PITT at TREC 2012 Session Track: Adaptive Browsing Novelty in a Search Session

Jiepu Jiang, Daqing He, Shuguang Han University of Pittsburgh

PITT at TREC 2012 Session Track

- Our focus this year
 - Finding novel results for the current query

Our goal

- We expect the methods to be relatively conservative
 - with significant effects on ranking novel results to higher positions
 - without much hurt on the ad hoc search performance, e.g. nDCG@10 over all qrels (without removing duplicates)
 - because currently it is unclear:
 - whether we should consider novelty issues in a search session
 - if yes, what are the proper methods?
 - Anyway, it seems risky if novelty search system hurts nDCG@10

Novelty in a Search Session

Two types of novelty issues in a search session

- Novelty in content (not our focus this year)
 - Documents with very similar information are retrieved
 - Partly discussed in web track diversity task
- Duplicate results (new to the session track; our focus)
 - The same webpage is returned in the results of many queries
 - Should we discount the duplicate results in current query?

Novelty in a Search Session

- Should we discount duplicate results in current search?
 - Pros:
 - It may better explain users' query reformulation behaviors.
 - Cons:
 - User may overlook a relevant result when browsing the result list
 - User may be confused about how the system works
 - Loss of control on the search process
 - Lack of proper evaluation methods and guidelines for ranking
 - remove previously shown retrieved results in the evaluation of current query? (seems too radical)
 - remove the clicked documents in previous results? (seems too conservative)

Pros on Discounting Duplicate Results in Evaluation & Ranking

- Do users reformulate to get good ad hoc search performance? (Probably No)
 - We extract 204 query reformulation pairs (reformulating from q_{n-1} to q_n) from TREC 2011 session track sessions
 - Comparison of P@k and nDCG@k for the two consecutive queries

Changes of Ad hoc Search Performance from q_{n-1} to q_n					
Metric	mean	SD	p value		
P@10	0.026	0.275	0.171		
P@20	0.022	0.212	0.143		
nDCG@10	0.021	0.241	0.209		
nDCG@20	0.019	0.204	0.180		

If we believe the ad hoc search evaluation metrics (e.g. P@k and nDCG@k) are valid measures of search performance in a search session, our results indicate users are reformulating queries that are nothing better than previous ones

Pros on Discounting Duplicate Results in Evaluation & Ranking

- Do users reformulate to get novel search results? (Probably Yes)
 - Comparison of jaccard similarity and ranking correlation on two consecutive queries' top results.

		mean	SD
Jaccard Similarity (average over topics)	Top 10 results	0.357	0.377
	Top 20 results	0.354	0.360
Spearman's ρ (average over topics)	Top 10 results	0.103	0.609
	Top 20 results	0.145	0.577

Seems more persuading

 When the previous query is very effective, current query can be seemingly very "effective" by returning similar results, or even the same results.

Novelty in a Search Session

A brief conclusion:

- The users may need such system supports
- Although users may lose control on the systems that explicitly discounting duplicate results, at least we can provide such support and let users decide whether to use it.
- We may need to find a balance between the "risky" method and the "conservative" method

Overall Ranking Framework

- A language modeling approach:
- q: the latest search query
- d: a document
- s: session contexts, e.g. previous queries, clicks
- P(q|d,s): topical relevance of d to q in the session s
- P(d|s): current usefulness of d given the past session context s

 $P(d | q, s) \propto P(q | d, s) \cdot P(d | s)$

$$P(q \mid d, s) \propto P(q, s \mid d, s) \stackrel{rank}{=} \sum_{t \in \theta_{q,s}} P(t \mid \theta_{d,s})^{P(t \mid \theta_{q,s})}$$

Estimating session document models and query models

θ_{d,s}: session document model (here we downgraded to a plain document model with Dirichlet Smoothing [1])

$$P(t \mid \theta_{d,s}) \approx \hat{P}(t \mid \theta_{d}) = \frac{c(t,d) + \mu \cdot P(t \mid C)}{\sum_{t_i \in d} c(t_i,d) + \mu}$$

Topical Relevance: P(q|d,s) $P(q|d,s) \propto P(q,s|d,s) \stackrel{rank}{=} \sum_{t \in \theta_{q,s}} P(t|\theta_{d,s})^{P(t|\theta_{q,s})}$

