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Motivation and Contributions
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Existing semi-supervised benchmarks are lackingll:
 Curated datasets: CIFAR, SVHN, STL-10, ImageNet

* Uniform class distribution

 Low-resolution images

* Unlabeled data does not contain novel class

Does semi-supervised learning (SSL) work in realistic datasets?

N )
A Realistic Benchmark
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Semi-Aves Dataset @ FGVC7
Images from:
* Lin: 200 species of birds, where 10% are labeled images
* Uin: same set of classes as Li
* Uout: different set of classes in the Aves taxa

Differences from existing benchmarks:
* Long-tailed distribution of classes
* Unlabeled data contains novel classes
* Fine-grained similarity between classes
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Variations:
*Semi-Fungi @ FGVC5 & Semi-iNat @ FGVC8
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'Methods for semi-supervised learning (SSL)

* Pseudo-Labeling [2] and Curriculum Pseudo-Labeling [3]
* FixMatch [4]

* Self-Training via Distillation [3]

 Self-Supervised Learning (MoCo) [6] + Baseline

» Self-Supervised Learning (MoCo) [6] + Self-Training [7]
«Baseline: Train w/ labeled data

* Oracle: Train w/ fully labeled data

Investigate the role of:

* Initialization: scratch / ImageNet / iNat18 pre-trained models
« Out-of-domain data: Uin only or Uin + Uout

on the performance of ResNet50 w/ 224x224 images
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/-Training from scratch with SSL is worse than supervised transfer |
learning (Baseline) from ImageNet or iNat (see below).

» Several state-of-the-art SSL techniques are not robust to the
presence of out-of-domain data (see right)

* When evaluated w/ transfer learning, contrastive self-supervised
learning is not as effective.

* Performance of current methods are still far below the oracle —
big room for improvement!

How Effective is Transfer Learning?

[ Training from scratch |

 FixMatch and Self-Training provide improvements, but self-
supervised methods can further benefit from Uout

* Overall, MoCo + Self-Training performs the best

from scratch
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[ Training from experts (ImageNet or iNat)
* FixMatch performs the best when using only Uis, while Self-

Training is more robust to the presence of Uout

*No method was able to reliably use out-of-class data even though
the domain shift is relatively small

from expert models
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https://github.com/cvl-umass/ssl-evaluation
https://github.com/cvl-umass/ssl-evaluation

