UNIVERSITY OF PITTSBURGH

www.ischool.pitt.edu

School of **Information Sciences**

How Do Users Respond to Voice Input Errors?

Lexical and Phonetic Query Reformulation in Voice Search

Jiepu Jiang, Wei Jeng, Daqing He

School of Information Sciences, University of Pittsburgh

EXAMPLE

- I am a big fan of the famous Irish rock band U2.
 Are they going to have a concert in Dublin recently?
 Maybe I can go to a concert after SIGIR.
- Then, I take out my smartphone

EXAMPLE: VOICE INPUT ERROR

- Voice Input Error
 - The query received by the search system is different from what the user meant to use.
- Speech recognition error

User's Actual Query	System's Transcription
U2	Youtube

- Improper system interruption
 - The user is interrupted before finishing speaking all of the query terms.

EXAMPLE: QUERY REFORMULATION

Lexical changes

Original Query	Reformulation
U2	Irish rock band U2

- Phonetic changes
 - Overstate "U2" at speaking
- Probably related to the voice input errors

RESEARCH QUESTIONS

- 1. How do voice input errors affect the effectiveness of voice search?
- 2. How do users reformulate queries in voice search?
- 3. Are users' query reformulations related to voice input errors? If yes, do they help the solve the voice input errors?

- Objectives
- Experiment Design
- Data
- Voice Input Errors
- Query Reformulations

EXPERIMENT DESIGN

- Objective
 - To collect users' natural responses to voice input errors
- System
 - Google voice search app on iPad

Click this button to start speaking the query

Speak now

Google

8

U2 - Wikipedia, the free encyclopedia en.wikipedia.org/wiki/U2

Jump to "Reapplying for the job of the best band in the world" (2000–06) - The **band** ... In 2005, Bruce Springsteen inducted **U2** into the **Rock** and ... The move was criticised in the **Irish** ...

Finally, the system retrieves results according to its transcriptions

SEARCH TASKS

- Work on TREC topics
 - 30 from robust track, 20 from web track
- Search session (2 minutes)
- Users can
 - Reformulate queries
 - Use Google's query suggestions
 - Browse and click results
- Users cannot
 - Type on the iPad to input queries

EXPERIMENT PROCEDURE (90 MIN)

LIMITATIONS OF THE DESIGN

- Lack of contexts of using voice search
 - Topics
 - Experiment environment
- Query Input
 - Our experiment: voice only
 - Practical cases: voice + typing on iPad
- Influence on our results & conclusions
 - Details in the paper

- Objectives
- Experiment Design
- Data
- Voice Input Errors
- Query Reformulations

OVERVIEW OF THE DATA

- 20 English native speaker participants
- 500 search sessions (20 participants × 25 topics)
- 1,650 queries formulated by participants themselves
 - 3.3 voice query per user session
- 32 cases of using query suggestions
- 1.41 (SD=1.14) clicked results per user session.

QUERY TRANSCRIPTION

- Q_v (a voice query's actual content)
 - manually transcribed from the recording
 - two authors had an agreement of 100%, except on casing, plurals, and prepositions
- **Q**_{tr} (the system's transcription of a voice query)
 - available from the log

EVALUATION OF EFFECTIVENESS

- No Explicit Relevance judgments
- For each topic, we aggregate all users' clicked results on this topic as its relevant documents
 - 9.76 (SD=3.11) unique clicked results per topic
 - For each clicked result, relevance score = 1

- Objectives
- Experiment Design
- Data
- Voice Input Errors
 - Individual Queries
 - Search Sessions
- Query Reformulations

INDIVIDUAL QUERIES

- 908 queries have voice input errors (55% of 1,650)
 - 810 by speech recognition error
 - 98 by improper system interruption

% of all 1,650 voice queries

INDIVIDUAL QUERIES: WORDS

- Missing words: words in Q_v but not in Q_{tr}
- Incorrect words: words in Q_{tr} but not in Q_v

INDIVIDUAL QUERIES: WORDS

About half of the query words have errors

	Speech Rec Errors 810 Queries	
	mean	SD
Length of Q _v	4.14	1.99
Length of Q_{tr}	4.21	2.31
# missing words in Q _v	1.77	1.09
# incorrect words in Q_{tr}	1.84	1.44
% missing words in Q _v	49.7%	29%
% incorrect words in q _{tr}	49.3%	31%

21

INDIVIDUAL QUERIES: RESULTS

- For 810 queries with speech recognition errors
 - Very low overlap between the results of Q_v and Q_{tr}
 - Jaccard similarity of top 10 results = 0.118

INDIVIDUAL QUERIES: PERFORMANCE

• Significant decline of search performance (nDCG@10)