Estimating session document models and query models
θ_{q,s}: interpolating different query models

$$\begin{split} \hat{P}\left(t \mid \theta_{q,s}\right) = & \left(1 - \lambda_{fb}\right) \cdot \left\{ \left(1 - \lambda_{prev}\right) \cdot P_{MLE}\left(t \mid q\right) + \lambda_{prev} \cdot P_{MLE}\left(t \mid q_{s}\right) \right\} \\ & + \lambda_{fb} \cdot P_{fb}\left(t \mid \theta_{q,s}\right) \end{split}$$

- P_{MLE}(t|q): current query's MLE model (RL1 run)
- P_{MLE}(t|q_s): previous queries' MLE model (RL2 run)
- $P_{fb}(t|\theta_{q,s})$: relevance feedback query model
 - RL3: $P_{fb}(t|\theta_{q,s})$ is RL2 run's pseudo-relevance feedback query model
 - RL4: $P_{fb}(t|\theta_{q.s})$ is the clicked-document query model

- This part is nothing fancy, simply the same methods we adopted last year.
 - Similar methods have been adopted by many groups since the first year

Key to the high ad hoc search performanceWaterloo spam filtering

- only retrieve documents with spam scores >= 70
 Well tuned weights between different query models
 - Especially the weight on previous queries
- All the parameters are in the notebook paper

Two runs using only topical relevance

Runs/Methods	Topical Relevance	Browsing Novelty	SDM
PITTSHQM	Y	Ν	N
PITTSHQMsdm	Y	Ν	Y
PITTSHQMnov	Y	Y	N
PITTSHQMsnov	Y	Y	Y

	RL1	RL2	RL3	RL4
PITTSHQM	0.2558	0.3100	0.3221	0.3153
PITTSHQMsdm	0.2615	0.3071	0.3103	0.3103
PITTSHQMnov	0.2517	0.3009	0.3152	0.3070
PITTSHQMsnov	0.2540	0.2966	0.3009	0.3019

Results (very similar to previous years' results)

- If the RL2 query model is well tuned, it is difficult to get improvement in RL3 and RL4 query models
 - Not surprising, because RL2-4 give similar information for estimating the query language model
 - RL2: previous queries (small sample; little noise)
 - RL3: pseudo-relevant documents (larger sample; lots of noise)
 - RL4: previous queries' results being clicked (larger sample than RL2; less noise than RL3)

	RL1	RL2	RL3	RL4
PITTSHQM	0.2558	0.3100	0.3221	0.3153
PITTSHQMsdm	0.2615	0.3071	0.3103	0.3103

P(d|s): the probability that, after several rounds of searches (s), a document d is still informative to the user.

Some intuitions:

- The higher rank of d in previous results, the more likely d has been examined and is useless for user
- The more previous queries returned d, the more likely d has been examined and is useless for user
- The user may overlook a document d in browsing.

User Model: RBP [1] browsing model

- q_i : the ith query in the session;
- $R^{(i)}$: the results of q_i .
- The user always examines the first document in $R^{(i)}$.
- After examine a document, the user has:
 - Probability p to continue to examine the next document in R(i)
 - Probability 1-p to stop examining (either to reformulate or to leave the current session): but for the session track data, we always assume the user will reformulate.

[1] A. Moffat, J. Zobel. (2008). Rank-biased precision for measurement of retrieval effectiveness. ACM Trans. Inf. Syst., 27(1), 2:1–2:27.

- *p*: the probability to continue to examine the next document in R(i)
- P_{examine}(d|R⁽ⁱ⁾): the probability that the user had examined a document d when browsing R⁽ⁱ⁾
- rank(d,i): the rank of d in results R⁽ⁱ⁾

$$P_{\text{examine}}(d \mid R^{(i)}) = \begin{cases} p^{\operatorname{rank}(d,i)-1} & d \in R^{(i)} \\ 0 & d \notin R^{(i)} \end{cases}$$

P_{examine}(d|R⁽ⁱ⁾) depends on p and rank(d,i), models the intuition:
The higher rank of d in previous results, the more likely d has been examined and is useless for user

User Models: Browsing Novelty [2]

- For each time the user examines a document, it has the probability β that the user can understand the information of the document and will not need to see the document again in the same session.
- After a series of searches (s), the probability that a document can keep its utility is P(d|s):

$$P(d \mid s) = 1 - \prod_{i=1}^{n-1} \left(1 - \beta \cdot P_{\text{examine}}(d \mid R^{(i)}) \right)$$

[2] J. Jiang et al. (2012). Contextual Evaluation of Query Reformulations in a Search Session by User Simulation. In CIKM 2012.

