A Realistic Evaluation of Semi-Supervised Learning for Fine-Grained Classification

University of Massachúsetts Amherst

Jong-Chyi Su

Motivation and Contributions

Existing semi-supervised benchmarks are lacking^[1]:

- Curated datasets: CIFAR, SVHN, STL-10, ImageNet
- Uniform class distribution
- Low-resolution images
- Unlabeled data does not contain novel class

Does semi-supervised learning (SSL) work in realistic datasets?

A Realistic Benchmark

Semi-Aves Dataset @ FGVC7

FGVC8

RESEARCH

COMPETIT

KAGGLE

Images from:

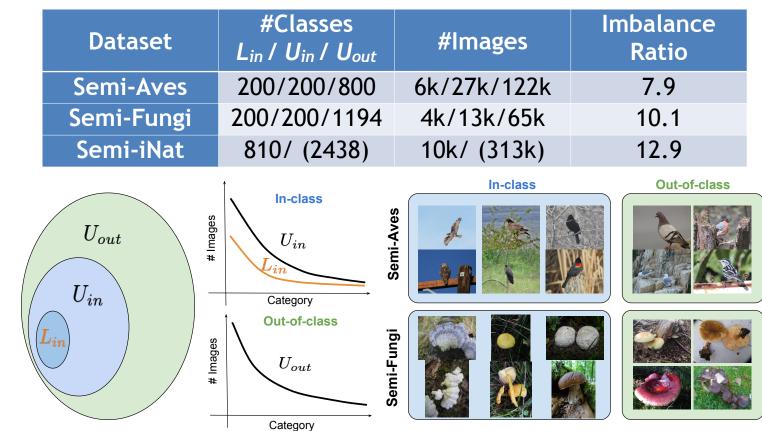
- *L*_{in}: 200 species of birds, where 10% are labeled images
- U_{in}: same set of classes as L_{in}
- *U_{out}*: different set of classes in the Aves taxa

Differences from existing benchmarks:

- Long-tailed distribution of classes
- Unlabeled data contains novel classes
- Fine-grained similarity between classes

Variations:

• Semi-Fungi @ FGVC5 & Semi-iNat @ FGVC8 /



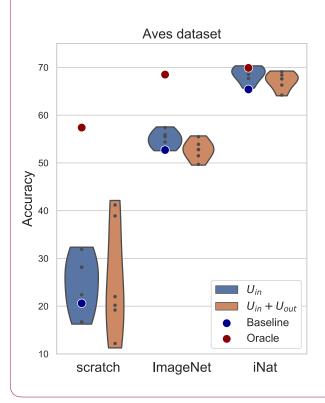
Methods for semi-supervised learning (SSL)

- Pseudo-Labeling [2] and Curriculum Pseudo-Labeling [3]
- FixMatch [4]
- Self-Training via Distillation [5]
- Self-Supervised Learning (MoCo) [6] + Baseline
- Self-Supervised Learning (MoCo) [6] + Self-Training [7]
- **Baseline:** Train w/ labeled data
- Oracle: Train w/ fully labeled data

Investigate the role of:

- Out-of-domain data: U_{in} only or U_{in} + U_{out}

- Training from scratch with SSL is worse than supervised transfer learning (Baseline) from ImageNet or iNat (see below).
- Several state-of-the-art SSL techniques are not robust to the presence of out-of-domain data (see right)
- When evaluated w/ transfer learning, contrastive self-supervised learning is not as effective.
- Performance of current methods are still far below the oracle big room for improvement!



Zezhou Cheng Subhransu Maji

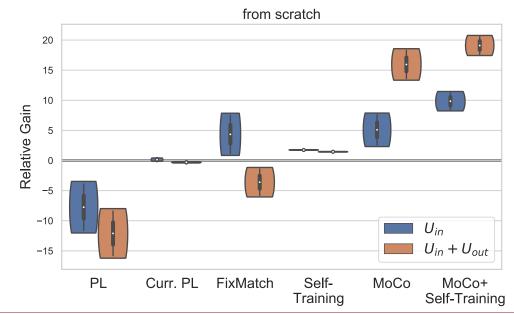
University of Massachusetts, Amherst

Experiments

How Effective is Transfer Learning?

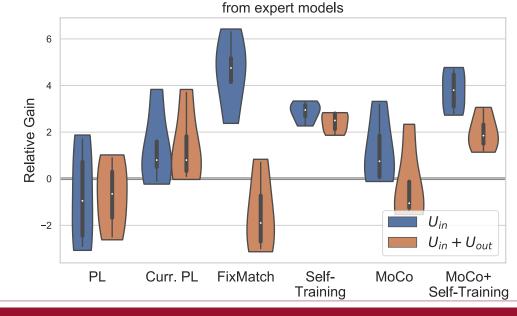
Training from scratch

- FixMatch and Self-Training provide improvements, but selfsupervised methods can further benefit from Uout
- Overall, MoCo + Self-Training performs the best



Training from experts (ImageNet or iNat)

- FixMatch performs the best when using only U_{in}, while Self-Training is more robust to the presence of U_{out}
- No method was able to reliably use out-of-class data even though the domain shift is relatively small



References

- [1] Oliver et al., Realistic evaluation of deep semi-supervised learning algorithms, NeurIPS '18 [2] Lee, Pseudo-label: The simple and efficient semi-supervised learning method for deep neural networks, ICML Workshop '13
- [3] Cascante-Bonilla et al., Curriculum labeling: Self-paced pseudo labeling for semi-supervised learning, arXiv '20
- [4] Sohn et al., FixMatch: Simplifying semi-supervised learning with consistency and confidence, NeurIPS '20
- [5] Xie et al., Self-training with noisy student improves ImageNet classification, CVPR '20
- [6] He et al., Momentum contrast for unsupervised visual representation learning, CVPR '20
- [7] Chen et al., Big self-supervised models are strong semi-supervised learners, NeurIPS '20

• Initialization: scratch / ImageNet / iNat18 pre-trained models on the performance of ResNet50 w/ 224x224 images

Key Takeaways