	No Errors 742 Queries		Speech Rec Error 810 Queries	
	mean	SD	mean	SD
nDCG@10 of q _v	0.275	0.20	0.264	0.22
nDCG@10 of q _{tr}	0.275	0.20	0.083 🖖	0.16
ΔnDCG@10	-	-	-0.182	0.23

INDIVIDUAL QUERIES: PERFORMANCE

• Significant decline of search performance (nDCG@10)

24

INDIVIDUAL QUERIES: PERFORMANCE

- Improper system interruption
 - The worst search performance

- Objectives
- Experiment Design
- Data
- Voice Input Errors
 - Individual Queries
 - Half of the words have errors
 - Very different search results
 - Significant decline of search performance
 - Search Sessions
- Query Reformulations

- Objectives
- Experiment Design
- Data
- Voice Input Errors
 - Individual Queries
 - Search Sessions
- Query Reformulations

SEARCH SESSION

- Significantly more voice queries were issued
 - Increased efforts of users
 - 2/3 queries have voice input errors

	187 Se w/o V Input I	ssions /oice Errors	313 Ses w/ Vo Input E	sions bice rrors
	mean	SD	mean	SD
# queries	1.44	0.82	4.41 🛧	2.51
# unique queries	1.44	0.82	3.30 🛧	1.87
# queries w/o voice input errors	1.44	0.82	1.51	1.36

SEARCH SESSION

- Slightly less (4%) unique relevant results retrieved in the session, although about 3 times of total results were returned
 - more results were retrieved, probably increased efforts of users for judging results

	187 Ses w/o V Input I	ssions ⁄oice Errors	313 Ses w/ Vo Input E	ssions bice Frrors
	mean	SD	mean	SD
# unique relevant results by q _{tr}	2.90	1.56	2.78	1.71
# unique results by q _{tr}	13.38	6.66	37.95 🛧	21.00

SEARCH SESSION

- In sessions with voice input errors
 - Slightly less clicked results over the session
 - 15% more likelihood with no clicked results

	187 Sessions w/o Voice Input Errors		313 Sessions w/ Voice Input Errors	
	mean	SD	mean	SD
# clicked results in the session	1.39	1.01	1.34	1.23
% sessions user clicked results	84.49%	-	69.97%	_

- Objectives
- Experiment Design
- Data
- Voice Input Errors
 - Individual Queries
 - Search Sessions
 - Users made extra efforts to compensate
 - Overall slightly worse performance over session
- Query Reformulations

- Objectives
- Experiment Design
- Data
- Voice Input Errors
- Query Reformulations
 - Patterns
 - Performance
 - Correcting Error Words

TEXTUAL PATTERNS

• Query Term Addition (ADD)

	Voice Query	Transcribed Query	ADD words
q ₁	the sun	the son	
q ₂	the sun solar system	the sun solar system	solar system

- Query Term Substitution (SUB)
 - SUB word pairs are manually coded (93% agreement)

	Voice Query	Transcribed Query	SUB words
q ₁	art theft	test	
q ₂	art embezzlement	are in Dublin	theft \rightarrow embezzlement
q ₃	stolen artwork	stolen artwork	embezzlement \rightarrow stolen art \rightarrow artwork

TEXTUAL PATTERNS

• Query Term Removal (RMV)

	Voice Query	Transcribed Query
q ₁	advantages of same sex schools	andy just open it goes
q ₂	same sex schools	same sex schools

• Query Term Reordering (ORD)

	Voice Query	Transcribed Query
q ₁	interruptions to ireland peace talk	is directions to ireland peace talks
q ₂	ireland peace talk interruptions	ireland peace talks interruptions

PHONETIC PATTERNS

- Partial Emphasis (PE)
 - Overstate a specific part of a query

РЕ Туре	Example	Explanation
Stressing (STR)	rap and crime	put stress on "rap"
Slow down (SLW)	rap and <mark>c-r-i-m-e</mark>	slow down at "crime"
Spelling (SPL)	P·u·e·r·t·o Rico	spell out each letter in "Puerto"
Different Pronunciation (DIF)	Puerto Rico	pronounce "Puerto" differently

PHONETIC PATTERNS

- Whole Emphasis (WE)
 - Overstate the whole query at speaking
- 2 authors manually coded the phonetic patterns
 - agreement 87.6%
 - 5 Labels
 - STR/SLW
 - SPL
 - DIF
 - WE
 - REP (repeat without observable patterns)

USE OF DIFFERENT PATTERNS

- When previous query has voice input error
 - Increased use of SUB & ORD
 - Less use of ADD & RMV

Patterns	Prev Q Error	Prev Q No Error	Overall
ADD	90.50%	32.98% 🖖	53.82%
SUB	15.04%	16.34% 🛧	14.87%
RMV	66.75%	37.93% 🗸	48.37%
ORD	33.51%	43.03% 🛧	39.58%
(All Lexical)	99.74%	77.36% 🖖	85.47%