User Models: Browsing Novelty [2]

- Models the other two intuitions:
 - The more previous queries returned d, the more likely d has been examined and is useless for user
 - The user may overlook a document d in browsing.
- P_{examine}(d|R⁽ⁱ⁾) may be replaced by other browsing models

$$P(d \mid s) = 1 - \prod_{i=1}^{n-1} \left(1 - \beta \cdot P_{\text{examine}}(d \mid R^{(i)}) \right)$$

[2] J. Jiang et al. (2012). Contextual Evaluation of Query Reformulations in a Search Session by User Simulation. In CIKM 2012.

- The parameter β is simply set to a constant value here
- β may be further modeled to consider some complex factors:
- User factors
 - Reading style
 - Careful/careless
 - Users' background knowledge and familiarity to the topic
- Session factors
 - Search tasks: exploratory search may have lower β
 - Search stages: β can change during different search stages
- System & Collection factors
 - Search interface etc.
 - Attractiveness of results

Two runs considering both novelty and topical relevance

Runs/Methods	Topical Relevance	Browsing Novelty	SDM
PITTSHQM	Y	Ν	N
PITTSHQMsdm	Y	Ν	Y
PITTSHQMnov	Y	Y	N
PITTSHQMsnov	Y	Y	Y

Parameters:

p = 0.8, $\beta = 0.8$ for all runs in all sessions

	RL1	RL2	RL3	RL4
PITTSHQM	0.2558	0.3100	0.3221	0.3153
PITTSHQMnov	0.2517	0.3009	0.3152	0.3070
PITTSHQMsdm	0.2615	0.3071	0.3103	0.3103
PITTSHQMsnov	0.2540	0.2966	0.3009	0.3019

Our mistake: our RL1 runs for PITTSHQMnov and PITTSHQMsnov actually used RL2 information
because P(q|s) used RL2 information

Evaluation (without removing duplicates)

- Discounting duplicate documents slightly hurt the nDCG@10 results
- But for all the runs, the differences are insignificant

Using all qrels for evaluation (without removing duplicates)					
	RL1	RL2	RL3	RL4	
PITTSHQM	0.2558	0.3100	0.3221	0.3153	
PITTSHQMnov	0.2517	0.3009	0.3152	0.3070	
PITTSHQMsdm	0.2615	0.3071	0.3103	0.3103	
PITTSHQMsnov	0.2540	0.2966	0.3009	0.3019	

Evaluation (removing all shown duplicates)

- nDCG@10 significantly improved about 7%-10%
- Still large improvements of RL2-4 over RL1

Using all qrels for evaluation (without removing duplicates)						
	RL1 RL2 RL3 RL4					
PITTSHQM	0.2314	0.2746	0.2877	0.2781		
PITTSHQMnov	0.2500*	0.3001*	0.3146*	0.3063*		
PITTSHQMsdm	0.2344	0.2650	0.2698	0.2696		
PITTSHQMsnov	0.2498	0.2916*	0.2959*	0.2959*		

Some preliminary conclusions:

- We can consider novelty issues in a search session without hurting ad hoc search performance
 - On average, it seems there is no much risk of providing users with such system
- Novelty may not be an essential issue in interactive search
 - It seems users can by themselves reformulate very different queries
 - The most fundamental way of improving a system seems still to be aiming at high ad hoc search performance
 - But

Some Suggestions on Evaluation

The two novelty evaluation methods this year:

- Discount the relevance of clicked documents in previous results to 0.
 - May be too conservative
 - P(understand | clicked) may be high, but P(clicked | understand) may be low
- Discount the relevance of all showed documents in previous searches to 0.
 - May be too radical
 - Some shown results are not examined
 - User may overlook a document at browsing
 - User may be not confident or clear about the information in a document after examine

Some Suggestions on Evaluation

Suggestion 1: Collecting time-sensitive qrels (a model free approach)

Suggestion 2: Estimating the session context sensitive qrels

- Thanks!
- Questions?