
Jiepu Jiang (University of Massachusetts Amherst)
Daqing He (University of Pittsburgh)

Different Effects of Click-through and Past Queries
on Whole-session Search Performance

1

• Analysis of an old method using alternative
evaluation approaches
• Are we really improving the performance?
• Whole-session relevance?
• Past query vs. click-through

2

• Using past queries and past click-through data as
relevance feedback
• Pretty old idea

e.g. context-sensitive RF (Shen, Tan & Zhai, SIGIR ’05)
• Seemingly very good performance

• e.g. our systems in 2011 and 2012 (a variant of
context-sensitive RF) were ranked at the top (by
nDCG@10 of the last query)

3

• Using past query and past click-through as
relevance feedback
• Probably making results similar to previous results

4

• Are we really improving the performance?
• The improvement of nDCG@10 may come

from retrieving relevant documents found by
previous queries?

• We cannot answer the question without
• using whole-session evaluation methods
• considering novelty in evaluation

5

• Evaluate whole-session search performance

• Procedure
• A static session {q1, q2, … , qn}
• For each qk, generate results Rk based on {q1, .. , qk}
• Evaluate {R1, R2, … , Rn} for whole-session

performance

• Simulation of user querying behavior: no simulation
• User will not change the next query according to the

previous results of systems & behaviors (e.g. click).

6

• Macro-average nDCG@10

• Starting at the 2nd query of each session

7

• nsDCG@10
• Concatenate top 10 results of each query
• Combine as a whole rank list for evaluation

see details in session track overview of 2010

• There are more complex methods
• Kanoulas, Carterette, D Clough, & Sanderson in

SIGIR’11

8

• Instance recall (instRec)
• Used in old TREC interactive tracks
• An instance is similar to a “nugget”
• instRec measures the recall of all judged relevant

instances (nuggets) all over the session

9

• Our calculation of instRec
• A document is considered as an instance (because

no judgments of instance)
• Concatenate top 10 results of each query

• Calculate recall of the concatenated results

10

• Instance recall gain (instRecGain)
• Evaluates each query’s contribution to the session’s

instance recall
• The instance recall contributed by the kth query’s

results Dk is:

• Then, we compute the macro-average instRecGain

11

• nDCG@10 (macro-average), nsDCG@10
• Do no consider novelty of results

• instRec and instRecGain
• Do no consider ranking & graded relevance

12

• Macro-average inDCG@10
• (Jiang, He, Han, Yue, & Ni, CIKM’12)
• Discount utility of relevant documents in a session

based on their rankings in previous results
• Then, calculate nDCG@10 of each query based on

the discounted utility of documents at that moment

• (Shokouhi, White, Bennett, Radlinski, SIGIR’13)
• “sometimes the repeated results should be

promoted, while some other times they should be
demoted.”

13

• Average Jaccard Similarity (AvgJaccard)
• Not a performance measure, but helpful for

analyzing novelty of search results.
• For each unique pair of queries in the session,

calculate the top 10 results’ Jaccard similarity, and
then calculate the mean value.

14

• context-sensitive RF (Shen, Tan & Zhai, SIGIR ’05)
• The “FixInt” method

15

16
0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

nDCG@10

inDCG@10_88

inDCG@10_85

inDCG@10_58

inDCG@10_55

nsDCG@10

instRec

instRecGain

avgJaccard

17
0.00

0.05

0.10

0.15

0.20

0.25

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

nDCG@10

inDCG@10_88

inDCG@10_85

inDCG@10_58

inDCG@10_55

instRec

instRecGain

• context-sensitive RF (Shen, Tan & Zhai, SIGIR ’05)
• Past queries

• Can lead to serious decline of results’ novelty
(Jaccard similarity can increase from 30% to 80%)

• When we optimize the system by nDCG@10, FixInt
gets 10% - 20% improvements on nDCG@10, but
also about 20% increase in avgJaccard and 10%
decline of instRec.

• No significant improvements on instRec
• 0.1079 0.1104 (max) in 2011 dataset
• 0.0881 0.0896 (max) in 2012 dataset

18

19
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

nDCG@10

inDCG@10_88

inDCG@10_85

inDCG@10_58

inDCG@10_55

nsDCG@10

instRec

instRecGain

avgJaccard

20
0.00

0.05

0.10

0.15

0.20

0.25

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

nDCG@10

inDCG@10_88

inDCG@10_85

inDCG@10_58

inDCG@10_55

instRec

instRecGain

• context-sensitive RF (Shen, Tan & Zhai, SIGIR ’05)
• Click-through

• Slight increase of avgJaccard (less than 10%)
• Improvements of nDCG@10 comparable to those

using past queries (10% - 20%)
• About 10% Improvements on instRec

• 0.1079 0.1169 (max) in 2011 dataset
• 0.0881 0.1007 (max) in 2012 dataset

• Still, when we optimize the system by nDCG@10,
we cannot get maximum performance on instRec

• Parameters are not stable in 2011 & 2012 (probably
due to the different distribution of session types)

21

• context-sensitive RF (Shen, Tan & Zhai, SIGIR ’05)
• Metrics

• Pearson’s r of metrics’ values on 121 parameter settings

22

TREC 2011 TREC 2012
nDCG@10 instRec nDCG@10 instRec

nDCG@10 1.000 -0.235 1.000 0.245
nsDCG@10 0.985 -0.244 0.994 0.204

inDCG@10_88 -0.013 0.956 0.496 0.952
inDCG@10_85 0.227 0.874 0.703 0.852
inDCG@10_58 0.483 0.719 0.773 0.793
inDCG@10_55 0.686 0.530 0.875 0.675

instRec -0.235 1.000 0.245 1.000
instRecGain -0.226 0.979 0.228 0.992
avgJaccard 0.413 -0.957 0.180 -0.890

• Click-through vs. past queries
• If you are also using past queries as positive relevance

feedback information, probably you should re-evaluate
your “improvements”.

• Metrics
• We may need to consider novelty, no matter the task is a

single-query task or a whole-session search task
(considering people may wrongly use past queries to
enhance nDCG@10)

• Optimization
• Optimizing the parameters for nDCG@10 is risky, usually

you cannot balance other evaluation metrics such as
instRec

23

24