USE OF DIFFERENT PATTERNS

Use of phonetic patterns are nearly always
 associated with previous voice input errors

Patterns	Prev Q Error	Prev Q No Error	Overall
STR/SLW	0%	14.84% 🛧	9.46%
SPL	0%	0.60% 🛧	0.39%
DIF	0%	0.90% 🛧	0.57%
WE	0.26%	9.30% 🛧	6.02%
(All Phonetic)	0.26%	25.64% 🛧	16.44%
Repeat	0%	20.54% 🛧	13.58%

- Objectives
- Experiment Design
- Data
- Voice Input Errors
- Query Reformulations
 - Patterns
 - Lexical + Phonetic; related to voice input errors
 - Search Performance
 - Correcting Error Words

REFORMULATION: PERFORMANCE

- Overall slightly improvement (10% in nDCG@10)
- But highly depends on whether or not voice input error happened after query reformulation
- Did not reduce the likelihood of voice input errors

The reformulated query has / is	nDCG@10 (before → after)	# of cases
No Error	0.150 → 0.233 🛧	474 (40%)
Speech Rec Error	0.104 → 0.079 🖖	597 (51%)
Interruption	0.156 → 0.056 🖖	79 (6.7%)
Query Suggestion	0.201 → 0.223 🛧	32 (2.7%)
Overall	0.129 → 0.143 🛧	1,182

- Objectives
- Experiment Design
- Data
- Voice Input Errors
- Query Reformulations
 - Patterns
 - Search Performance
 - Correcting Error Words

REFORMULATION: CORRECTING ERRORS

- Do query reformulation help correct error words?
 - no substantial difference in terms of the # of error words (if speech recognition error happened after reformulation)

The reformulated	# missing words	# incorrect words
query nas	before \rightarrow after	before \rightarrow after
No Errors	1.75 → 0.00	1.81 → 0.00
Speech Rec Errors	1.89 → 1.74 🖖	1.72 → 1.78

REFORMULATION: CORRECTING ERRORS

- Does query reformulation help correct error words?
 - Yes, it indeed corrected parts of the error words
 - But new error words come out

The reformulated query has	# missing words corrected after reformulation	# missing Words removed after reformulation	# new missing words
No Errors	1.13	0.61	0.00
Rec Errors	0.52	0.34	0.72

SUCCESS RATE OF CORRECTING ERRORS

- SUB & ORD as the most effective patterns
- PE and WE: not much higher than simply repeat

	Success rate of correcting missing words	nDCG@10 before → after
ADD	40.73 %	0.085 ightarrow 0.119
SUB	73.53 %	$0.052 \rightarrow 0.156$ \uparrow
RMV	-	$0.077 \rightarrow 0.111$
ORD	69.14 %	0.062 → 0.147 🛧
PE	62.50 %	$0.022 \rightarrow 0.150$ \uparrow
WE	60.94 %	$0.028 \rightarrow 0.110$ \uparrow
Repeat	59.73 %	$0.051 \rightarrow 0.142$ \uparrow
Overall	47.45 %	$0.058 \rightarrow 0.132$ \uparrow

- Objectives
- Experiment Design
- Data
- Voice Input Errors
- Query Reformulations
 - Use of reformulation related to voice input errors
 - Some are effective for correcting error words
 - Did not reduce the likelihood of voice input errors
 - Overall not much improvement of search
 performance

WRAP UP

- Voice input errors
 - largely affect search performance and users' efforts

Voice Query Reformulation

- New patterns
- Lexical reformulation for correcting voice input errors
- Currently query reformulation is not much effective
- Overall lack of support for query reformulation
 - Users have to speak the whole query again rather than correcting individual words
 - Query suggestion were seldom used

LIMITATION

- What may not be generalizable (due to TREC topics)
 - The frequency of voice input errors
 - The frequency that different patterns were used
- What may be generalizable
 - The limited effectiveness of query reformulation
 - The comparative effectiveness of different patterns
- Experiment environment (e.g. noise, interruption)
 - The effectiveness of query reformulation could be even worse

Thank you

ACKNOWLEDGEMENTS

- Google Voice Search
 - Absolutely the best ever voice search system we found
- Supports
 - SIGIR student travel grant (Jiepu Jiang)
 - Google travel grant for women (Wei Jeng)
 - Student travel grant, School of Information Sciences, University of Pittsburgh (Jiepu Jiang & Wei Jeng)

People

- Participants of the study
- Shuguang Han
- Kelly Shaffer
- Jessica Benner
- Usability Lab (ULAB), Information Science, University of Pittsburgh