked at the top (by 
nDCG@10 of the last query)
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• Using past query and past click-through as 
relevance feedback
• Probably making results similar to previous results
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• Are we really improving the performance? 
• The improvement of nDCG@10 may come 

from retrieving relevant documents found by 
previous queries?

• We cannot answer the question without
• using whole-session evaluation methods
• considering novelty in evaluation
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• Evaluate whole-session search performance

• Procedure
• A static session {q1, q2, … , qn}
• For each qk, generate results Rk based on {q1, .. , qk}
• Evaluate {R1, R2, … , Rn} for whole-session 

performance

• Simulation of user querying behavior: no simulation
• User will not change the next query according to the 

previous results of systems & behaviors (e.g. click).
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• Macro-average nDCG@10

• Starting at the 2nd query of each session
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• nsDCG@10
• Concatenate top 10 results of each query
• Combine as a whole rank list for evaluation

see details in session track overview of 2010

• There are more complex methods
• Kanoulas, Carterette, D Clough, & Sanderson in 

SIGIR’11
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• Instance recall (instRec)
• Used in old TREC interactive tracks
• An instance is similar to a “nugget”
• instRec measures the recall of all judged relevant 

instances (nuggets) all over the session
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• Our calculation of instRec
• A document is considered as an instance (because 

no judgments of instance)
• Concatenate top 10 results of each query

• Calculate recall of the concatenated results
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• Instance recall gain (instRecGain)
• Evaluates each query’s contribution to the session’s 

instance recall
• The instance recall contributed by the kth query’s 

results Dk is:

• Then, we compute the macro-average instRecGain
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• nDCG@10 (macro-average), nsDCG@10
• Do no consider novelty of results

• instRec and instRecGain
• Do no consider ranking & graded relevance
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• Macro-average inDCG@10
• (Jiang, He, Han, Yue, & Ni, CIKM’12)
• Discount utility of relevant documents in a session 

based on their rankings in previous results
• Then, calculate nDCG@10 of each query based on 

the discounted utility of documents at that moment

• (Shokouhi, White, Bennett, Radlinski, SIGIR’13)
• “sometimes the repeated results should be 

promoted, while some other times they should be 
demoted.”

13



• Average Jaccard Similarity (AvgJaccard)
• Not a performance measure, but helpful for 

analyzing novelty of search results.
• For each unique pair of queries in the session, 

calculate the top 10 results’ Jaccard similarity, and 
then calculate the mean value.
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• context-sensitive RF (Shen, Tan & Zhai, SIGIR ’05)
• The “FixInt” method
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• context-sensitive RF (Shen, Tan & Zhai, SIGIR ’05)
• Past queries

• Can lead to serious decline of results’ novelty 
(Jaccard similarity can increase from 30% to 80%)

• When we optimize the system by nDCG@10, FixInt 
gets 10% - 20% improvements on nDCG@10, but 
also about 20% increase in avgJaccard and 10% 
decline of instRec.

• No significant improvements on instRec
• 0.1079  0.1104 (max) in 2011 dataset
• 0.0881  0.0896 (max) in 2012 dataset
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• context-sensitive RF (Shen, Tan & Zhai, SIGIR ’05)
• Click-through

• Slight increase of avgJaccard (less than 10%)
• Improvements of nDCG@10 comparable to those 

using past queries (10% - 20%)
• About 10% Improvements on instRec

• 0.1079  0.1169 (max) in 2011 dataset
• 0.0881  0.1007 (max) in 2012 dataset

• Still, when we optimize the system by nDCG@10, 
we cannot get maximum performance on instRec

• Parameters are not stable in 2011 & 2012 (probably 
due to the different distribution of session types)
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• context-sensitive RF (Shen, Tan & Zhai, SIGIR ’05)
• Metrics

• Pearson’s r of metrics’ values on 121 parameter settings
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TREC 2011 TREC 2012
nDCG@10 instRec nDCG@10 instRec

nDCG@10 1.000 -0.235 1.000 0.245
nsDCG@10 0.985 -0.244 0.994 0.204

inDCG@10_88 -0.013 0.956 0.496 0.952
inDCG@10_85 0.227 0.874 0.703 0.852
inDCG@10_58 0.483 0.719 0.773 0.793
inDCG@10_55 0.686 0.530 0.875 0.675

instRec -0.235 1.000 0.245 1.000
instRecGain -0.226 0.979 0.228 0.992
avgJaccard 0.413 -0.957 0.180 -0.890



• Click-through vs. past queries
• If you are also using past queries as positive relevance 

feedback information, probably you should re-evaluate 
your “improvements”.

• Metrics
• We may need to consider novelty, no matter the task is a 

single-query task or a whole-session search task 
(considering people may wrongly use past queries to 
enhance nDCG@10)

• Optimization
• Optimizing the parameters for nDCG@10 is risky, usually 

you cannot balance other evaluation metrics such as 
instRec
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